Supporting information

Synthesis of ${ }^{11} \mathrm{C}$-labelled ureas by palladium (II)mediated oxidative carbonylation

Sara Roslin, Peter Brandt, Patrik Nordeman, Mats Larhed, Luke R. Odell and Jonas Eriksson

Table of contents

Calculations and definitions S2
Molar activity calculations S3
3D-structures from Scheme 2 S4
NMR spectra - reference compounds S5
HPLC Chromatograms - ${ }^{11} \mathrm{C}$-labelled ureas S21
Reference list S38

Calculations and definitions

[$\left.{ }^{11} \mathrm{C}\right] \mathrm{CO}$ was transferred to the capped reaction vial and the radioactivity was measured to determine the starting amount of $\left[{ }^{11} \mathrm{C}\right] \mathrm{CO}\left(\mathrm{A}_{1}\right)$. The reaction was heated during the specified reaction time. When finished, the radioactivity was measured $\left(\mathrm{A}_{2}\right)$ before venting the reaction vial and purging with N_{2} to remove unreacted $\left[{ }^{11} \mathrm{C}\right] \mathrm{CO}$ and, possibly, volatile ${ }^{11} \mathrm{C}$ labelled compounds formed during the reaction. A third radioactivity measurement (A_{3}) was performed before either preparation of a sample for determination of product selectivity or semi-preparative HPLC purification. After isolation and a final radioactivity measurement (A_{4}) of the ${ }^{11} \mathrm{C}$-labelled product, an aliquot was analyzed to determine radiochemical purity and the identity of the ${ }^{11} \mathrm{C}$-labelled product was confirmed using the isotopically unmodified product as reference. Activities were decay corrected to the same time point before used in calculations.

Conversion

The conversion, the measurement of $\left[{ }^{11} \mathrm{C}\right] \mathrm{CO}$ incorporated into non-volatile ${ }^{11} \mathrm{C}$-labelled compounds, was based on the radioactivity measurements A_{3} and A_{2}.

$$
\text { Conversion (\%) }=\frac{\mathrm{A} 3 \text { (d.c.) }}{A 2} \times 100
$$

Product selectivity

Percentage of ${ }^{11} \mathrm{C}$-labelled product formed, based on HPLC analysis of crude reaction mixture.

Radiochemical yield in optimization tables 1 and 3

An estimate of the radiochemical yield (RCY) of the non-isolated ${ }^{11} \mathrm{C}$-labelled product based on the [$\left.{ }^{11} \mathrm{C}\right] \mathrm{CO}$-conversion and the ${ }^{11} \mathrm{C}$-labelled product selectivity.

$$
\text { RCY }(\%)=\text { Conversion } \times \text { Product selectivity }
$$

Radiochemical yield

Based on the activity of the isolated ${ }^{11} \mathrm{C}$-labelled product $\left(\mathrm{A}_{4}\right)$ and the starting amount of $\left[{ }^{11} \mathrm{C}\right] \mathrm{CO}$, transferred to the reaction vial $\left(\mathrm{A}_{1}\right)$.

$$
R C Y(\%)=\frac{A 4(\text { d.c. })}{A 1} \times 100
$$

Radiochemical purity

Based on the HPLC analysis of an aliquot from the isolated ${ }^{11} \mathrm{C}$-labelled product fraction.

Identity of synthesized ${ }^{11} \mathrm{C}$-labelled compound

The identity of a labelled compound was confirmed by adding isotopically unmodified compound (UV-active) to an aliquot of the isolated ${ }^{11} \mathrm{C}$-labelled product and comparing the retention times of the UV-peak and radio-peak on analytical HPLC.

Molar activity calculations

A calibration curve for N -(2,4-dichlorobenzyl)-4-phenoxypiperidine-1-carboxamide (19) was prepared using five concentrations; $0.25,0.5,1.0,2.0$ and $5.0 \mu \mathrm{~g} / \mathrm{mL} .50 \mu \mathrm{~L}$ was injected, starting from the lowest concentration, and analyzed at 221 nm to construct a calibration curve (Figure S1). A blank sample consisting of acetonitrile was injected between every run to avoid carry-over.
The molar activity for 19 was determined in two experiments and calculated from the activity of the isolated product $\left(\mathrm{A}_{4}\right)$ and the volume and concentration of the product fraction (Table S1).

