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Abstract: Ebola virus disease (EVD) is a deadly global public health threat, with no currently
approved treatments. Traditional drug discovery and development is too expensive and inefficient
to react quickly to the threat. We review published research studies that utilize computational
approaches to find or develop drugs that target the Ebola virus and synthesize its results.
A variety of hypothesized and/or novel treatments are reported to have potential anti-Ebola activity.
Approaches that utilize multi-targeting/polypharmacology have the most promise in treating EVD.
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1. Introduction

1.1. Rationale

Ebola virus disease (EVD) is a persistent epidemic and pandemic threat with no satisfactory
treatment regimen. The 2014 West Africa Ebola outbreak resulted in more than 28,000 cases leading to
over 11,000 deaths, including several cases in seven countries beyond the region of West Africa [1].
This was the largest and deadliest Ebola outbreak in history and it highlighted the catastrophic
potential of this emerging public health threat. Since this larger epidemic, more people have died from
smaller outbreaks, most recently from May to July 2017 in the Democratic Republic of the Congo [2,3].
There are no drugs approved for the treatment of EVD and standard of care therapy remains supportive,
with some clinical trials and research suggesting the use of ZMapp and hyperimmune globulin as
treatments [4,5]. Novel drug discovery and development can take ten to fifteen years [6] and cost
$1.5 billion per successful drug [7]. Drug development to combat Ebola virus infections can be
especially problematic due to the necessity of biosafety level four (BSL-4) facilities needed to conduct
preclinical studies of the Ebola virus [8].

The convergence of several technological trends over the last few decades has been a tremendous
boon to computational science and informatics: Moore’s law, the Internet, exponential improvements
in gene sequencing technologies, vast improvement in atomic structure elucidation techniques,
tremendous population of nucleic acid and protein structure databases, and proliferation of open
source scientific software each enable computation-centric research. Both computational and
non-computational methods to develop treatments for EVD and other diseases or indications can
engender novel drug discovery, drug development, or repurposing. Drug repurposing (repositioning)

Molecules 2017, 22, 1777; doi:10.3390/molecules22101777 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules22101777
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 1777 2 of 27

entails finding new indications for old (previously approved) drugs [9–11] and has many potential
benefits over traditional drug discovery and development [12]. Computational approaches to drug
development can provide a countervailing force against endemic burdens in traditional drug development.

Methodological aspects of computational drug discovery, development, and repurposing research
have been investigated and reviewed thoroughly [13–20]. There are a variety of computational
methods available to study the relationship between therapeutics, interactions, and diseases. Many of
these methodologies are predicated on biological structure and the chemical influence of a structure
acting within a biological system. Generally these methods are divided into structure-based and
ligand-based methods [13,21]. Structure-based computer-aided drug design techniques are grounded
in the understanding that structure determines function. Thus, an innate knowledge of the structure
of a protein, compound, or nucleic acid is assumed to provide a guide on how interactions may
occur to inhibit or augment some disease causing entity. X-ray diffraction [22], nuclear magnetic
resonance (NMR) [23], and other methods provide the best starting point for use of a protein structure
in subsequent analyses, as they represent the closest model of reality. Protein structure modeling,
whether template-based (homology/comparative) or template free (ab initio) [24,25], is a highly utilized
technique in cases where solved structures by these aforementioned techniques are unavailable, as in
the case of gene products from different Ebola viral strains. Binding site prediction tools exist to
locate optimal docking positions of ligands on proteins [26]. If an accurate and precise model of
a ligand is similarly constructed, virtual docking and molecular dynamics simulations model the
interactions between the two entities by approximating the energy of interaction in an attempt to
find a minima [27]. Certain resultant poses may suggest that the binding of a ligand will inhibit the
function of a protein, and thus result in a therapeutic drug. When working with data about proteins,
traditional bioinformatics methods rooted in nucleic acid based sequence investigation can aid analysis.
For example, careful study of the sequence of a protein encoding gene may lead to identification of
further drug targets and help with their validation [28]. Additionally, high dimensional genomic data
can aid in finding connections of cellular entities, including potential drug targets, further facilitating
drug discovery [29].

