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Abstract: The synthesis and X-ray single crystal structures of a series of new 4-substituted-1,3-
selenazol-2-amines is reported. The efficient preparation of these compounds was carried out
by two-component cyclization of the selenoureas with equimolar amounts of α-haloketones.
The selenoureas were obtained from the reaction of Woollins’ reagent with cyanamides, followed by
hydrolysis with water. All new compounds have been characterized by IR spectroscopy, multi-NMR
(1H, 13C, 77Se) spectroscopy, accurate mass measurement and single crystal X-ray structure analysis.
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1. Introduction

Selenazoles have been extensively described as useful synthetic tools [1–4] with biologically
significant antibiotic [5] and cancerostatic [6,7] and superoxide anion scavenging activity [8]. A few
reports have appeared on the synthesis of selenazoles and thiazoles, including both solid phase [9] and
solution phase synthesis [10–12]. Narender et al. reported the synthesis of selenazoles/thiazoles
by the condensation of phenacylbromides/tosylates with selenourea/thiourea/thiobenzamide
employing β-cyclodextrin as a catalyst [13,14]. Recently Varma and co-workers synthesized diaryl
thiazoles from various α-tosyloxy ketones in water [15]. Several protocols are also described
for the synthesis of thiazoles and selenazoles using promoters or catalysts in different organic
solvents. However, development of novel environmentally benign approaches for the synthesis
of selenazoles/thiazoles is highly desirable. The first ever tandem one-pot synthetic protocol for the
synthesis of thiazoles/selenazoles from alkynes via the formation of 2,2-dibromo-1-phenylethanone
has been reported. The reaction is catalyzed by β-cyclodextrin in aqueous medium and resulted
in good yields [16]. A limitation to this route is the unavailability of the starting material primary
selenamides for the preparation of the selenazoles. Many synthetic strategies to primary selenoamides
have been documented, for example, by the reaction of nitrile with H2Se or NaSeH (generated
in situ from NaBH4/Se) [17] or Se/CO [18–21] or P2Se5/H2O [22] and or tris(trimethylsilyl)
monoselenophosphate [23]. In addition, although some alternative selenating reagents such as
Al2Se3 [24], (Me3Si)2Se [25] and 4-methylselenobenzoate [26] have also been applied in these
preparations, almost of these methods required prolonged reaction times, high temperature, and
inconvenient reaction conditions or could not be reproduced [22]. We have previously reported
a highly efficient approach for the preparation of a series of primary arylselenoamides from the
reaction of arylnitriles with 2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide [PhP(Se)(µ-Se)]2

(Woollins’ reagent) [27–35], followed by treatment of water [36]. By means of this privileged method,
selenoureas might be prepared in excellent yields. Herein, we report a very facile route to prepare
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a series of novel 4-substituted-1,3-selenazol-2-amines and single crystal X-ray structural profiles of
seven of the products.

2. Results and Discussion

Cyanamides 1 and 2 were prepared in almost quantitative yields by the literature method from
the reaction of cyanogen bromide with primary or secondary amines in dry methanol in the presence
of excess of anhydrous CH3COONa at room temperature [37]. Two selenoureas 3 and 4 were obtained
in the yields of 87% and 90%, respectively, by reaction of Woollins’s reagent with the corresponding
cyanamides 1 and 2, followed by post-treatment with water [38]. As shown in Scheme 1 and Table 1,
cyclization of selenoureas 3 and 4 with an equivalent of the corresponding α-haloketones in refluxing
ethanol solution gave a series of five-membered ring 4-substituted-1,3-selenazol-2-amines 5–15 in
excellent yields. The scope of the reaction was expanded by the reaction of various selenoureas with
phenylacetylene substrates and a variety of α-haloketones. In these reactions, substituents on the
selenoureas did not have significant effect on the product yields. It is also interesting noting that
electron-rich aryl rings allowed for cyclization reactions in yields comparable to electron-deficient
aromatic moieties; and the steric hindrance was rarely permitted since the presence of CH3O, CH3, Cl,
Br and NO2 groups in the 4-aryl ring had minimal to no effect on reaction yields.
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in Table 1).

Table 1. Definition of the X, R and Ar Groups, Yields and 77Se-NMR Data for Compounds 5–15.

Compound X R Ar Yield (%) 77Se-NMR (δ, ppm)

1 - CH3 - 99 -
2 - C2H5O(O)C - 99 -
3 - CH3 - 87 607.7
4 - C2H5O(O)C - 90 382.1
5 Cl CH3 C6H5 92 575.3
6 Br CH3 4-ClC6H4 96 571.1
7 Br CH3 4-MeOC6H4 97 567.1
8 Br CH3 4-MeC6H4 98 568.1
9 Br CH3 4-NO2C6H4 93 590.1

10 Br CH3 2,5-di-MeOC6H3 90 572.7
11 Cl CH3 2,4-di-ClC6H3 91 578.9
12 Br CH3 4-BrC6H4 95 577.8
13 Cl C2H5O(O)C C6H5 96 679.9
14 Br C2H5O(O)C 4-ClC6H4 96 684.2
15 Br C2H5O(O)C 4-MeOC6H4 95 675.7