Figure S1. Calibration curve for N-(2,4-dichlorobenzyl)-4-phenoxypiperidine-1-carboxamide (19).

Table S1. Determination of molar activity.

Experiment	Area	Concentration $(\boldsymbol{\mu g} / \mathbf{m L})$	Volume $(\mathbf{m L})$	Mass $(\boldsymbol{\mu g})$	Amount $(\boldsymbol{\mu m o l})$	Activity $(\mathbf{G B q})$	Molar activity $(\mathbf{G B q} / \boldsymbol{\mu m o l})$
$\mathbf{1}$	114169	0.599	5.12	2.86	0.00754	1.86	247
$\mathbf{2}$	31211	0.186	13.5	2.51	0.00662	2.11	319

3D-structures from Scheme 2

A2

A4

A5
A8

A9

A10

A11

A12

A10-11

Figure S2. Optimized structures of intermediates and one transition state shown in Scheme 2.

NMR spectra

Parameter

1 Solvent
2 Temperature
3 Spectrometer Frequency 100.62
4 Nucleus.

tert-Butyl 4-phenoxypiperidine-1-carboxylate [1] CAS: 155989-69-8

4-Phenoxypiperidine [1] CAS: 3202-33-3

1,3-Dibenzylurea [2] CAS: 1466-67-7

N-(2-(Pyridin-2-yl)ethyl)piperidine-1-carboxamide CAS: 1710806-84-0

3,4-Dihydroquinazolin-2(1H)-one [3] CAS: 66655-67-2

2-Ethylisoindolin-1-one [4] CAS: 23967-95-5

N-(2,4-Dichlorobenzyl)-4-phenoxypiperidine-1-carboxamide CAS: 950645-62-2

N-Benzylpiperidine-1-carboxamide [5] CAS: 39531-35-6

N-Butylpiperidine-1-carboxamide CAS: 1461-79-6

N-Isopropylpiperidine-1-carboxamide CAS: 10581-04-1

N-Phenylpiperidine-1-carboxamide [5] CAS: 2645-36-5

[^0]
N-(4-Fluorophenyl)piperidine-1-carboxamide CAS: 60465-12-5

N -(4-Fluorophenyl)piperidine-1-carboxamide CAS: 60465-12-5

N-(4-Nitrophenyl)piperidine-1-carboxamide [6] CAS: 2589-20-0

N-Tosylpiperidine-1-carboxamide CAS: 23730-08-7

HPLC Chromatogram

[carbonyl-11C]N,N-dibenzylurea 2

Analysis of isolated fraction containing isotopically unmodified N, N-dibenzylurea. Top: experiment 1; Middle: experiment 2; Bottom: experiment 3.
[carbonyl-11 ${ }^{11}$]N,N-dipropylurea 3

Analysis of isolated fraction containing isotopically unmodified N, N-dipropylurea. Top: experiment 1; Bottom: experiment 2.
[carbonyl-11 C]N,N-dicyclohexylurea 4

Analysis of isolated fraction containing isotopically unmodified N, N-dicyclohexylurea. Top: experiment 1; Bottom: experiment 2.
[carbonyl-11 ${ }^{-1}$ C]N,N-diphenylurea 5

Analysis of isolated fraction containing isotopically unmodified N, N-diphenylurea. Top: experiment 1; Bottom: experiment 2.
[carbonyl- ${ }^{11} \mathrm{C}$]N-benzylpiperidine-1-carboxamide 7

Analysis of isolated fraction containing isotopically unmodified N-benzylpiperidine-1carboxamide. Top: experiment 1; Middle: experiment 2; Bottom: experiment 3.

