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1. Introduction

Sulfones are important starting compounds in the synthesis of different sulfur-containing
compounds and natural products [1]. Sulfones also exist in a wide range of biologically active
molecules, such as oxycarboxin (a highly efficient agricultural fungicide) [2], fipronil (a pesticide) [3],
and benzobicyclon (a herbicide) [4]. In addition, the structures of alkyl aryl sulfones are well known
as the core structural unit in pharmaceutical molecules. For instance, eletriptan is an efficient drug
for early migraine [5], and bicalutamide is used for the treatment of advanced prostate cancer [6]
(Figure 1). Therefore, a variety of synthetic approaches have been developed for the synthesis of
alkyl aryl sulfones, including the Zn/CuI-mediated coupling reaction of alkyl halides with vinyl
arylsulfones [7], FeCl3/TMSCl-catalyzed β-sulfonation of α,β-unsaturated carbonyl compounds
with p-toluenesulfinates [8], the aerobic oxysulfonylation of alkenes with various sulfinic acids [9],
Cu(OAc)2-catalyzed direct oxysulfonylation of alkenes with dioxygen and sulfonylhydrazides [10],
the reaction of alkenes with sodium arylsulfinates catalyzed by molecular iodine under aerobic
oxidative conditions [11], sulfonylation of activated alkenes with sulfonylhydrazides [12], the direct
sulfonylation of 2-methylquinolines with sodium aryl sulfinates mediated by KI in the presence of
oxidant [13], nickel-catalyzed hydroxysulfonylation of alkenes using sodium sulfinates [14], and
oxygen-mediated reaction of diethyl 1-arylvinyl phosphates with arylsulfinic acid [15]. Recently, He
and co-workers reported the preparation of α-sulfonylethanone oximes from the reaction of styrenes
with substituted N-arylsulfonyl hydroxylamines in the presence of tetrabutylammonium periodate
as oxidant (n-Bu4NIO4) (Scheme 1) [16]. In this paper, we report the reaction of N-arylsulfonyl
hydroxylamines with electron-deficient alkenes to provide an alternative procedure for the synthesis
of alkyl aryl sulfones under mild conditions (Scheme 1).
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Scheme 1. Synthesis of alkyl aryl sulfones from N-arylsulfonyl hydroxylamines with alkenes. 

2. Results and Discussion 

We initiated our study on the reaction of N-phenylsulfonyl hydroxylamine (1a) with methyl 
acrylate (2a) to optimize the reaction conditions. As summarized in Table 1, when a mixture of 1a 
and 2a (2.0 equiv.) in CH3CN was heated with stirring at 60 °C for 18 h, not any product was formed 
by the analyses of the reaction mixture by GC-MS, and both 1a and 2a were recovered (entry 1). 
However, in the presence of NaOAc (1.0 equiv.), repeating the same reaction gave the desired 
compounds 3aa in 39% GC yield (entry 2) [17], indicating that the presence of base is crucial for the 
formation of 3aa. In addition, when CH3OH was used as solvent to replace CH3CN, 3aa was formed 
in 98% GC yield (entry 3). In the case of acrylonitrile employed, the yield of the corresponding 
product 3af is also greatly depending on the solvents used, and CH3OH is the best choice (entries 
4–6). Increasing the amount of NaOAc (from 1.0 equiv. to 2.0 equiv.) afforded 3af in the same yield 
(entry 7), but the decreasing amount of NaOAc (from 1.0 equiv. to 0.5 equiv.) resulted in the considerable 
decrease of the yield of 3af (entry 8). Moreover, the use of Na2CO3 as base led to 44% of 3af (entry 9), 
and the use of 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) 
and pyridine as base, or without the use of base led to no formation of 3af at all (entries 10–13). 

Table 1. Optimizing the reaction conditions a. 

 

Entry R Solvent Base (Equiv.) Yield (%) b 
1 COOMe CH3CN -- 0 
2  CH3CN NaOAc (1) 39 
3  CH3OH NaOAc (1) 98(93) 
4 CN toluene NaOAc (1) 45 
5  CH3CN NaOAc (1) 53 
6  CH3OH NaOAc (1) 85(80) 
7  CH3OH NaOAc (2) 84 
8  CH3OH NaOAc (0.5) 67 
9  CH3OH Na2CO3 44 

10  CH3OH DABCO (1) 0 
11  CH3OH DBU (1) 0 
12  CH3OH pyridine 0 
13  CH3OH -- 0 

a Reactions were carried out using 1.0 mmol of 1a, 2.0 mmol of 2a or 2f, and base in 10.0 mL of 
solvent in a sealed tube. b GC yield based on the amount of 1a used. Number in parenthesis is 
isolated yield.  