The 4-substituted-1,3-selenazol-2-amines 5–15 are stable to air or moisture for months without
any signs of degradation occurring. Characterization of 4-substituted-1,3-selenazol-2-amines 5–15
was performed by means of 1H-, 13C-, and 77Se-NMR, IR spectroscopy and mass spectrometry in
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conjunction with single crystal X-ray crystallography of seven of the compounds. All new compounds
show the anticipated [M + H]+ peaks in their mass spectra, as well as satisfactory accurate mass
measurements and appropriate isotopic distributions. The IR spectra show very strong bands ranging
from 1554 to 1561 cm−1 for 4-substituted-1,3-selenazol-2-amines 5–12 and 1513 to 1517 cm−1 for
4-substituted-1,3-selenazol-2-amines 13–15, attributed to the ν(N=C) vibration, accompanied by intense
bands in the range 699 to 705 cm−1 being characteristic of the ν(C-Se) [39]. The CH3 group replaced
by C2H5O(O)C group in amine N atom makes IR spectra of 2, 4 and 13–15 for the ν(N=C) into
higher frequency (ca. 40 cm−1). Furthermore, the 1H-NMR spectra exhibit the expected peaks
including sharp singlet signals between 7.44 and 7.90 ppm assigned to the 1,3-selenazole rings.
The 13C-NMR spectra have three signals typical for the 1,3-selenazole rings along with the expected
signals from the aromatic carbon backbones (see Supplementary Materials). The 77Se-NMR spectra of
all compounds 5–15 display singlet signals in the range 567.1–684.2 ppm, comparable to the signals
of the related 2-dialkylamino-1,3-selenazoles (528.9–575.9 ppm) [40–44]; however, these values are
significantly lower than that in 2,4-dialkyl- or 2,4-diaryl-1,3-selenazoles (657.8–767.1 ppm) [45–47]
and 5-aminoselenazoles (629.0–707.0 ppm) [48]. The results indicated the high influence by the
basic skeletons of selenazoles and the substituents close to the selenium atom [49]. It is worth
noting that 4-substituted-1,3-selenazol-2-amines 13–15 bearing the electron-withdrawing substituted
C2H5O(O)C group on the amine N atom center have much higher 77Se-NMR chemical shifts than
4-substituted-1,3-selenazol-2-amines 5–12 bearing the electron-donating substituted CH3 group on the
amine N atom center.

The formation of 4-substituted-1,3-selenazol-2-amines 5–15 can be explained considering the
reaction mechanism depicted in Scheme 1. The intermediate A, an addition product of selenoureas 3
or 4 and α-haloketones, undergoes a further cyclization reaction resulting in another intermediate B,
which subsequently eliminates one molecule of H2O affording compounds 5–15.

Similarly, treating selenourea 3 with an equivalent of 2-bromo-1,3-diphenylpropane-1,3-dione
produced the corresponding 4-phenyl-1,3-selenazol-5-yl)(phenyl)methanone 16 in excellent yield
(93%) as shown in Scheme 2. Compound 16 is a greyish yellow paste, soluble in common organic
solvents. The anticipated [M + H]+ peak was observed in its mass spectra with satisfactory accurate
mass measurement. No 1H-NMR signal was observed for the 1,3-selenazole ring except for the
expected signals for the presence of phenyl rings. Not surprisingly, the 77Se-NMR spectrum comprises
an expected sharp singlet at 609.7 ppm.
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Scheme 2. Synthesis of 4-phenyl-1,3-selenazol-5-yl)(phenyl)methanone 16.

Crystals of compounds 5, 7, 8, 9, 12, 14 and 16 suitable for X-ray crystallographic analysis were
grown by diffusion of a dichloromethane solution of the compound into hexane at room temperature in
each case. The absolute structures of compounds 5, 7, 8, 9, 12, 14 and 16 were determined using X-ray
diffraction analysis as shown in Figure 1. Crystal data and structure refinement for compounds 5, 7, 8,
9, 12, 14 and 16 are summarized in Tables 2 and 3. Selected bond lengths and angles are listed in Table 4.
All structures except 16 have a single molecule of the compound in the asymmetric unit and adopt
very similar conformation; 16, contains two independent molecules. In all cases, the newly formed
1,3-selenazole ring is not complete planar, and the mean plane of the newly formed five-membered
ring is not coplanar with the adjacent aryl rings, with the dihedral angles of 21.61◦ in 5, 17.98◦ in 7,
22.78◦ in 8, 8.04◦ in 9, 21.59◦ in 12, 18.99◦ in 14 and 47.14 [44.79]◦ in 16. Two aryl rings (one is from
the C6H5CH2CH2 group, another is the phenyl aryl ring attaching to the azole ring) are not parallel,



Molecules 2017, 22, 46 4 of 13

with an angle 19.84◦ in 5, 6.15◦ in 7, 21.07◦ in 8, 6.43◦ in 9, 19.54◦ in 12, 49.91◦ in 14 and 44.39 [34.21]◦

in 16, the larger angles attribute to the effect of big substituted group [C2H5COC(O)] on N6 atom in 14
and an excess group [PhC(O)] on azole ring in 16.
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Table 2. Details of the X-ray Data Collections and Refinements for Compounds 5, 7, 8 and 9.

