
molecules

Article

Influence of Plant Growth Retardants on Quality of
Codonopsis Radix

Yinyin Liao 1,2,†, Lanting Zeng 1,2,†, Pan Li 3, Tian Sun 4, Chao Wang 5, Fangwen Li 3,
Yiyong Chen 1,2, Bing Du 3,* and Ziyin Yang 1,2,*

1 Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic
Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden,
Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China;
honey_yyliao@scbg.ac.cn (Y.L.); zenglanting@scbg.ac.cn (L.Z.); yychen@scbg.ac.cn (Y.C.)

2 University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
3 College of Food, South China Agricultural University, Wushan Road, Tianhe District,

Guangzhou 510642, China; lp19900815@126.com (P.L.); 15807662274@163.com (F.L.)
4 Tianfangjian (China) Pharmacy Company Ltd, 11 Xiancun Road, Tianhe District, Guangzhou 510623, China;

Elaine.Sun@tianfangjian.com.cn
5 Infinitus (China) Company Ltd, 11 Xiancun Road, Tianhe District, Guangzhou 510623, China;

Bob.Wang@infinitus-int.com
* Correspondence: gzdubing@163.com (B.D.); zyyang@scbg.ac.cn (Z.Y.); Tel.: +86-13929522370 (B.D.);

Tel./Fax: +86-20-3807-2989 (Z.Y.)
† These authors contributed equally to this work.

Received: 8 September 2017; Accepted: 1 October 2017; Published: 9 October 2017

Abstract: Plant growth retardant (PGR) refers to organics that can inhibit the cell division of
plant stem tip sub-apical meristem cells or primordial meristem cell. They are widely used in
the cultivation of rhizomatous functional plants; such as Codonopsis Radix, that is a famous Chinese
traditional herb. However, it is still unclear whether PGR affects the medicinal quality of C. Radix.
In the present study, amino acid analyses, targeted and non-targeted analyses by ultra-performance
liquid chromatography combined with time-of-flight mass spectrometry (UPLC-TOF-MS) and gas
chromatography-MS were used to analyze and compare the composition of untreated C. Radix
and C. Radix treated with PGR. The contents of two key bioactive compounds, lobetyolin and
atractylenolide III, were not affected by PGR treatment. The amounts of polysaccharides and some
internal volatiles were significantly decreased by PGR treatment; while the free amino acids content
was generally increased. Fifteen metabolites whose abundance were affected by PGR treatment
were identified by UPLC-TOF-MS. Five of the up-regulated compounds have been reported to show
immune activity, which might contribute to the healing efficacy (“buqi”) of C. Radix. The results of
this study showed that treatment of C. Radix with PGR during cultivation has economic benefits and
affected some main bioactive compounds in C. Radix.
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1. Introduction

Codonopsis Radix is the dried roots of Codonopsis pilosula, Codonopsis pilosulavar, Codonopsis modesta,
and Codonopsis tangshen, which are perennial herbaceous plants in the family Campanulaceae [1]. As one
of the most famous Chinese traditional herbs, C. Radix has been used in clinical applications for
hundreds of years. Many studies have focused on its multiple medicinal properties. It can enhance
immune function, affect gastrointestinal movement, and reduce the effects of hypoxia and fatigue [2].
Furthermore, it has a sedative effect on the nervous system and can improve the function of the
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reproductive system [3,4]. It has also been shown to improve hematopoietic function, regulate blood
pressure, strengthen heart function, and protect the circulatory system against shock [5]. With its
numerous therapeutic effects and wide use in China, C. Radix has been studied in detail to identify
the components contributing to its efficacy. So far, more than 100 pure compounds have been
isolated and identified, including sterols, glycosides, alkaloids, volatile oils, triterpenoids, amino acids,
phenylpropanoids, flavones, and organic acids [6]. Some of them have been shown to be major
contributors to its pharmacological effects [7]. Accordingly, the types and quantities of bioactive
components are critical for the efficacy of C. Radix.

C. Radix is a rhizome crop, and is often treated with plant growth retardants (PGR) to improve the
biological yield. There are four different kinds of PGRs: (1) onium compounds, such as chlormequat
chloride, mepiquat chloride, chlorphonium, and AMO-1618; (2) N-containing heterocycle, such as
ancymidol, flurprimidol, tetcyclacis, paclobutrazol, uniconazole-P, and inabenfide; (3) structural
analogue of 2-oxoglutaric acid, such as acylcyclohexanediones, prohexadione-Ca, trinexapac-ethyl and
daminozide; and, (4) 16,17-Dihydro-GA5 and related structures [8]. Most growth retardants work by
inhibiting gibberellin (GA) biosynthesis. The second type of PGR, commonly used for the cultivation of
common Chinese herbs such as Codonopsis, Salvia miltiorrhiza, and Radix Ophiopogoni, was employed
in the present study. While PGR certainly promotes the production of some medicinal herbs, there is
some concern that it may affect the efficacy of herbal medicines, or even have toxic side-effects.
Therefore, several studies have focused on the effects of PGR on the chemical composition of herb
roots and their efficacy. The effect of PGR on the quality of C. Radix has been studied by determining
the content of lobetyolin, one of the main active compounds [9]. However, the effect of PGR on
the concentrations of other important compounds in C. Radix and on its safety are still unknown.
In this study, we analyzed the contents of polysaccharides, volatile substances, and free amino acids in
C. Radix grown with or without PGR. In addition, high-throughput screening analyses were employed
to investigate whether some bioactive substances show changes in response to PGR treatment.