Using only data on compound/drug chemical structure (ligand-based computer-aided drug
design) one can perform pharmacophore modeling [30,31], determine quantitative structure-activity
relationships (QSAR) [32,33], or calculate fingerprint based similarity metrics [27] . In pharmacophore
modeling, common features of active compounds are analyzed and used to guide a search for
novel therapeutics sharing similar characteristics. QSAR models the relationship between chemical
characteristics and biological activity. Substructure or path based fingerprint methods quantify
compound similarity to infer similar properties. The output of any method is an understanding of
the nature of similarity between chemicals, often quantified as a real value score. Such a score can
be used to rank potential of a compound to be used for the same indication as another [34,35].
Various visualization techniques can allow an expert investigator to examine features of both
compounds and proteins, known or modeled interactions, and interaction networks [36]. Statistical and
machine learning tools can help one find actionable meaning or discover nonobvious or previously
unknown relationships, making them useful tools for drug discovery [37].

Computational research can utilize vast databases of compounds and biological structures and
produce results quickly. The costs are minimal, humans are rarely at risk, and biosafety facilities
are not required. Results highlighting the efficacy of this type of work are numerous [38,39].
One additional positive aspect of computational research is the potential ease of performing multitarget
based experiments [40,41]. The function (pharmacodynamics) and efficacy (pharmacokinetics),
i.e., absorption, distribution, metabolism, and excretion (ADME) of a drug involves interactions with
multiple biological systems [42,43]. All drugs interact with multiple targets in the body [44–46],
as evidenced by the ubiquitous presence of side effects [47,48]. Therefore, there is utility in
understanding the entirety of the effect of a compound holistically. Multitargeting approaches
(targeting several biological entities with a single drug) are beginning to supplant traditional single
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target approaches (one target, one drug) [42,43,49–56]. For instance, specific tyrosine kinase receptor
inhibitors such as imatinib have been shown to bind to multiple targets [54,57]. Recognizing the
reality of the multitarget effects of a drug has enabled higher efficacy in treatments of infectious and
neoplastic disease, allowing the possibility of evading mutation driven resistance and lower doses
of individual components of drug cocktails [57–65]. Importantly, this paradigm has been used in
the design of drugs used to target viruses [40,65–67], indicating its potential in the development of
multitarget drugs for the treatment of EVD. Computational drug discovery research can facilitate the
study of the interactome of proteins as targets of small molecule therapeutics and improve the rate of
successful drug discovery, development, and repurposing. All computational work is inherently an
attempt to model the real world. There are large uncertainties which come with the varying methods
and approaches to computational drug discovery, development, and repurposing [21]. For this reason,
purely computational work requires validation by in vivo, in vitro, or clinical studies for its results to
be utilized in the real world and have a lasting impact [11,58,68–71]. There are several studies whose
goal is the elucidation and development of potential treatments for EVD in preclinical and clinical
studies. Many of these published results are reviewed in detail elsewhere [72,73]. Here we present
a systematic review of the computational approaches which have been used to research potential
therapeutics to treat EVD, with an emphasis on multitarget approaches.

1.2. Objectives

We aim to enumerate and highlight computational research that identify potential small molecules
and biologics as drug candidates for the treatment of EVD. Focusing on commonalities in the various
research studies will yield the most confidence in potential therapies. The analysis of these potential
drug candidates has lead researchers to conclude that they are generally efficacious, safe, and cost
effective in treating EVD. The methods and results of these computational studies are assessed on
their scientific merit (especially with regard to validation studies), feasibility of development of novel
therapeutic agents, and multitargeting.

2. Results

2.1. Study Selection

Computation-centric research is a relatively new paradigm. Similarly, Ebola virus is a relatively
new, recently-emerging, global public health threat. Thus, computational research in the field of EVD
treatments is limited. For instance, using the literal search term “‘ebola” “computational” “drug”‘
in a PubMed search returned only 23 results, eighteen of which were excluded by our eligibility
criteria (Section 4.2). Additional queries made using both PubMed and Google Scholar were similarly
winnowed down from 141 to 23 studies (Figure 1 and Sections 4.2–4.5).

2.2. Study Characteristics

The twenty three studies reviewed are classified according to methodologies employed: Nineteen
relied on some form of virtual molecular docking, including five that integrated wet bench work.
Several utilized ligand structure or pharmacophore methods and subsequent machine learning tools.
Five relied on the use of a multitargeting approach (sometimes with molecular docking) and one relied
on the use of DNA based sequence analysis methods. Some utilized an ensemble of methods, such as
molecular docking and molecular dynamics, or virtual screening runs with candidate refinement based
on criteria such as pharmacokinetic or pharmacodynamic properties.