Compound

5 7 8 9

Formula C18H17ClN2Se C19H20N2OSe C19H20N2Se C18H17N3O2Se
M 375.76 371.34 355.34 386.31

Crystal system monoclinic orthorhombic monoclinic monoclinic
Space group P21 P212121 P21 P21/n

a/Å 10.657(7) 6.6544(8) 10.719(4) 10.5159(7)
b/Å 7.525(5) 7.8134(9) 7.495(3) 7.5401(5)
c/Å 11.320(8) 33.372(4) 11.294(4) 20.9330(15)
α 90 90 90 90
β 115.852(8) 90 115.650(6) 91.879(2)
γ 90 90 90 90

U/A3 817.0(10) 1735.1(4) 818.0(5) 1658.9(2)
Z 2 4 2 4

µ/cm−1 24.591 21.703 22.939 22.793
Reflections collected 7051 11,930 6175 12,160

Independent reflections 2587 3043 1540 2895
Rint 0.0291 0.1535 0.0336 0.0679
R1 0.0249 0.0695 0.0532 0.0394

wR2 [I > 2σ(I)] 0.0544 0.1012 0.1398 0.0903

Table 3. Details of the X-ray Data Collections and Refinements for Compounds 12, 14 and 16.

Compound

12 14 16

Formula C18H17BrN2Se C20H19ClN2O2Se C25H22N2OSe
M 420.21 433.80 445.42

Crystal system monoclinic orthorhombic monoclinic
Space group P21 Pbca P21/c

a/Å 10.6448(10) 27.974(16) 10.1342(7)
b/Å 7.4660(7) 17.910(11) 14.6025(10)
c/Å 11.5064(11) 7.817(5) 27.942(2)
α 90 90 90
β 116.039(3) 90 90.421(4)
γ 90 90 90

U/A3 821.64(14) 3916(4) 4134.9(5)
Z 2 8 8

µ/cm−1 47.219 20.701 18.350
Reflections collected 6350 26,522 31,646

Independent reflections 2839 3437 7262
Rint 0.0536 0.0694 0.2391
R1 0.0309 0.0422 0.0701

wR2 [I > 2σ(I)] 0.0639 0.0975 0.1456

The bond lengths in 5, 7, 8, 9, 12, 14 and 16 range from 1.286(12) to 1.329(12) Å for C2-N1 and
1.349(11) to 1.366(11) Å for C4-C5, respectively, which are comparable to that in the analogous structure
of 2-piperidino-1,3-selenazole-5-carboxylic acid (1.330(3) and 1.359(4) Å, respectively) [22], indicating
clearly their double bond character. The two C-N bond lengths of both C2-N6 (1.348(112) to 1.402(4) Å)
and N1-C5 (1.374(11) to 1.401(4) Å) in 5, 7, 8, 9, 12, 14 and 16 are marginally longer than that in
2-piperidino-1,3-selenazole-5-carboxylic acid (1.339(3) and 1.361(3) Å, respectively) [50], however,
these values are significantly shorter than the usual single bond length of 1.47 Å [51]. The sums of
the three angles around each of the C2 and C5 atoms are 360.0 and 359.81◦ in 5, 359.95 and 359.89◦

in 7, 359.99 and 359.78◦ in 8, 360 and 359.98◦ in 9, 359.99 and 359.88◦ in 12, 360 and 359.99◦ in 14
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and 359.76 [360]◦ and 359.91 [359.57]◦ in 16, respectively. These results can be attributed to the
delocalization of π-electrons and the lone pair electrons on N6. Also, it is worth noting that the N6
nitrogen has sp2 character rather than sp3 for all structures.

Table 4. Selected Bond Distances (Å) and Angles (◦) for Compounds 5, 7, 8, 9, 12, 14 and 16.

5 7 8 9 12 14 16

N1-C2 1.302(5) 1.295(11) 1.300(13) 1.291(4) 1.300(9) 1.301(4) 1.329(12)[1.286(12)]
C2-N6 1.358(5) 1.350(11) 1.348 (12) 1.350(5) 1.368(9) 1.402(4) 1.348(12)[1.369(12)]
C2-Se3 1.906(3) 1.924(8) 1.914(7) 1.912(3) 1.896(5) 1.899(3) 1.863(8)[1.886(7)]
Se3-C4 1.860(5) 1.886(9) 1.858(12) 1.854(4) 1.862(8) 1.872(4) 1.866(8)[1.898(9)]
C4-C5 1.349(5) 1.353(12) 1.355(12) 1.359(5) 1.358(8) 1.356(5) 1.366(11)[1.349(11)]
C5-N1 1.394(4) 1.395(11) 1.387(10) 1.389(4) 1.387(7) 1.401(4) 1.374(11)[1.378(11)]