2. Results and Discussion

2.1. PGR Treatment of C. Radix Did Not Affect Lobetyolin and Atractylenolide III Contents

The contents of lobetyolin and atractylenolide III in the C. Radix samples were calculated by
comparison with authentic standards. The average contents of lobetyolin in control and PGR-treated
samples were 0.29 and 0.22 mg/g, respectively, and those of atractylenolide III were 0.017 and
0.019 mg/g, respectively. Neither compounds showed significant differences between the treated and
the control groups (Figure 1).

There are two crucial active ingredients in C. Radix; lobetyolin and atractylenolide III.
Lobetylin has been shown to have antioxidant [10], anti-inflammatory, immunity-enhancing,
and stomach-protective activities, while atractylenolide III has been shown to have
anti-inflammatory [11], stomach-protective [12], and anti-lung-cancer activities [13]. Since these
two compounds contribute to the efficacy of C. Radix, many studies have analyzed changes in their
abundance under various conditions or treatments, for example, sulfur fumigation, drying methods,
and so on [14,15]. The results of the present study showed that these compounds showed only slight
fluctuations after PGR treatment, indicating that PGR did not affect their biosynthetic pathways.
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Figure 1. Effect of plant growth retardant (PGR) on lobetyolin and atractylenolide III contents in C. 
Radix samples. (A) Chromatogram comparison of lobetyolin standard, and control and treatment 
groups. Lobetyolin (std.), lobetyolin standard (20 ng/μL, m/z = 397.1862, RT = 10.43 min); control, 
untreated C. Radix sample; treatment, PGR-treated C. Radix sample. (B) Chromatogram comparison 
of atractylenolide III standard, control and treatment groups. Atractylenolide III (std.), 
atractylenolide III standard (10 ng/μL, m/z = 249.1491, RT = 24.68 min). (C) & (D) Lobetyolin and 
atractylenolide III contents in control and treatment groups (as calculated from peak areas of 
samples and the standard).  

2.2. PGR Treatment Significantly Decreased Polysaccharides and Internal Volatiles Contents 

The total polysaccharides content in PGR-treated samples (376.09 mg/g) was lower than that in 
untreated samples (542.50 mg/g; Figure 2). Among the 39 volatile compounds detected and 
identified in the GC-MS analysis, 14 showed a decreased abundance in the PGR-treated samples, 
while the others were unaffected by PGR treatment. The 14 compounds are shown in Table 1. 
Diisobutyl phthalate and methyl hexadecanoate contribute to the special flavor of C. Radix [6]. 

Several studies have shown that C. Radix polysaccharides have bioactive properties. For 
example, C. Radix polysaccharides were shown to inhibit the growth of human gastric 
adenocarcinoma cells and hepatoma carcinoma cells [10], and stimulate concanavalin A or 
lipopolysaccharide induced lymphocyte proliferation [2]. Although there are few reports on the 
bioactivities of C. Radix volatiles, they are considered as important components [6]. Sulfur 
fumigation was shown to significantly alter the volatile oil and polysaccharide composition of C. 
Radix samples [6]. In our study, the contents of the main volatile oils and total polysaccharides were 
reduced by PGR treatment. This may be because the increase in yield under PGR treatment directed 
resources away from secondary metabolism. Since both growth and secondary metabolism 
consume nutrients and energy, an increase in yield can lead to a decrease in quality. 

Figure 1. Effect of plant growth retardant (PGR) on lobetyolin and atractylenolide III contents
in C. Radix samples. (A) Chromatogram comparison of lobetyolin standard, and control and
treatment groups. Lobetyolin (std.), lobetyolin standard (20 ng/µL, m/z = 397.1862, RT = 10.43 min);
control, untreated C. Radix sample; treatment, PGR-treated C. Radix sample. (B) Chromatogram
comparison of atractylenolide III standard, control and treatment groups. Atractylenolide III (std.),
atractylenolide III standard (10 ng/µL, m/z = 249.1491, RT = 24.68 min). (C) & (D) Lobetyolin and
atractylenolide III contents in control and treatment groups (as calculated from peak areas of samples
and the standard).