Scheme 1. Synthesis of alkyl aryl sulfones from N-arylsulfonyl hydroxylamines with alkenes.

2. Results and Discussion

We initiated our study on the reaction of N-phenylsulfonyl hydroxylamine (1a) with methyl
acrylate (2a) to optimize the reaction conditions. As summarized in Table 1, when a mixture of 1a and
2a (2.0 equiv.) in CH3CN was heated with stirring at 60 ◦C for 18 h, not any product was formed by
the analyses of the reaction mixture by GC-MS, and both 1a and 2a were recovered (entry 1). However,
in the presence of NaOAc (1.0 equiv.), repeating the same reaction gave the desired compounds 3aa
in 39% GC yield (entry 2) [17], indicating that the presence of base is crucial for the formation of 3aa.
In addition, when CH3OH was used as solvent to replace CH3CN, 3aa was formed in 98% GC yield
(entry 3). In the case of acrylonitrile employed, the yield of the corresponding product 3af is also
greatly depending on the solvents used, and CH3OH is the best choice (entries 4–6). Increasing the
amount of NaOAc (from 1.0 equiv. to 2.0 equiv.) afforded 3af in the same yield (entry 7), but the
decreasing amount of NaOAc (from 1.0 equiv. to 0.5 equiv.) resulted in the considerable decrease of
the yield of 3af (entry 8). Moreover, the use of Na2CO3 as base led to 44% of 3af (entry 9), and the use
of 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) and pyridine as
base, or without the use of base led to no formation of 3af at all (entries 10–13).

Table 1. Optimizing the reaction conditions a.
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Under the optimized reaction conditions shown in entries 3 and 6 in Table 1, the generality for the
formation of alkyl aryl sulfones was investigated by using a variety of N-arylsulfonyl hydroxylamines
and alkenes, and the obtained results are summarized in Tables 2 and 3. As shown in Table 2, 1a reacted
with acrylates 2b–e to give the expected alkyl aryl sulfones 3ab–3ae in high yields. No significant
electron effect was observed, and when R are both electron-donating and electron-withdrawing groups,
N-arylsulfonyl hydroxylamines underwent the present reaction smoothly to afford the corresponding
alkyl aryl sulfones 3ba, 3bb, 3ca, and 3da–fa in good yields.

Table 2. Synthesis of alkyl aryl sulfones a.
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On the basis of the known decomposition of N-arylsulfonyl hydroxyamines under basic conditions
to nitrosyl hydride and arylsulfinate [18], a proposed mechanism for the formation of alkyl aryl
sulfones is shown in Scheme 2. It involves the formation of an arylsulfinate anion/arylsulfonyl
anion intermediate [12], and its Michael addition with an electron-deficient alkene to afford alkyl aryl
sulfone 3.
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3. Materials and Methods

3.1. General Methods

All organic starting materials and solvents are analytically pure and used without further
purification. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL ECA-300
spectrometer (JEOL, Tokyo, Japan) using CDCl3 as a solvent at 298 K. 1H-NMR (300 MHz) chemical
shifts (δ) were referenced to internal standard TMS (for 1H, δ = 0.00 ppm). 13C-NMR (75 MHz) chemical
shifts were referenced to internal solvent CDCl3 (for 13C, δ = 77.16 ppm). The 1H- and 13C-NMR charts
of products are reported as supplementary materials. The high-resolution mass spectra (ESI) were
obtained with a micrOTOF-Q 10142 spectrometer (Agilent, California, CA, USA).

3.2. Typical Experiment Procedure for the Reaction of N-Phenylsulfonyl Hydroxylamine (1a) with Methyl
Acrylate (2a) Affording Methyl 3-(Phenylsulfonyl)propanoate (3aa) (Table 1, Entry 3)

A mixture of N-phenylsulfonyl hydroxylamine (1a, 173.0 mg, 1.0 mmol), methyl acrylate (2a)
(172.0 mg, 2.0 mmol) and NaOAc (82.0 mg, 1.0 mmol) was heated in CH3OH (10.0 mL) at 60 ◦C
(oil bath temperature) with stirring for 18 h in a screw-capped thick-walled Pyrex tube under an air
atmosphere. After the reaction mixture was cooled to room temperature, it was directly subjected to
a short silica column chromatography (2~3 cm, eluted with CH2Cl2) to remove the insoluble materials.
To the collected solution, n-octadecane (25.5 mg, 0.1 mmol as internal standard for GC analysis) was
then added with stirring. After GC and GC-MS analyses of the mixture, volatiles were then removed
under reduced pressure, and the residue was subjected to silica gel column chromatography, eluted
with a mixture of solvents of petroleum ether/acetone (from 100:0~100:2 in volume). 3aa was obtained
in 212.0 mg (0.93 mmol, 93%) as yellow oil. The GC analysis of reaction mixture revealed the formation
of 3aa [19] in 98% GC yield. 1H-NMR (CDCl3) δ 7.85 (m, 2H), 7.56 (m, 3H), 3.56 (s, 3H), 3.39 (t, 2H,
J = 7.8 Hz), 2.70 (t, 2H, J = 7.8 Hz); 13C-NMR (CDCl3) δ 170.3, 138.6, 134.1, 129.4, 128.1, 52.2, 51.4, 27.6;
HRMS (ESI): Calcd. for: C10H13O4S [M + H]+: 229.0529; found: 229.0528.