N1-C2-N6 123.8(3) 125.1(8) 124.5(7) 124.8(3) 123.2(5) 120.3(3) 120.5(7)[121.5(7)]
N1-C2-Se3 115.1(3) 114.5(6) 114.4(6) 114.9(3) 115.7(4) 116.1(2) 115.6(6)[117.1(6)]
Se3-C2-N6 121.1(3) 120.3(6) 121.1(7) 120.3(2) 121.1(5) 123.7(2) 123.8(7)[121.4(6)]
C2-Se3-C4 83.59(18) 83.9(4) 83.6(4) 83.370(15) 83.1(3) 83.10(15) 84.3(4)[82.5(4)]
Se3-C4-C5 111.5(3) 110.1(6) 111.6(7) 111.3(3) 111.8(5) 111.9(3) 110.6(6)[110.2(6)]
C5-N1-C2 112.0(3) 112.7(7) 112.9(6) 112.6(3) 111.6(4) 112.0(3) 111.7(7)[111.6(7)]

N1-C5-C15 117.1(3) 117.2(7) 118.2(7) 117.5(3) 117.3(4) 116.3(3) * 112.9(7)[113.7(7)]
N1-C5-C4 117.8(4) 118.8(8) 117.4(9) 117.5(3) 117.7(6) 116.9(3) 117.8(8)[118.4(8)]
C4-C5-C15 124.9(3) 123.9(8) 124.2(8) 124.9(3) 124.9(6) 126.8(3) * 129.2(8)[127.6(8)]

* C15 should be C19 in compound 14.

Interestingly, in the supramolecular structures of 5, 7, 8, 9, 12, 14 and 16, no intramolecular close
contacts were observed; however, a few intermolecular C-H···Se, C-H···N, C-H···O, C-H···Cl, C-H···Br
interactions are found (Figures 2 and 3 as representative samples). In all structures, there have highly
similar packing motifs with both selenium and nitrogen atoms within the azole ring involved in these
close contacts. Furthermore, there is one or more intermolecular C-H···O, C-H···Cl and C-H···Br close
contacts in the structures of 5, 7, 9, 12, 14 and 16 apart from 8, indicating that the presence of oxygen,
chlorine, bromine and nitrogen atoms implicates these intermolecular close contacts.
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C4-C5 1.349(5) 1.353(12) 1.355(12) 1.359(5) 1.358(8) 1.356(5) 1.366(11)[1.349(11)] 
C5-N1 1.394(4) 1.395(11) 1.387(10) 1.389(4) 1.387(7) 1.401(4) 1.374(11)[1.378(11)] 

N1-C2-N6 123.8(3) 125.1(8) 124.5(7) 124.8(3) 123.2(5) 120.3(3) 120.5(7)[121.5(7)] 
N1-C2-Se3 115.1(3) 114.5(6) 114.4(6) 114.9(3) 115.7(4) 116.1(2) 115.6(6)[117.1(6)] 
Se3-C2-N6 121.1(3) 120.3(6) 121.1(7) 120.3(2) 121.1(5) 123.7(2) 123.8(7)[121.4(6)] 
C2-Se3-C4 83.59(18) 83.9(4) 83.6(4) 83.370(15) 83.1(3) 83.10(15) 84.3(4)[82.5(4)] 
Se3-C4-C5 111.5(3) 110.1(6) 111.6(7) 111.3(3) 111.8(5) 111.9(3) 110.6(6)[110.2(6)] 
C5-N1-C2 112.0(3) 112.7(7) 112.9(6) 112.6(3) 111.6(4) 112.0(3) 111.7(7)[111.6(7)] 

N1-C5-C15 117.1(3) 117.2(7) 118.2(7) 117.5(3) 117.3(4) 116.3(3) * 112.9(7)[113.7(7)] 
N1-C5-C4 117.8(4) 118.8(8) 117.4(9) 117.5(3) 117.7(6) 116.9(3) 117.8(8)[118.4(8)] 
C4-C5-C15 124.9(3) 123.9(8) 124.2(8) 124.9(3) 124.9(6) 126.8(3) * 129.2(8)[127.6(8)] 

* C15 should be C19 in compound 14. 

Interestingly, in the supramolecular structures of 5, 7, 8, 9, 12, 14 and 16, no intramolecular close 
contacts were observed; however, a few intermolecular C-H∙∙∙Se, C-H∙∙∙N, C-H∙∙∙O, C-H∙∙∙Cl, C-H∙∙∙Br 
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close contacts. Furthermore, there is one or more intermolecular C-H∙∙∙O, C-H∙∙∙Cl and C-H∙∙∙Br close 
contacts in the structures of 5, 7, 9, 12, 14 and 16 apart from 8, indicating that the presence of oxygen, 
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referenced to external Me2Se) NMR spectra were recorded at 25 °C (unless stated otherwise) on 
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were corrected based on multiple equivalent reflections or by semi-empirical methods. Structures were 
solved by direct methods and refined by full-matrix least-squares against F2 by using the program 
SHELXTL [52]. Hydrogen atoms were assigned riding isotropic displacement parameters and constrained 
to idealized geometries. These data (CCDC 1522917–1522923) can be obtained free of charge via 
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A mixture of α-haloketone (1.0 mmol) in dry methanol (10 mL) was added dropwise to a refluxing 
solution of arylselenocarboamide (1.0 mmol) in dry methanol (20 mL) over the course of 1 h. The 
reaction mixture was then refluxed for another 1 h. After cooling to room temperature, the mixture 
was concentrated on a rotary evaporator, and the residue was neutralized with 5% aqueous ammonia 
(30 mL), extracted with dichloromethane (30 mL × 3), and the combined organic layers washed with 
water (20 mL × 3), brine (20 mL), and dried over MgSO4. After filtering and drying to remove the 
solvent the organic residue was purified by silica gel column chromatography (1:9 ethyl 
acetate/dichloromethane as eluent) to give 1,3-selenazoles 5–16. 