2.2. PGR Treatment Significantly Decreased Polysaccharides and Internal Volatiles Contents

The total polysaccharides content in PGR-treated samples (376.09 mg/g) was lower than that in
untreated samples (542.50 mg/g; Figure 2). Among the 39 volatile compounds detected and identified
in the GC-MS analysis, 14 showed a decreased abundance in the PGR-treated samples, while the others
were unaffected by PGR treatment. The 14 compounds are shown in Table 1. Diisobutyl phthalate and
methyl hexadecanoate contribute to the special flavor of C. Radix [6].
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Figure 2. Effect of PGR on polysaccharides in C. Radix samples. Control, untreated C. Radix sample; 
treatment, PGR-treated C. Radix sample. The * indicates significant difference (p ≤ 0.05). 

Table 1. Effect of PGR on internal volatiles in C. Radix samples. 

Internal Volatile Metabolite Treatment Control T/CK 
Dodecane 0.05 ± 0.01 0.09 ± 0.01 0.56* 

Hexadecane 0.13 ± 0.01 0.23 ± 0.02 0.57* 
2-Furanmethanol 0.06 ± 0.01 0.13 ± 0.01 0.46* 

Phytane 0.10 ± 0.01 0.17 ± 0.03 0.59* 
Octacosane 0.05 ± 0.01 0.10 ± 0.01 0.50* 

Dihydroanethole 0.27 ± 0.10 1.42 ± 0.28 0.19* 
Oxalic acid, dodecyl 2-methylphenyl ester 0.05 ± 0.01 0.11 ± 0.01 0.46* 

Ethylhexyl benzoate 0.04 ± 0.01 0.07 ± 0.00 0.57* 
Methyl hexadecanoate 0.16 ± 0.01 0.24 ± 0.03 0.67* 

Diethyl Phthalate 0.10 ± 0.01 0.14 ± 0.01 0.71* 
n-Heptadecylcyclohexane 0.03 ± 0.00 0.06 ± 0.01 0.50* 

Methyl octadeca-9,12-dienoate 0.11 ± 0.01 0.21 ± 0.04 0.52* 
Diisobutyl phthalate 0.72 ± 0.08 1.10 ± 0.10 0.66* 

Phthalic acid, decyl 2,7-dimethyloct-7-en-5-yn-4-yl ester 0.54 ± 0.07 0.79 ± 0.03 0.69* 

The relative content of each compound from samples was calculated as GC-MS peak area ratio of 
analyte to n-ethyl decanoate (internal standard). Data are expressed as mean ± SD (n = 3). Control, 
untreated C. Radix sample; treatment, PGR-treated C. Radix sample. T/CK represents ratio of internal 
volatile content in PGR treatment to that in control. The * indicates significant difference (p ≤ 0.05). 

2.3. General Increase in Free Amino Acids Content by PGR Treatment 

The contents of 24 common free amino acids in C. Radix were determined. The majority of free 
amino acids showed higher contents in the PGR-treated samples than in the control samples, 
especially asparagine, glutamic acid, α-aminoadipic acid, and ornithine (Table 2). The glycine 
content was significantly lower in the PGR-treated samples than in the control samples. 

Free amino acids play important roles in gene expression, protein synthesis, cell signaling, 
metabolism, physiology, and health [16]. Many of the amino acids in C. Radix may be related to its 
effects to promote metabolism and enrich the blood and saliva. Since the main functional 
components of the PGR we used are mainly quaternary ammonium compounds and 
nitrogen-containing heterocyclic compounds, it can inhibit the biosynthesis of gibberellins [17]. This 
reduces the division, elongation, and growth rates of meristem cells, leading to increased tuber 
growth and an increased yield. These nitrogen-containing compounds can be used as substrates for 
amino acid synthesis. This explains why the amino acids contents generally increased after treated 
with PGR. 

Figure 2. Effect of PGR on polysaccharides in C. Radix samples. Control, untreated C. Radix sample;
treatment, PGR-treated C. Radix sample. The * indicates significant difference (p ≤ 0.05).
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Table 1. Effect of PGR on internal volatiles in C. Radix samples.