The following compounds were similar prepared:

Ethyl 3-(phenylsulfonyl)propanoate (3ab) [20]: 1H-NMR: δ 7.80 (m, 2H), 7.57 (m, 3H), 4.04 (dd, 2H,
J = 7.2 Hz), 3.40 (t, 2H, J = 7.8 Hz), 2.70 (t, 2H, J = 7.8 Hz),1.18 (t, 3H, J = 7.2 Hz); 13C-NMR: δ 170.0,
138.4, 134.0, 129.4, 128.1,61.3, 51.4, 27.8, 14.0; HRMS (ESI): Calcd. for: C11H12NO4S [M + H]+: 254.0482;
found: 254.0486.
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n-Butyl 3-(phenylsulfonyl)propanoate (3ac): pale yellow oil; 1H-NMR: δ 7.89 (m, 2H), 7.63 (m, 3H), 4.03 (m,
2H), 3.45 (t, 2H, J = 7.5 Hz), 2.73 (t, 2H, J = 7.5 Hz), 1.56 (m, 2H), 1.33 (m, 2H), 0.90 (m, 3H); 13C-NMR:
δ 169.7, 138.3, 133.8, 129.2, 127.9, 64.9, 51.2, 30.2, 27.6, 18.8, 13.4; HRMS (ESI): Calcd. for: C13H19O4S
[M + H]+: 271.0999; found: 271.0998.

t-Butyl 3-(phenylsulfonyl)propanoate (3ad): yellow solid, m.p. 46~48 ◦C; 1H-NMR: δ 7.91 (m, 2H),7.62 (m,
3H), 3.37 (t, 2H, J = 7.8 Hz), 2.65 (t, 2H, J = 7.8 Hz), 1.38 (s, 9H); 13C-NMR: δ 169.2, 138.7, 134.0, 129.5,
128.2, 82.0, 51.7, 29.0, 28.1; HRMS (ESI): Calcd. for: C13H19O4S [M + Na]+: 293.0818; found: 293.0819.

Benzyl 3-(phenylsulfonyl)propanoate (3ae): pale yellow solid, m.p. 61~63 ◦C; 1H-NMR: δ 7.89 (m, 2H),
7.59 (m, 3H), 7.32 (m, 5H), 5.05 (s, 2H), 3.43 (t, 2H, J = 7.8 Hz), 2.73 (t, 2H, J = 7.8 Hz); 13C-NMR:
δ 169.7, 138.3, 135.1, 134.0, 139.4, 128.6, 128.4, 128.3, 128.1, 67.0, 51.3, 27.8; HRMS (ESI): Calcd. for:
C16H16NaO4S [M + Na]+: 327.0662; found: 327.0666.

3-(Phenylsulfonyl)propanenitrile (3af) [19]: 1H-NMR: δ 7.94 (m, 2H), 7.69 (m, 3H), 7.32 (m, 5H), 3.40 (t,
2H, J = 7.6 Hz), 2.82 (t, 2H, J = 7.6 Hz); 13C-NMR: δ 137.5, 134.8, 129.8, 128.3, 116.1, 51.1, 12.1; HRMS
(ESI): Calcd. for: C9H9NNaO2S [M + Na]+: 218.0246; found: 218.0249.

Methyl 3-tosylpropanoate (3ba) [20]: 1H-NMR: δ 7.72 (d, 2H, J = 8.2 Hz), 7.31 (d, 2H, J = 8.2 Hz), 3.57 (s,
3H), 3.35 (t, 2H, J = 7.5 Hz), 2.67 (t, 2H, J = 7.5 Hz), 2.39 (s, 3H); 13C-NMR: δ 170.4, 145, 135.4, 129.9,
128.1, 52.1, 51.4, 27.6, 21.5; HRMS (ESI): Calcd. for: C11H15O4S [M + H]+: 243.0686; found: 243.0690.