N-Methyl-N-phenethyl-4-phenyl-1,3-selenazol-2-amine (5). Pale yellow paste (0.315 g, 92%). Selected IR 
(KBr, cm−1): 1555, 1480, 1453, 1362, 1324, 1299, 1171, 1099, 1043, 936, 772, 748, 699, 564, 496. 1H-NMR 
(CD2Cl2, δ), 7.90 (s, 1H), 7.88 (d, J(H,H) = 8.3 Hz, 2H), 7.40–7.21 (m, 8H), 3.73 (t, J(H,H) = 7.4 Hz, 2H), 
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3. Experimental Section

3.1. General Information

Unless otherwise stated, all reactions were carried out under on oxygen free nitrogen atmosphere
using pre-dried solvents and standard Schlenk techniques, subsequent chromatographic and work
up procedures were performed in air. 1H (400.1 MHz), 13C (100.6 MHz) and 77Se-{1H} (51.4 MHz
referenced to external Me2Se) NMR spectra were recorded at 25 ◦C (unless stated otherwise) on
Advance II 400s (Bruker, Blue Lion Biotech, Carnation, WA, USA) and GSX 270 (JEOL, Inc., Peabody,
MA, USA) instrument. IR spectra were recorded as KBr pellets in the range of 4000–250 cm−1

on a 2000 FTIR/Raman spectrometer (Perkin-Elmer, Beaconsfield, UK). Mass spectrometry was
performed by the EPSRC National Mass Spectrometry Service Centre, Swansea. X-ray crystal data for
compounds 5, 7, 8, 9, 12, 14 and 16 were collected using a SCXMIni Mercury CCD system (Rigaku,
Houston, USA). Intensity data were collected using ω steps accumulating area detector images
spanning at least a hemisphere of reciprocal space. All data were corrected for Lorentz polarization
effects. Absorption effects were corrected based on multiple equivalent reflections or by semi-empirical
methods. Structures were solved by direct methods and refined by full-matrix least-squares against F2

by using the program SHELXTL [52]. Hydrogen atoms were assigned riding isotropic displacement
parameters and constrained to idealized geometries. These data (CCDC 1522917–1522923) can be
obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge
Crystallographic Data center, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336-033;
e-mail: deposit@ccdc.cam.ac.uk.

3.2. Synthesis

General Procedure for the Synthesis of Compounds 5–16

A mixture of α-haloketone (1.0 mmol) in dry methanol (10 mL) was added dropwise to a refluxing
solution of arylselenocarboamide (1.0 mmol) in dry methanol (20 mL) over the course of 1 h.
The reaction mixture was then refluxed for another 1 h. After cooling to room temperature, the mixture
was concentrated on a rotary evaporator, and the residue was neutralized with 5% aqueous ammonia
(30 mL), extracted with dichloromethane (30 mL × 3), and the combined organic layers washed
with water (20 mL × 3), brine (20 mL), and dried over MgSO4. After filtering and drying to
remove the solvent the organic residue was purified by silica gel column chromatography (1:9 ethyl
acetate/dichloromethane as eluent) to give 1,3-selenazoles 5–16.

www.ccdc.cam.ac.uk/conts/retrieving.html
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N-Methyl-N-phenethyl-4-phenyl-1,3-selenazol-2-amine (5). Pale yellow paste (0.315 g, 92%). Selected IR
(KBr, cm−1): 1555, 1480, 1453, 1362, 1324, 1299, 1171, 1099, 1043, 936, 772, 748, 699, 564, 496. 1H-NMR
(CD2Cl2, δ), 7.90 (s, 1H), 7.88 (d, J(H,H) = 8.3 Hz, 2H), 7.40–7.21 (m, 8H), 3.73 (t, J(H,H) = 7.4 Hz, 2H),
3.05 (s, 3H), 3.01 (t, J(H,H) = 7.4 Hz, 2H) ppm. 13C-NMR (CD2Cl2, δ), 171.2, 152.9, 139.3, 136.2), 13.0,
129.0, 128.6, 128.5, 127.3, 126.4, 104.8, 56.0, 39.8, 33.4 ppm. 77Se-NMR (CD2Cl2, δ), 575.3 ppm. HRMS
(CI+, m/z): found 343.0717 [M + H]+, calculated mass for C18H18N2SeH: 343.0713.