Internal Volatile Metabolite Treatment Control T/CK

Dodecane 0.05 ± 0.01 0.09 ± 0.01 0.56 *
Hexadecane 0.13 ± 0.01 0.23 ± 0.02 0.57 *

2-Furanmethanol 0.06 ± 0.01 0.13 ± 0.01 0.46 *
Phytane 0.10 ± 0.01 0.17 ± 0.03 0.59 *

Octacosane 0.05 ± 0.01 0.10 ± 0.01 0.50 *
Dihydroanethole 0.27 ± 0.10 1.42 ± 0.28 0.19 *

Oxalic acid, dodecyl 2-methylphenyl ester 0.05 ± 0.01 0.11 ± 0.01 0.46 *
Ethylhexyl benzoate 0.04 ± 0.01 0.07 ± 0.00 0.57 *

Methyl hexadecanoate 0.16 ± 0.01 0.24 ± 0.03 0.67 *
Diethyl Phthalate 0.10 ± 0.01 0.14 ± 0.01 0.71 *

n-Heptadecylcyclohexane 0.03 ± 0.00 0.06 ± 0.01 0.50 *
Methyl octadeca-9,12-dienoate 0.11 ± 0.01 0.21 ± 0.04 0.52 *

Diisobutyl phthalate 0.72 ± 0.08 1.10 ± 0.10 0.66 *
Phthalic acid, decyl 2,7-dimethyloct-7-en-5-yn-4-yl ester 0.54 ± 0.07 0.79 ± 0.03 0.69 *

The relative content of each compound from samples was calculated as GC-MS peak area ratio of analyte to n-ethyl
decanoate (internal standard). Data are expressed as mean ± SD (n = 3). Control, untreated C. Radix sample;
treatment, PGR-treated C. Radix sample. T/CK represents ratio of internal volatile content in PGR treatment to that
in control. The * indicates significant difference (p ≤ 0.05).

Several studies have shown that C. Radix polysaccharides have bioactive properties. For example,
C. Radix polysaccharides were shown to inhibit the growth of human gastric adenocarcinoma cells
and hepatoma carcinoma cells [10], and stimulate concanavalin A or lipopolysaccharide induced
lymphocyte proliferation [2]. Although there are few reports on the bioactivities of C. Radix volatiles,
they are considered as important components [6]. Sulfur fumigation was shown to significantly alter
the volatile oil and polysaccharide composition of C. Radix samples [6]. In our study, the contents of the
main volatile oils and total polysaccharides were reduced by PGR treatment. This may be because the
increase in yield under PGR treatment directed resources away from secondary metabolism. Since both
growth and secondary metabolism consume nutrients and energy, an increase in yield can lead to
a decrease in quality.

2.3. General Increase in Free Amino Acids Content by PGR Treatment

The contents of 24 common free amino acids in C. Radix were determined. The majority of
free amino acids showed higher contents in the PGR-treated samples than in the control samples,
especially asparagine, glutamic acid, α-aminoadipic acid, and ornithine (Table 2). The glycine content
was significantly lower in the PGR-treated samples than in the control samples.

Free amino acids play important roles in gene expression, protein synthesis, cell signaling,
metabolism, physiology, and health [16]. Many of the amino acids in C. Radix may be related to its
effects to promote metabolism and enrich the blood and saliva. Since the main functional components of
the PGR we used are mainly quaternary ammonium compounds and nitrogen-containing heterocyclic
compounds, it can inhibit the biosynthesis of gibberellins [17]. This reduces the division, elongation,
and growth rates of meristem cells, leading to increased tuber growth and an increased yield.
These nitrogen-containing compounds can be used as substrates for amino acid synthesis. This explains
why the amino acids contents generally increased after treated with PGR.
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Table 2. Effect of PGR on free amino acids in C. Radix samples.

Free Amino Acid Treatment (µg/g) Control (µg/g) T/CK

Glutamic acid 3234.18 ± 811.83 465.59 ± 174.63 6.95 *
Asparagine 172.88 ± 44.88 34.36 ± 15.40 5.03 *

α-Aminoadipic Acid 3270.40 ± 898.05 659.44 ± 244.17 4.96 *
Ornithine 13.08 ± 1.59 6.41 ± 2.04 2.04 *
Taurine 121.03 ± 85.58 7.56 ± 5.38 16.01

Phosphatidylserine 32.91 ± 16.27 10.05 ± 1.71 3.27
Carbamide 17619.48 ± 7948.53 9652.14 ± 3208.69 1.83

Leucine 22.65 ± 7.09 12.91 ± 4.08 1.75
Arginine 5431.27 ± 1205.33 3164.94 ± 1227.21 1.72

Serine 47.96 ± 11.59 32.21 ± 12.45 1.49
Citrulline 214.58 ± 74.13 149.97 ± 60.34 1.43

β-Aminoisobutyric acid 1.72 ± 0.42 1.28 ± 0.58 1.34
Valine 12.34 ± 2.41 9.42 ± 3.65 1.31

Isoleucine 61.95 ± 20.73 51.04 ± 16.87 1.21
Lysine 50.74 ± 9.78 44.94 ± 18.04 1.13

β-Alanine 4.93 ± 2.66 4.47 ± 2.49 1.10
Phenylalanine 18.95 ± 4.69 17.45 ± 5.79 1.09