We broadly categorize the methods used in each study into five classes:

1. Physics, dynamics, and electrostatic methods.
2. Structure activity relationships and pharmacoanalysis.
3. Bioinformatics and knowledge based methods.
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4. Statistical and machine learning methods.
5. Visualization, ranking, and custom assessment.

Figure 1. Flow diagram of the study identification process. A total of 141 publications from our initial
queries were winnowed down to 23 for further consideration.

There is some degree of subjectivity and ambiguity in this classification scheme. For example,
docking can sometimes be combined with dynamics or knowledge-based scoring functions. Also,
some terminology such as “virtual screening” or “structure activity relationship” are used in a broad
range of contexts; a rigorously defined standard terminology or principled ontology would be helpful
for future reviews of computational studies [10,74]. In the absence of a standard terminology or
ontology to guide this discussion, here we loosely outline the membership of each category.

The methods of the individual published findings are categorized as follows: physics,
dynamics, and electrostatic methods including energy minimization, geometry optimization,
virtual molecular docking, molecular dynamics simulations, and computational alanine scanning;
structure activity relationship and pharmacoanalysis methods including compound similarity
methods, template-based modeling, RMSD analysis, structural fingerprinting, pharmacophore analysis,
pharmacokinetics, and pharmacodynamics; bioinformatics and knowledge based methods including
sequence alignments and analysis, residue importance prediction, and evolutionary inference;
statistical and machine learning methods including principal component analysis, interactome
similarity analysis, support vector machines (SVMs), Bayesian networks, and neural networks;
and visualization, ranking, and custom assessment methods including interactome signature
ranking, assay integration, and visual inspection and analysis.

The studies reviewed rely on a diverse set of software tools and web servers in their
approach. The most commonly used software and web servers represented in the reviewed
studies include AutoDock 4 [75], the BLAST suite [76], CHARMM [77], DiscoveryStudio [78],
UCSF Chimera [79], AutoDock Vina [80], GROMACS [81], MODELLER [82], Molsoft Software [83],
Protox [84], and RAMPAGE [85]. There are at least several dozen distinct software tools, servers,
and frameworks explicitly reported. Generally, authors report computational tools directly employed
in the investigation (such as bioinformatic web servers, molecular dynamics suites, and visualization
programs) and do not explicitly report indirectly employed computational tools (such as scripting
languages, server operating systems, and cluster management engines). Similarly, authors often report
parameters or resources for directly employed computational tools (such as docking search spaces
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or dynamics force fields) and not indirect parameters or resources (such as random seeds or RAM
allocation). For absolute reproducibility of these studies, details of the entire software stack and
hardware architecture used may be necessary.

Figure 2. Illustration of Ebola targets investigated in the studies reviewed. The target scope
of each study and broad classification of the investigatory approaches is shown. We broadly
categorize distinct methods of studies into five classes: (1) Bioinformatics and knowledge
based methods including sequence alignment and analysis, residue importance prediction,
evolutionary inference, template-based modeling, and binding site prediction; (2) Physics, dynamics,
and electrostatic methods including energy minimization, geometry optimization, molecular docking,
molecular dynamics, and computational alanine scanning. (Molecular docking is the most popular
methodology and is therefore distinguished separately); (3) Structure activity relationship and
pharmacoanalysis methods including compound similarity methods, RMSD analysis, structural
fingerprinting, pharmacophore analysis, pharmacokinetics, and pharmacodynamics; (4) Statistical and
machine learning methods including principal component analysis, interactome similarity analysis,
SVM models, Bayesian network models, and neural network models; (5) Visualization, Ranking,
and Custom Assessment methods including interactome signature ranking, assay integration,
and visual inspection and analysis. Target coverage is weighted towards VP24, VP30, VP35, and VP40;
likely due to a greater degree of structural knowledge for these targets and that the authors tend to
believe that these proteins are most important for virulence. Others often use structure prediction
methods and other techniques to investigate unsolved targets. A diverse array of computational methods
have been applied to find treatments against Ebola virus, and it is likely that some of them may yield
effective treatments, with multitarget approaches, represented in multiple target boxes, indicating the
most promise.
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The studies generally focus on finding inhibitors of specific Ebola virus proteins, and cover every
one encoded by the Ebola virus genome: VP24, VP30, VP35, VP40, Glycoprotein (GP), Nucleoprotein,
and RNA-Dependent RNA Polymerase (L) [86]. The most commonly targeted proteins were VP35 and
VP40, followed by VP24 and “multiple/all proteins”.