4-(4-Chlorophenyl)-N-methyl-N-phenethyl-1,3-selenazol-2-amine (6). Pale white solid (0.362 g, 96%).
M.p. 82–84 ◦C. Selected IR (KBr, cm−1): 1554, 1457, 1396, 1363, 1317, 1264, 1175, 1086, 1040, 1009, 935,
838, 756, 703, 679, 496. 1H-NMR (CD2Cl2, δ), 7.83 (d, J(H,H) = 8.5 Hz, 2H), 7.81 (s, 1H), 7.35–7.21
(m, 7H), 3.72 (t, J(H,H) = 7.7 Hz, 2H), 3.03 (s, 3H), 3.00 (t, J(H,H) = 7.7 Hz, 2H) ppm. 13C-NMR
(CD2Cl2, δ), 171.3, 151.7, 139.2, 134.8, 132.7, 128.9, 128.6, 128.5, 127.7, 126.4, 105.3, 56.0, 39.8, 33.3 ppm.
77Se-NMR (CD2Cl2, δ), 571.1 ppm. HRMS (ES+, m/z): found 377.0321 [M + H]+, calculated mass for
C18H17N2ClSeH: 377.0324.

4-(4-Methoxyphenyl)-N-methyl-N-phenethyl-1,3-selenazol-2-amine (7). Dark yellow solid (0.360 g, 97%).
M.p. 74–76 ◦C. Selected IR (KBr, cm−1): 1560, 1490, 1455, 1455, 1408, 1357, 1320, 1244, 1170, 1107, 1029,
934, 834, 751, 703, 601, 499. 1H-NMR (CD2Cl2, δ), 7.83 (s, 1H), 7.80 (d, J(H,H) = 8.3 Hz, 2H), 7.34–7.15
(m, 5H), 6.88 (d, J(H,H) = 8.3 Hz, 2H), 3.82 (s, 3H), 3.71 (t, J(H,H) = 7.7 Hz, 2H), 3.05 (s, 3H), 3.00
(t, J(H,H) = 7.7 Hz, 2H) ppm. 13C-NMR (CD2Cl2, δ), 171.1, 159.1, 152.6, 139.3, 129.2, 129.0, 128.6, 127.6,
126.4, 113.7, 102.8, 56.0, 55.3, 40.0, 33.4 ppm. 77Se-NMR (CD2Cl2, δ), 567.1 ppm. HRMS (CI+, m/z):
found 373.0811 [M + H]+, calculated mass for C19H20N2OSeH: 373.0814.

4-(4-Methylphenyl)-N-methyl-N-phenethyl-1,3-selenazol-2-amine (8). Yellow solid (0.350 g, 98%). M.p.
90–91 ◦C. Selected IR (KBr, cm−1): 1561, 1487, 1457, 1406, 1363, 1321, 1265, 1173, 1110, 1040, 1018, 934,
826, 754, 702, 673, 600, 502. 1H-NMR (CD2Cl2, δ), 7.76 (d, J(H,H) = 8.2 Hz, 2H), 7.35–7.17 (m, 8H),
3.73 (t, J(H,H) = 7.4 Hz, 2H), 3.05 (s, 3H), 3.01 (t, J(H,H) = 7.4 Hz, 2H), 2.35 (s, 3H) ppm. 13C-NMR
(CD2Cl2, δ), 171.1, 153.0, 139.3, 137.2, 133.5, 129.1, 129.0, 128.6, 126.4, 126.2, 103.9, 56.0, 39.8, 33.4,
21.0 ppm. 77Se-NMR (CD2Cl2, δ), 568.1 ppm. HRMS (CI+, m/z): found 357.0867 [M + H]+, calculated
mass for C19H10N2SeH: 357.0865.

N-Methyl-4-(4-nitrophenyl)-N-phenethyl-1,3-selenazol-2-amine (9). Yellow solid (0.360 g, 93%). M.p. 96–98 ◦C.
Selected IR (KBr, cm−1): 1600, 1593, 1558, 1501, 1406, 1336, 1174, 1106, 1045, 935, 857, 847, 755, 703,
501. 1H-NMR (CDCl3, δ), 8.15 (d, J(H,H) = 9.0 Hz, 2H), 7.94 (d, J(H,H) = 9.0 Hz, 2H), 7.44 (s, 1H),
7.27–7.17 (m, 5H), 3.68 (t, J(H,H) = 7.7 Hz, 2H), 3.00 (s, 3H), 2.95 (t, J(H,H) = 7.7 Hz, 2H) ppm. 13C-NMR
(CDCl3, δ), 171.4, 151.0, 146.6, 141.9, 138.8, 128.9, 128.7, 126.8, 126.6, 124.0, 109.1, 56.2, 40.1, 33.4 ppm.
77Se-NMR (CDCl3, δ), 590.1 ppm. HRMS (CI+, m/z): found 388.0557 [M + H]+, calculated mass for
C18H17N3O2SeH: 388.0559.