Alanine 270.21 ± 102.56 291.28 ± 111.14 0.93
Glycine 0.00 ± 0.00 3.20 ± 1.10 0.00 *
Tyrosine 8.98 ± 2.76 11.19 ± 4.72 0.80
Histidine 2448.93 ± 786.52 2454.37 ± 360.11 1.00

γ-Aminobutyric acid 27.76 ± 8.04 44.82 ± 10.31 0.62
Tryptophan 21.32 ± 8.14 37.35 ± 17.81 0.57
Threonine 9.96 ± 5.08 45.86 ± 53.54 0.22

Content of each amino acid was calculated based on the peak area of samples and the standard. Data are expressed
as mean ± SD (n = 3). Control, untreated C. Radix sample; treatment, PGR-treated C. Radix sample. T/CK represents
ratio of content in PGR treatment to that in control. The * indicates significant difference (p ≤ 0.05).

2.4. Application of PGR Altered the Composition of Secondary Metabolites in C. Radix

A principal component analysis (PCA) was used to identify differences between the PGR treated
and control samples (Figure 3A–D). We detected substantial differences in all conditions, except for the
C18 column with ESI+. Then, we used a S-Plot analysis to select small-molecule metabolites showing
significant differences in abundance between the PGR-treated and untreated groups (Figure 3E–G).
The 15 metabolites showing major differences in abundance were listed in Tables 3 and 4. Eleven of
them were up-regulated by PGR treatment (Table 3) and four of them were down-regulated by PGR
treatment (Table 4).

A targeted approach, where compounds of interest are selected before further detection,
has been used for a long time in the food control field. When compared with a targeted approach,
a non-targeted analysis can generate data on thousands of candidates, making it possible to detect new
or unexpected compounds that may improve or reduce the quality of food [18]. In the food control
field, UPLC-QTOF-MS has been used to evaluate the safety of genetically modified foods, and to assess
the traceability and origin of foods [19]. In this study, a non-targeted approach was used to study the
effects of PGR on the quality of C. Radix, and many significantly affected metabolites were identified.
The up-regulated compounds were mainly derivatives of fatty acids or carbohydrates, most of
which are immunologically active. In a previous study, 4-mannopyranosyl-5-O-phosphono-ribitol
had immunogenic effects and protected against the Streptococcus pneumoniae 6B capsular
polysaccharide [20]. In other studies, acetylneuraminyl-galactose affected the susceptibility to
infection [21], deamino neuraminyl-galactosyl-acetyl glucosamine stimulated IgG responses [22],
and bougainvillein-γ-I increased resistance to radiation [23]. Aurin was reported to dramatically
increase heme oxygenase-1 activity, to counteract the effects of various stressful events [24].
9-Methylthio-2-nonanoic acid is a component of the glucosinolate biosynthesis pathway [25]. The four
down-regulated compounds were mainly alkaloid derivatives whose physiological activity or toxicity
is unknown. Together, the results of this study showed that PGR treatment increased the levels of
several immunologically active metabolites, but did not result in the production of toxic substances.



Molecules 2017, 22, 1655 6 of 11

Molecules 2017, 22, 1655  6 of 11 

 

levels of several immunologically active metabolites, but did not result in the production of  
toxic substances. 

 
Figure 3. Effect of PGR on secondary metabolites in C. Radix samples. CK, untreated C. Radix 
sample; T, PGR-treated C. Radix sample. (A–D) Principal component analysis (PCA) of secondary 
metabolites. (E–G) S-plot analysis of secondary metabolites, red marked points were selected for 
further identification. (A, E) Chromatographic separation performed using ACQUITY UPLC BEH 
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ACQUITY UPLC BEH Amide column in ESI positive mode. (C, G) Chromatographic separation 
performed using ACQUITY UPLC HSS T3 C18 column in ESI negative mode. (D) Chromatographic 
separation performed using ACQUITY UPLC HSS T3 C18 column in ESI positive mode. 

Table 3. Major secondary metabolites up-regulated by PGR. 

No. Identification and Tentative Identification 
Molecular 
Formula 

RT 
(min) m/z T/CK Mode 

1 Arginine C6H14N4O2 0.70 173.1045[M − H]− 1.57* C18, ES− 

2 Verbascose C30H52O26 0.75 827.2670[M − H]− 1.71** C18, ES− 

3 
(4-Aminomethyl-1,2,3-triazol-1-acetylamino)-5-hyd

roxybenzoic acid 
C12H13N5O4 0.82 290.0883 [M − H]− 2.23** C18, ES− 

4 4-Mannopyranosyl-5-O-phosphono-ribitol C11H23O12P 0.82 377.0859 [M − H]− 1.62* C18, ES− 