Assorted commercial and public databases of proteins and compounds were used as sources
of structures when studies required such information. The Protein Data Bank [87] and Uniprot [88]
are two notable resources for investigations related to protein structure. Protein structures were
downloaded from a database or, as in at least four publications, were produced using template-based
modeling and in three of those, validated using RAMPAGE [85]. In keeping track of specific Ebola
virus strains used in experiments, the National Center for Biotechnology Information is a valuable
resource [86,89]. GenBank accession numbers were also used to track the genetic determinants of
protein structure. A multitude of databases of compounds were used as sources of chemical structures
in one or more of the highlighted studies, including ZINC [90], DrugBank [91], PubChem [92],
the Traditional Chinese Medicine Database (TCMD) [93], and the miRBase [94] (for the investigation
of miRNA). As is the case with respect to proteins, a careful annotation of exact chemical structures
enables computational work to be more easily replicated and results more meaningful.

The scope of the current set of published approaches is presented in Supplementary Materials
Table S1. Along with delineating the general computational methods used, we show the set of
databases, software packages and algorithms, compounds, structures, and conclusions of each study.
Figure 2 illustrates the scope of the research studies and the methodological categories they fall
under. Tables 1–5 show the metadata of each included study, an overview of multitargeting and
non-computational approaches, a selection of the top predicted compounds, a selection of software
used, and the frequency and type of software used.
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Table 1. List of the publications reviewed. For each publication, the title, author and year of publication, the journal in which it was published, the publisher, and the
impact factor of the journal are given. While not the most ideal criterion, the publications are listed in order of decreasing impact factor, self reported or as reported
by ResearchGate (RG) [95] (NA = not available; NF = not found). When two impact factors are reported, the lower of the two is used. Research articles without
corresponding impact factors are listed at the end. This ordering is used in subsequent tables. The quality of the studies is variable, and thus their contribution to the
endeavor of finding treatments for EVD may be as well.

Title Author, Reference Journal Publisher Impact Factor

Small-molecule probes targeting the viral PPxY-host
Nedd4 interface block egress of a broad range of
RNA viruses

Han et al., 2014 [96] Journal of Virology American Society for Microbiology 5.076 (self reported), 4.69 (RG)

In silico derived small molecules bind the filovirus VP35
protein and inhibit its polymerase co-factor activity Brown et al., 2014 [97] Journal of Molecular Biology Elsevier 4.632 (self reported), 4.68 (RG)

Integrated computational approach for virtual hit
identification against Ebola viral proteins VP35 and VP40 Mirza et al., 2016 [98] International Journal of Molecular

Sciences MDPI 3.226 (self reported), 4.01 (RG)

Discovery of anti-Ebola drugs: a computational drug
repositioning case study Kharkar et al., 2016 [99] RSC Advances Royal Society of Chemistry 3.108 (self reported), 3.06 (RG)

Virtual screening of inhibitors targeting at the viral
protein 40 of Ebola virus Karthick et al., 2016 [100] Infectious Diseases of Poverty BioMed Central 3.181 (self reported), 2.97 (RG)

Combating Ebola with Repurposed Therapeutics using
the CANDO platform Chopra et al., 2016 [101] Molecules MDPI 2.861 (self reported), 2.80 (RG)

In silico study of VP35 inhibitors: from computational
alanine scanning to essential dynamics Dapiaggi et al., 2015 [102] Molecular BioSystems Royal Society of Chemistry 2.781 (self reported), 2.92 (RG)

Drug repurposing to target Ebola virus replication and
virulence using structural systems pharmacology Zhao et al., 2016 [12] BMC Bioinformatics BioMed Central 2.448 (self reported), 2.97 (RG)

In silico and in vitro methods to identify ebola virus
VP35-dsRNA inhibitors Glanzer et al., 2016 [103] Bioorganic & Medicinal Chemistry Elsevier 2.930 (self reported), 2.29 (RG)

Inhibition of Ebola Virus by anti-Ebola miRNAs in silico Golkar et al., 2015 [104] The Journal of Infection in
Developing Countries Open Learning on Enteric Pathogens 1.67 (RG)