4-(2,5-Dimethoxyphenyl)-N-methyl-N-phenethyl-1,3-selenazol-2-amine (10). Green oil (0.360 g, 90%).
Selected IR (KBr, cm−1): 1674, 1558, 1496, 1464, 1409, 1357, 1280, 1217, 1178, 1047, 1023, 809, 744,
700, 585. 1H-NMR (CDCl3, δ), 7.76 (s, 1H, Azole-H), 7.21–7.13 (m, 5H, Ar-H), 6.94 (d, J(H,H) = 7.7 Hz,
1H, Ar-H), 6.82 (s, 1H), 6.79 (d, J(H,H) = 7.7 Hz, 1H), 3.80 (s, 3H), 3.70 (s, 3H), 3.63 (t, J(H,H) = 7.7 Hz,
2H), 2.96 (s, 3H), 2.93 (t, J(H,H) = 7.7 Hz, 2H) ppm. 13C NMR (CDCl3, δ), 169.2, 153.6, 139.2, 128.9, 128.6,
128.3, 126.4, 120.4, 116.1, 113.8, 113.2, 112.5, 110.7, 56.0, 55.8, 55.7, 40.0, 33.4 ppm. 77Se-NMR (CDCl3, δ),
572.7 ppm. HRMS (CI+, m/z): found 403.0915 [M + H]+, calculated mass for C20H22N2O2SeH: 403.0919.

4-(2,4-Dichlorophenyl)-N-methyl-N-phenethyl-1,3-selenazol-2-amine (11). Yellow oil (0.375 g, 91%). Selected IR
(KBr, cm−1): 1697, 1560, 1550, 1496, 1464, 1370, 1309, 1172, 1100, 1030, 936, 866, 825, 797, 747, 699, 554,
529, 497. 1H-NMR (CDCl3, δ), 7.78 (d, J(H,H) = 8.5 Hz, 2H), 7.45 (s, 1H), 7.44 (d, J(H,H) = 8.4 Hz, 1H),
7.36–7.35 (m, 2H), 7.22–7.15 (m, 3H), 3.62 (t, J(H,H) = 7.7 Hz, 2H), 2.94 (s, 3H), 2.93 (t, J(H,H) = 7.7 Hz,
2H) ppm. 13C-NMR (CDCl3, δ), 169.2, 147.6, 137.9, 132.5, 132.0, 131.5, 129.7, 129.0, 127.8, 127.6, 125.9,
125.4, 109.5, 55.1, 39.0, 32.4 ppm. 77Se-NMR (CDCl3, δ), 578.9 ppm. HRMS (CI+, m/z): found 410.9921
[M + H]+, calculated mass for C18H16Cl2N2SeH: 410.9924.
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4-(4-Bromophenyl)-N-methyl-N-phenethyl-1,3-selenazol-2-amine (12). Yellow solid (0.418 g, 95%). Selected IR
(KBr, cm−1): 1559, 1472, 1455, 1407, 1392, 1367, 1318, 1176, 1069, 1007, 937, 836, 753, 705, 676, 491.
1H-NMR (CDCl3, δ), 7.67 (d, J(H,H) = 8.7 Hz, 2H), 7.59 (s, 1H), 7.40 (d, J(H,H) = 8.7 Hz, 2H), 7.26–7.15
(m, 5H), 3.65 (t, J(H,H) = 7.5 Hz, 2H), 2.97 (s, 3H), 2.93 (t, J(H,H) = 7.5 Hz, 2H) ppm. 13C-NMR
(CDCl3, δ), 171.2, 152.0, 139.0, 135.1, 131.5, 128.9, 128.7, 128.0, 126.5, 125.4, 105.3, 56.2, 40.0, 29.7 ppm.
77Se-NMR (CDCl3, δ), 577.8 ppm. HRMS (CI+, m/z): found 420.9809 [M + H]+, calculated mass for
C18H17BrN2SeH: 420.9811.

Ethyl phenethyl(4-phenyl-1,3-selenazol-2-yl)carbamate (13). Yellowish white solid (0.384 g, 96%).
M.p. 65–67 ◦C. Selected IR (KBr, cm−1): 1695, 1600, 1517, 1477, 1439, 1408, 1383, 1269, 1197, 1025, 880,
753, 718, 699, 666, 499. 1H-NMR (CD2Cl2, δ), 7.95 (d, J(H,H) = 8.5 Hz, 2H), 7.79 (s, 1H), 7.44–7.29
(m, 8H), 4.44 (q, J(H,H) = 7.2 Hz, 2H), 4.21 (t, J(H,H) = 6.9 Hz, 2H), 3.08 (t, J(H,H) = 6.9 Hz, 2H),
1.29 (t, J(H,H) = 7.2 Hz, 3H) ppm. 13C-NMR (CD2Cl2, δ), 161.8, 150.6, 139.1, 136.0, 129.1, 128.6, 128.5,
127.55, 126.4, 126.2, 113.3 ppm. 77Se-NMR (CD2Cl2, δ), 679.9 ppm. HRMS (ES+, m/z): found 401.0766
[M + H]+, calculated mass for C20H20N2O2SeH: 401.0768.