5 Acetylneuraminyl-galactose C17H29NO14 0.82 470.1523 [M − H]− 2.67** C18, ES− 

6 
Deamino neuraminyl-galactosyl-acetyl 

glucosamine 
C23H39NO19 0.82 632.2041 [M − H]− 3.19** C18, ES− 

7 Glycoloyloxy-acetic acid C4H6O5 0.87 133.0144 [M − H]− 1.51** C18, ES− 

8 Bougainvillein-γ-I C30H36N2O18 11.68 729.2257[M − NH4]− 1.25 
Amide, 

ES− 

9 Aurin C19H14O3 20.27 307.1207[M+NH4]− 1.72** 
Amide, 

ES− 

10 9-Methylthio-2-nonanoic acid C10H18O3S 20.32 217.0906 [M − H]− 1.38** 
Amide, 

ES− 
11 5,6,7,8-Tetrahydromethanopterin C30H45N6O16P 7.20 794.3002[M+NH4] 6.29** Amide, 

Figure 3. Effect of PGR on secondary metabolites in C. Radix samples. CK, untreated C. Radix
sample; T, PGR-treated C. Radix sample. (A–D) Principal component analysis (PCA) of secondary
metabolites. (E–G) S-plot analysis of secondary metabolites, red marked points were selected for
further identification. (A, E) Chromatographic separation performed using ACQUITY UPLC BEH
Amide column in ESI negative mode. (B, F) Chromatographic separation performed using ACQUITY
UPLC BEH Amide column in ESI positive mode. (C, G) Chromatographic separation performed
using ACQUITY UPLC HSS T3 C18 column in ESI negative mode. (D) Chromatographic separation
performed using ACQUITY UPLC HSS T3 C18 column in ESI positive mode.

Table 3. Major secondary metabolites up-regulated by PGR.

No. Identification and Tentative Identification Molecular
Formula

RT
(min) m/z T/CK Mode

1 Arginine C6H14N4O2 0.70 173.1045[M − H]− 1.57 * C18, ES−

2 Verbascose C30H52O26 0.75 827.2670[M − H]− 1.71 ** C18, ES−

3 (4-Aminomethyl-1,2,3-triazol-1-acetylamino)-5-hyd
roxybenzoic acid C12H13N5O4 0.82 290.0883 [M − H]− 2.23 ** C18, ES−

4 4-Mannopyranosyl-5-O-phosphono-ribitol C11H23O12P 0.82 377.0859 [M − H]− 1.62 * C18, ES−

5 Acetylneuraminyl-galactose C17H29NO14 0.82 470.1523 [M − H]− 2.67 ** C18, ES−

6 Deamino neuraminyl-galactosyl-acetyl
glucosamine C23H39NO19 0.82 632.2041 [M − H]− 3.19 ** C18, ES−

7 Glycoloyloxy-acetic acid C4H6O5 0.87 133.0144 [M − H]− 1.51 ** C18, ES−

8 Bougainvillein-γ-I C30H36N2O18 11.68 729.2257[M − NH4]− 1.25 Amide, ES−

9 Aurin C19H14O3 20.27 307.1207[M+NH4]− 1.72 ** Amide, ES−

10 9-Methylthio-2-nonanoic acid C10H18O3S 20.32 217.0906 [M − H]− 1.38 ** Amide, ES−

11 5,6,7,8-Tetrahydromethanopterin C30H45N6O16P 7.20 794.3002[M+NH4] 6.29 ** Amide, ES+

CK, untreated C. Radix sample; T, PGR-treated C. Radix sample. T/CK, ratio of metabolite’s peak area in PGR-treated
group to that in control group; The * and ** indicate significant differences (p ≤ 0.05 and p ≤ 0.01, respectively).
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Table 4. Major secondary metabolites down-regulated by PGR.

No. Identification and Tentative Identification Molecular
Formula

RT
(min) m/z T/CK Mode

1 3-Hexadecanoylamino-2-hydroxy-4-methylpentyl-p
hosphonic acid C22H46NO5P 1.05 453.3469[M + NH4] 0.02 ** Amide, ES+

2 4,4′-Dioxo-carotene-3,3′-diyl didecanoate C60H88O6 1.05 905.6666[M + H]+ 0.01 ** Amide, ES+

3 1-Dimethylylidene-4-dihydrazinecarboximidamide-
2,3-dimethoxybenzene C12H18N8O2 4.18 324.1880[M + NH4] 0.08 ** Amide, ES+

4 Phenylalanyl-glycyl-histidine C17H21N5O4 1.74 358.1504 [M − H]− 0.27 ** C18, ES−

CK, untreated C. Radix sample; T, PGR-treated C. Radix sample. T/CK, ratio of metabolite’s peak area in PGR-treated
group to that in control group; The * and ** indicate significant differences (p ≤ 0.05 and p ≤ 0.01, respectively).