Molecular modeling, simulation and docking study of
Ebola Virus glycoprotein Ahmad et al., 2017 [105] Journal of Molecular Graphics

and Modelling
Molecular Graphics and Modelling Society;
American Chemical Society 1.12 (RG)

Molecular docking based screening of predicted potential
inhibitors for VP40 from Ebola virus Abazari et al., 2015 [106] Bioinformation Biomedical Informatics Publishing Group 0.80 (RG)

Molecular docking based screening of compounds against
VP40 from Ebola virus El-Din et al., 2016 [107] Bioinformation Biomedical Informatics Publishing Group 0.80 (RG)

Flavonoids as multi-target inhibitors for proteins
associated with Ebola virus: in silico discovery using
virtual screening and molecular docking studies

Raj et al., 2015 [108] Interdisciplinary Sciences:
Computational Life Sciences Springer 0.753 (self reported), 0.64 (RG)
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Table 1. Cont.

Title Author, Reference Journal Publisher Impact Factor

Pharmaco-Informatics: Homology Modeling of the Target
Protein (GP1,2) for Ebola Hemorrhagic Fever and
Predicting an Ayurvedic Remediation of the Disease

Bagchi et al., 2009 [109] Journal of Proteomics
& Bioinformatics OMICS International 1.57 (self reported), 0.41 (RG)

Identification of novel Ebola virus (EBOV) VP24 inhibitor
from Indonesian natural products through in silico drug
design approach

Tambunan et al., 2017 [110] AIP Conference Proceedings
10 July 2017 American Institute of Physics 0.22 (RG)

Pharmacophore based virtual screening and molecular
docking studies of inherited compounds against Ebola
virus receptor proteins

Shah et al., 2015 [111] World Journal of Pharmacy and
Pharmaceutical Sciences WJPPS 6.647 (self reported), 0.19 (RG)

Machine learning models identify molecules active
against the Ebola virus in vitro Ekins et al., 2015 [112] F1000Research Faculty of 1000 NA [113]

A common feature pharmacophore for FDA-approved
drugs inhibiting the Ebola virus Ekins et al., 2014 [114] F1000Research Faculty of 1000 NA [113]

Homology modeling and docking studies of VP24 protein
of Ebola virus with Oseltamivir and its derivatives Sharma et al., 2017 [115] Chemical Biology Letters Integrated Science NA

Virtual screen for repurposing approved and experimental
drugs for candidate inhibitors of EBOLA virus infection Veljkovic et al., 2015 [116] F1000Research Faculty of 1000 NA [113]

In silico analysis suggests repurposing of ibuprofen for
prevention and treatment of EBOLA virus disease Veljkovic et al., 2015 [117] F1000Research Faculty of 1000 NA [113]

Identification of Drug Lead Molecules against Ebola Virus:
an In Silico Approach Palamthodi et al., 2012 [118] Journal of Computational Methods

in Molecular Design Scholars Research Library NF
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Table 2. Protocols used by the studies reviewed. The general protocol/method/pipeline, and their classification according to whether they include in vitro integration
and/or multitargeting, is given for each study. We classify five studies as integrating in vitro methodology (such as assays, X-ray diffraction, or other methodology)
and five studies as taking a multitargeting approach. Multitargeting approaches appear to have the best potential to be the most effective in the search for EVD
treatment (particularly along with preclinical and clinical validation).

Author, Reference Method/Protocol/Pipeline In Vitro Integration Multitargeting

Han et al., 2014 [96]
in vitro methods, docking, energy minimization, ranking, substructure
similarity searching, statistical analysis (analysis of variance), testing
in vitro

Yes No

Brown et al., 2014 [97]

docking, energy minimization, ranking and interaction fingerprint
comparison, medicinal chemistry: crystallography, compound synthesis,
NMR spectroscopy, structural study, pulldown assay, mini genome
study, EBOV assays

Yes No

Mirza et al., 2016 [98]
binding site prediction, drug similarity analysis, pharmacokinetics,
pharmacodynamics, energy minimization, metabolic site prediction,
docking, validation

No Yes

Kharkar et al., 2016 [99] ligand-based virtual screening, molecular docking No No

Sharma et al., 2017 [115] template-based modeling, structure prediction, energy minimization,
validation, docking No No