Ethyl (4-(4-chlorophenyl)-1,3-selenazol-2-yl)(phenethyl)carbamate (14). Pale orange solid (0.416 g, 96%).
M.p. 68–70 ◦C. Selected IR (KBr, cm−1): 1698, 1518, 1474 1441, 1382, 1314, 1244, 1189, 1089, 1030,
839, 739, 701, 578, 554, 498. 1H-NMR (CD2Cl2, δ), 7.89 (d, J(H,H) = 8.5 Hz, 2H), 7.77 (s, 1H),
7.39 (d, J(H,H) = 8.5 Hz, 2H), 7.31–7.22 (m, 5H), 4.42 (t, J(H,H) = 6.9 Hz, 2H), 4.19 (q, J(H,H) = 7.2 Hz,
2H), 3.07 (d, J(H,H) = 7.2 Hz, 2H), 1.29 (t, J(H,H) = 6.9 Hz, 3H) ppm. 13C-NMR (CD2Cl2, δ),
162.0, 149.4, 139.0, 134.6, 133.0, 129.1, 128.7, 128.5, 127.6, 126.5, 113.9, 63.4, 48.5, 34.2, 14.2 ppm.
77Se-NMR (CD2Cl2, δ), 684.2 ppm. HRMS (CI+, m/z): found 435.0375 [M + H]+, calculated mass for
C20H19N2ClO2SeH: 435.0378.

Ethyl (4-(4-methoxyphenyl)-1,3-selenazol-2-yl)(phenethyl)carbamate (15). Pale yellow solid (0.410 g, 95%).
M.p. 52–54 ◦C. Selected IR (KBr, cm−1): 1689, 1603, 1578, 1513, 1438, 1405, 1382, 320, 1301, 1250, 1176,
1027, 881, 835, 748, 700, 618, 562. 1H-NMR (CD2Cl2, δ), 7.87 (d, J(H,H) = 8.8 Hz, 2H), 7.62 (s, 1H),
7.31–7.25 (m, 5H), 6.94 (d, J(H,H) = 8.0 Hz, 2H), 4.43 (t, J(H,H) = 6.9 Hz, 2H), 4.20 (q, J(H,H) = 6.6 Hz,
2H), 3.83 (s, 3H), 3.07 (d, J(H,H) = 6.9 Hz, 2H), 1.29 (t, J(H,H) = 6.6 Hz, 3H) ppm. 13C-NMR (CD2Cl2, δ),
161.6, 159.3, 150.4, 139.1, 130.5, 129.1, 128.5, 127.4, 126.4, 113.9, 113.6, 111.2, 63.3, 55.3, 48.5, 34.2,
14.2 ppm. 77Se-NMR (CD2Cl2, δ), 675.7 ppm. HRMS (CI+, m/z): found 431.0867 [M + H]+, calculated
mass for C21H22N2O3SeH: 431.0870.

(2-(Methyl(phenethyl)amino)-4-phenyl-1,3-selenazol-5-yl)(phenyl)methanone (16). Pale yellow paste (0.415 g,
93%). Selected IR (KBr, cm−1): 1595, 1575, 1542, 1473, 1327, 1284, 1103, 1025, 881, 779, 697, 670,
599. 1H-NMR (CDCl3, δ), 7.35–7.32 (m, 2H), 7.27–7.22 (m, 4H), 7.19–7.16 (m, 3H), 7.13–7.09 (m, 2H),
7.04–6.93 (m, 4H), 4.04 (t, J(H,H) = 7.4 Hz, 2H), 2.97 (t, J(H,H) = 7.4 Hz, 2H), 1.97 (s, 3H) ppm. 13C-NMR
(CDCl3, δ), 190.3, 172.9, 160.6, 138.5, 138.4, 136.0, 131.9, 130.1, 129.3, 129.1, 128.7, 127.5, 127.4, 126.7,
60.4, 33.5, 15.0 ppm. 77Se-NMR (CDCl3, δ), 609.7 ppm. HRMS (CI+, m/z): found 447.0968 [M + H]+,
calculated mass for C25H22N2OSeH: 447.0972.

4. Conclusions

In summary, a series of new 4-substituted-1,3-selenazol-2-amines were prepared in excellent
yields by two-component cyclization of α-haloketones with equimolar amounts of selenoureas which
were obtained from the reaction of Woollins’ reagent with cyanamides, followed by hydrolysis.
The structures of all new compounds have been elucidated by using 1H-, 13C-, 77Se-NMR spectroscopy
and accurate mass measurements. Seven single crystal X-ray structures reveal slightly different
structure profiles. In all cases, the newly formed 1,3-selenazole ring is not complete planar, and none
of the mean planes of the newly formed five-membered ring are coplanar with the adjacent aryl rings,
showing different dihedral angles. Interestingly, no intramolecular close contacts were found; however,
intermolecular C-H···Se, C-H···N, C-H···O, C-H···Cl and C-H···Br short interactions are found in
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the structures and the oxygen, chlorine, bromine and nitrogen atoms play very key roles in these
intermolecular close contacts.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/22/
1/46/s1.
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