3. Materials and Methods

3.1. Plant Materials and Treatments

Two sets of C. Radix samples with three repetitions (DS14A, DS14B, DS14C, and DS22A, DS22B,
DS22C; finely powered) were obtained from the Infinite Pole Co., Ltd. (Guangzhou, China). The DS22
samples were treated with PGR, while the DS14 was untreated with PGR. Both of them were
produced in Minxian, Gansu Province, China. The PGR, which consist of N-containing heterocycle,
photosynthetic accelerator, rare earth fertilizer, and six trace elements, were produced by Lanzhou
Yishun Industry and Trade Co., Ltd. (Lanzhou, Gansu Province, China). Its commercial name was
‘Zhuanggenling’ in Chinese (Catalog number: Agricultural fertilizer (2015) 4312). 250 mL of PGR was
diluted with 15 kg water and then sprayed to 0.033 hectares of field. The PGR are generally used from
late July to middle August, which is a flowering period of C. Radix. After treatment for about 1 month,
the roots of C. Radix plant are harvested, dried, and crushed into powder.

3.2. Extraction and Analysis of Total Polysaccharides

Total polysaccharides of C. Radix was determined according to Reference [26] with some
modifications. Finely powder samples (0.1 g) were transferred into a 50 mL triangular flask
containing10 mL H2O and 3 mL HCl. The samples were incubated in 100 ◦C water for 1 h. After cooling
to room temperature, the extractions were filtered, collected, and diluted with water to 250 mL.
The solution (0.2 mL) was mixed with 0.8 mL H2O, 1 mL 5% phenol solution, and 5 mL H2SO4,
and the reaction was conducted for 10 min. Absorbance of the mixture was read at 490 nm using
a UV-visible spectrophotometer (UV759, Shanghai Precision Science Instrument Co., Ltd., Shanghai,
China). Standard curve were prepared with solutions of 10, 20, 40, 60, 80, and 100 µg/mL glucose.

3.3. Extraction and Analysis of Free Amino Acids

The extraction and analysis of free amino acids was performed according to a previous study [27].
One hundred mg of sample were extracted with 1.5 mL cold methanol by vortexing for 2 min followed
by ultrasonic extraction in ice water for 15 min. The extracts were mixed with 1 mL chloroform and
0.4 mL cold water for phase separation, and the resulting upper layer was dried, added with 1 mL
of 5% sulfosalicylic acid, and stood for 1 h. After centrifuging at 5000× g for 10 min, the supernatant
was filtered through 0.45 µm membrane, and subjected to an amino acid analyzer. A Sykam S433D
Physiological Li C4 system (SYKAM GmbH, Eresing, Germany) equipped with quaternary pump,
column oven, refrigerated auto sampler, and UV-Vis detector was used. The Physiological Li C4
system was coupled with S4300 post-column derivatization system. The experiments were performed
on a high efficiency sodium cation-exchange Pickering Laboratories column (4.0 mm × 150 mm,
Mountain View, CA, USA). The Sykam S433D Physiological Li C4 system was operated using a mobile
phase consisting of lithium citrate pH 2.9, pH 4.2, pH 8.0, and using UV-Vis detection at 570 nm and
440 nm. The flow-rate of the mobile phase was 0.45 mL/min, and the flow-rate of the derivatizating
reagent was 0.25 mL/min. The column temperature was set at 38 ◦C, and the post column reaction
equipment was kept at 130 ◦C temperature. The temperature of the auto-sampler was kept at 5 ◦C,
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and the injection volume was 50 µL for both standard and samples. The content of each amino acid
was calculated based on the peak area of samples and the standard.

3.4. Extraction and Analysis of Internal Volatiles

The extraction and analysis of internal volatiles were performed according to the previous
study [28]. Two hundred mg of sample was extracted by 2 mL dichloromethane containing 4 nmol of
n-ethyl decanoate as an internal standard in a shaker at room temperature overnight. The extraction
solution was dried over anhydrous sodium sulfate and concentrated to 200 µL using nitrogen stream
(MIULAB NDK200-1, MIU Instruments CO., Ltd., Hangzhou, China). Then, 1 µL of the extraction
was subjected to gas chromatography-mass spectrometry (GC-MS QP2010 SE, Shimadzu Corporation,
Kyoto, Japan) analysis. Samples were injected into GC injection port held at 230 ◦C for 1 min and all of
the injections were made in splitless mode. Volatile compounds were separated on a SUPELCOWAXTM
10 column (30 m × 0.25 mm, 0.25 µm, Supelco Inc., Bellefonte, PA, USA). Helium was used as a carrier
gas with a velocity 1.0 mL/min. The GC oven temperature was 60 ◦C for 3 min, ramp of 4 ◦C/min
to 240 ◦C, and then 240 ◦C for 20 min. The mass spectrometry was operated with full scan mode
(mass range m/z 40–200). The relative content of each compound from samples was calculated as
GC-MS peak area ratio of analyte to ethyl decanoate (internal standard).