Analysis of isolated fraction containing isotopically unmodified N-benzylpiperidine-1carboxamide. Bottom: experiment 4.
[carbonyl-11 C]N-butylpiperidine-1-carboxamide 8

Analysis of isolated fraction containing isotopically unmodified N-butylpiperidine-1carboxamide. Top: experiment 1; Middle: experiment 2; Bottom: experiment 3.
[carbonyl-11 ${ }^{11}$ C]N-(2-(pyridin-2-yl)ethyl)piperidine-1-carboxamide 9

Analysis of isolated fraction containing isotopically unmodified N-(2-(pyridin-2-yl)ethyl)piperidine-1-carboxamide. Top: experiment 1; Bottom: experiment 2.
[carbonyl--11 ${ }^{11}$]N-isopropylpiperidine-1-carboxamide 10

Analysis of isolated fraction containing isotopically unmodified N-isopropylpiperidine-1carboxamide. Top: experiment 1; Bottom: experiment 2.
[carbonyl-11C]N-phenylpiperidine-1-carboxamide 11

Analysis of isolated fraction containing isotopically unmodified N-phenylpiperidine-1carboxamide. Top: experiment 1; Middle: experiment 2; Bottom: experiment 3.

Analysis of isolated fraction containing isotopically unmodified N-phenylpiperidine-1carboxamide. Top: experiment 4; Middle: experiment 5; Bottom: experiment 6.
[carbonyl-11 C]N-(4-methoxyphenyl)piperidine-1-carboxamide 12

Analysis of isolated fraction containing isotopically unmodified N -(4-methoxyphenyl)piperidine-1-carboxamide. Top: experiment 1; Middle: experiment 2; Bottom: experiment 3.

Analysis of isolated fraction containing isotopically unmodified N-(4-fluorophenyl)-piperidine-1-carboxamide. Top: experiment 1; Middle: experiment 2; Bottom: experiment 3.

Analysis of isolated fraction containing isotopically unmodified N -(4-fluorophenyl)piperidine-1-carboxamide. Experiment 4.
[carbonyl- $\left.{ }^{11} \mathrm{C}\right] N$-(4-nitrophenyl)piperidine-1-carboxamide 14

Analysis of isolated fraction containing isotopically unmodified N-(4-nitrophenyl)piperidine-1-carboxamide. Top: experiment 1; Middle: experiment 2; Bottom: experiment 3.
[carbonyl-11 C]3,4-dihydroquinazolin-2(1H)-one 15

Analysis of isolated fraction containing isotopically unmodified 3,4-dihydroquinazolin-2(1H)-one. Top: experiment 1; Bottom: experiment 2.
[carbonyl-11 C]N-(2,4-dichlorobenzyl)-4-phenoxypiperidine-1-carboxamide 19

Analysis of isolated fraction containing isotopically unmodified N-(2,4-dichlorobenzyl)-4-phenoxypiperidine-1-carboxamide. Top: experiment 1; Middle: experiment 2; Bottom: experiment 3 .

Reference list

1. Kiesewetter, D. O.; Eckelman, W. C. Utility of azetidinium methanesulfonates for radiosynthesis of 3-[18F]fluoropropyl amines J. Label. Compd. Radiopharm. 2004, 47, 953-969.
2. Guan, Z. H.; Lei, H.; Chen, M.; Ren, Z. H.; Bai, Y.; Wang, Y. Y. Palladiumcatalyzed carbonylation of amines: Switchable approaches to carbamates and N, N'-disubstituted ureas Adv. Synth. Catal. 2012, 354, 489-496.
3. Paz, J.; Pérez-Balado, C.; Iglesias, B.; Muñoz, L. Carbon dioxide as a carbonylating agent in the synthesis of 2-oxazolidinones, 2-oxazinones, and cyclic ureas: Scope and limitations J. Org. Chem. 2010, 75, 3037-3046.
4. Das, S.; Addis, D.; Knöpke, L. R.; Bentrup, U.; Junge, K.; Brückner, A.; Beller, M. Selective catalytic monoreduction of phthalimides and imidazolidine-2,4diones Angew. Chemie - Int. Ed. 2011, 50, 9180-9184.
5. Lee, S. H.; Matsushita, H.; Clapham, B.; Janda, K. D. The direct conversion of carbamates to ureas using aluminum amides Tetrahedron 2004, 60, 3439-3443.
6. Orito, K.; Miyazawa, M.; Nakamura, T.; Horibata, A.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Yamazaki, T.; Tokuda, M. Pd (OAc) 2 -Catalyzed Carbonylation of Amines J. Org. Chem. 2006, 71, 5951-5958.

[^0]: N-(4-Methoxyphenyl)piperidine-1-carboxamide CAS: 2645-37-6