Ethyl 3-tosylpropanoate (3bb) [20]: 1H-NMR: δ 7.74 (d, 2H, J = 7.8 Hz), 7.32 (d, 2H, J = 7.8 Hz), 4.03 (q,
2H, J = 7.1 Hz), 3.36 (t, 2H, J = 7.6 Hz), 2.66 (t, 2H, J = 7.6 Hz), 2.40 (s, 3H), 1.17 (t, 2H, J = 7.1 Hz), 0.90
(m, 3H); 13C-NMR: δ 170.0, 145.0, 135.5, 130.0, 128.1, 61.3, 51.5, 27.9, 21.6, 14.0; HRMS (ESI): Calcd. for:
C12H17O4S [M + H]+: 257.0842; found: 257.0844.

Methyl 3-((4-methoxyphenyl)sulfonyl)propanoate (3ca) [20]: 1H-NMR: δ 7.83 (d, 2H, J = 9.0 Hz), 7.04 (d,
2H, J = 9.0 Hz), 3.89 (s, 3H), 3.64 (s, 3H), 3.41 (t, 2H, J = 7.1 Hz), 2.74 (t, 2H, J = 7.1 Hz); 13C-NMR:
δ 170.4, 163.9, 130.3, 129.8, 114.5, 55.7, 52.2, 51.6, 27.7; HRMS (ESI): Calcd. for: C11H15O5S [M + H]+:
259.0635; found: 259.0637.

Methyl 3-((4-chlorophenyl)sulfonyl)propanoate (3da) [21]: 1H-NMR: δ 7.78 (d, 2H, J = 8.5 Hz), 7.49 (d, 2H,
J = 8.5 Hz), 3.55 (s, 3H), 3.38 (t, 2H, J = 7.6 Hz), 2.67 (t, 2H, J = 7.6 Hz); 13C-NMR: δ 170.1, 140.5, 136.8,
129.6, 52.2, 51.3, 27.4; HRMS (ESI): Calcd. for: C10H11ClNaO4S [M + Na]+: 284.9959; found: 284.9962.

Methyl 3-((4-(trifluoromethyl)phenyl)sulfonyl)propanoate (3ea): white solid, m.p. 120~122 ◦C; 1H-NMR:
δ 8.06 (d, 2H, J = 8.2 Hz), 7.85 (d, 2H, J = 8.6 Hz), 3.64 (s, 3H), 3.47 (t, 2H, J = 7.5 Hz), 2.77 (t, 2H,
J = 7.5 Hz); 13C-NMR: δ 170.2, 142.0, 135.7, 128.9, 127.0, 126.6, 52.4, 51.4, 27.4; HRMS (ESI): Calcd. for:
C11H11F3NaO4S [M + Na]+: 319.0222; found: 319.0226.

Methyl 3-((4-cyanophenyl)sulfonyl)propanoate (3fa): pale yellow solid, m.p. 119~122 ◦C; 1H-NMR: δ 8.03
(m, 2H), 7.87 (m, 2H), 3.64 (s, 3H), 3.46 (t, 2H, J = 7.5 Hz), 2.77 (t, 2H, J = 7.5 Hz); 13C-NMR: δ 17.02, 142.8,
133.3, 129.1, 118.0, 117.1, 52.6, 51.5, 27.4; HRMS (ESI): Calcd. for: C11H12NO4S [M + H]+: 254.0482;
found: 254.0486.

1,2-Bis(phenylsulfonyl)ethane (3ag) [22]: 1H-NMR: δ 7.88 (m, 4H), 7.70 (m, 2H), 7.60 (m, 6H), 3.45 (s, 4H);
13C-NMR: δ 138.0, 134.6, 129.7, 128.1, 49.5.

1-Methoxy-4-((2-(phenylsulfonyl)ethyl)sulfonyl)benzene (3cg): white solid, m.p. 150~152 ◦C; 1H-NMR:
δ 7.87 (d, 2H, J = 7.6 Hz), 7.78 (d, 2H, J = 8.8 Hz, 7.70 (t, 1H, J = 7.4 Hz ), 7.58 (t, 2H, J = 7.7 Hz ), 3.88
(s, 3H), 3.42 (m, 4H); 13C-NMR: δ 164.4, 138.1, 134.6, 130.4, 129.8, 129.4, 128.1, 114.5, 55.9, 49.8; HRMS
(ESI): Calcd. for: C15H17O5S2 [M + H]+: 341.0512; found: 341.0515.
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4. Conclusions

In summary, we have studied the reaction of N-arylsulfonyl hydroxylamines with electron-deficient
alkenes to provide an alternative efficient synthetic method for the formation of alkyl aryl sulfones
in good yields. The present method has the advantages with simple and easily available starting
materials, under mild conditions, with high atom-utilization.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/22/
1/39/s1, the charts of 1H- and 13C-NMR of products.
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