3.5. Extraction and Analysis of Characteristic Compounds and Unknown Differential Metabolites

A 10mg portion of each sample was extracted in 50 mL 70% methanol solution on ice by ultrasonic
extraction. Lobetyolin and atractylenolide III were each dissolved in methanol and prepared as
standard solutions. Samples were analyzed by ultra-performance liquid chromatography combined
with time-of-flight mass spectrometry (UPLC-TOF-MS) using ACQUITY Class I and Xevo G2-XS
instruments (Waters, Milford, MA, USA).

To comprehensively analyze compounds in the C. Radix samples, we used both a C18 column
(to detect low-polarity metabolites) and an amide column (to detect high-polarity metabolites) for
separations. The ESI-MS spectra were acquired in both positive and negative modes.The UPLC-MS/MS
analysis using the ACQUITY UPLC HSS T3 C18 column (2.1 mm× 100 mm, 1.8 µm, Milford, MA, USA)
was carried out using a gradient system with a flow rate of 0.3 mL/min at a column temperature of
40 ◦C (injection volume, 5 µL). The solvent gradient was as follows: Solvent A (Milli-Q water containing
0.1% formic acid) and solvent B (methanol); 0–30 min, 10~90% B; 30–35 min, 90% B. Individual runs
were separated by an equilibration period of 5 min. The electrospray ionization (ESI)-MS/MS analysis
was carried out with a Waters Q-TOF system (Milford, MA, USA). Ultra-pure nitrogen (N2) was
used as the nebulizing and sheath gas. Product ion scanning experiments were conducted using
ultra-high-purity Ar as the collision gas. The ESI parameters were as follows: Capillary voltage, 3 kV,
flow rate and temperature of sheath gas, 50 L/h and 100 ◦C, respectively; flow rate and temperature
of drying gas, 650 L/h and 350 ◦C, respectively; fragmentor voltage, 35~45 eV; and scan mode,
100–1000 (m/z).

The UPLC-MS/MS analysis using the ACQUITY UPLC BEH amide column (2.1 mm × 100 mm,
1.7 µm, Milford, MA, USA) was carried out with a gradient system with a flow rate of 0.3 mL/min at
a column temperature of 40 ◦C (injection volume, 5 µL). A gradient elution of solvent A (Milli-Q water
containing 10 mmol ammonium formate) and solvent B (acetonitrile containing 10 mmol ammonium
formate) was applied as follows: 0–40 min, 90~60% B; 40–45 min, 60% B. Individual runs were separated
by an equilibration period of 5 min. The ESI-MS/MS analysis was carried out with a Waters Q-TOF
system. Ultra-pure nitrogen (N2) was used as the nebulizing and sheath gas. Product ion scanning
experiments were conducted using ultra-high-purity Ar as the collision gas. The ESI parameters
were as follows: capillary voltage, 3 kV; flow rate and temperature of sheath gas, 50 L/h and
100 ◦C, respectively; flow rate and temperature of drying gas, 650 L/h and 350 ◦C, respectively;
fragmentor voltage, 25~35 eV; and scan mode, 100–1000 (m/z).
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Firstly, a PCA was used to identify the differences between the PGR treated and control samples.
Then, we used S-Plot analysis to select small molecule metabolites showing significant differences
in abundance between the PGR treated and untreated groups. The candidates were identified based
on comparison, with 595 commercial databases, mass spectra fragments, and published papers.

3.6. Data Analysis

Statistical analysis was performed using the SPSS Ver. 19.0 software (SPSS Inc., Chicago, IL, USA).
The paired and independent samples t-tests were used to determine differences between two groups.
A probability level of 5% (p ≤ 0.05) was considered significant.

4. Conclusion

The use of PGR can increase the biomass of C. Radix and change the distribution of its metabolites.
In the present study, the effect of PGR on the active substances and chemical composition of C. Radix
was comprehensively investigated (Figure 4). Application of PGR did not affect the contents of
lobetyolin and atractylenolide III. The polysaccharides content and internal volatiles content were
significantly lower in PGR-treated samples than in control samples. The free amino acid content was
generally increased in PGR-treated samples. In a non-targeted analysis, 15 metabolites were identified
to be affected by PGR treatment. Five of the up-regulated compounds have been reported to show
immune activity. No toxic substances were detected. Together, these results indicate that application
of PGR during the cultivation of C. Radix is of economic benefit, and affects some of the main bioactive
components contributing to its overall pharmacological effects.
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