Karthick et al., 2016 [100]

energy minimization, virtual screening, docking, intermolecular
interaction analysis, dynamics,
absorption-distribution-metabolism-excretion analysis (ADME), drug
likeness analysis, toxicity prediction

No No

Chopra et al., 2016 [101] binding site prediction, docking, interaction signature ranking similarity No Yes

Dapiaggi et al., 2015 [102] molecular dynamics, computational alanine scanning, RMSD
fluctuations, bootstrap/principal component analysis No No

Zhao et al., 2016 [12] binding site prediction, proteome wide binding site comparison,
template-based modeling, docking, molecular dynamics No Yes

Glanzer et al., 2016 [103] docking, alignment, in vitro testing, compound property analysis,
residue analysis Yes No

Golkar et al., 2015 [104] sequence alignment, other algorithms to predict miRNA-EBOV RNA
inhibitory activity/post-transcriptional silencing No No

Ahmad et al., 2017 [105] template-based modeling, structure prediction, validation, molecular
dynamics, docking No No

Abazari et al., 2015 [106] dynamics, docking, pharmacokinetic analysis No No

El-Din et al., 2016 [107] fingerprint comparison, compound modeling, energy minimization,
docking, pharmacokenetics No No
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Table 2. Cont.

Author, Reference Method/Protocol/Pipeline In Vitro Integration Multitargeting

Raj et al., 2015 [108]

energy minimization, binding site prediction, docking, active site residue
interaction analysis,
absorption-distribution-metabolism-excretion-toxicity
(ADMET) analysis

No Yes

Bagchi et al., 2009 [109] template-based modeling, structure prediction, validation, docking No No

Tambunan et al., 2017 [110] dynamics/energy minimization, ADMET screening, molecular docking No No

Shah et al., 2015 [111] pharmacophore modeling, docking No Yes

Ekins et al., 2014 [114] pharmacophore modeling, docking No No

Ekins et al., 2015 [112]
viral pseudotype entry assay and EBOV replication assay, machine
learning models (Bayesian, SVM, Recursive Partitioning forest, single
tree), validation, virtual screening

Yes No

Veljkovic et al., 2015 [116] library curation/data mining, compound virtual screening (electron-ion
interaction potential/average quasi valence number) Yes N/A

Veljkovic et al., 2015 [117] compound virtual screening (electron-ion interaction potential/average
quasi valence number), ligand optimization, molecular docking No No

Palamthodi et al., 2012 [118] screening of lead molecules, docking, pharmacoanalysis No No
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Table 3. A selection of the putative leads against Ebola reported in the studies reviewed. miRNAs (one study) and compound classes (two studies) are sometimes
reported as leads. Some authors report self-labeled or unlabeled compounds. Compound identifiers are reported in a variety of different ways, including generic
and commercial names, IUPAC terms, and PubChem, ZINC, PDB small molecule, Timtec, and Analyticon identifiers. A large set of putative leads is reported.
Computational research can allow for researchers to investigate much larger sets of candidate compounds than traditional drug discovery methods.

Author, Year, Country Reported Candidate Compounds and Biologics

Han et al., 2014, USA [96] compounds ’4’ (Amb123203) and ’5’ (Amb21795397)

Brown et al., 2014, USA [97] GA-017, GA-246, VPL-42, VPL-57, VPL-60, VPL-51, VPL-58, VPL-15, VPL-48, VPL-29

Mirza et al., 2016, Pakistan, Belgium [98]

Timtec-ST45161107, Otava_7118230235, Timtec-ST50912611, Timtec-ST50616170,
Analyticon-NP-010155, Otava-0115540195, Analyticon-NP-019744 (kihadarnin A),
Analyticon-NP-0005474, PubChem CID 17597017, Analyticon-NP-000375 (lactupicrin),
Analyticon_NP-014205 (parfumine), Analyticon-NP-014522, Analyticon-003228 (isorutarin)

Kharkar et al., 2016, India [99] sitaxentan, alitretinoin, ceftriaxone, acitretin, cidofovir, telmisartan, nateglinide, ceftizoxime,
treprostinil, tenoxicam

Sharma et al., 2017, India [115] ZINC_77287098 (an oseltamivir derivative)

Karthick et al., 2016, (Hong Kong) China [100]

Top results: emodin-8-beta-D-glucoside, tonkinochromane_G. Other results: neoglucobrassicin;
glisoflavanone; rosmarinic_acid_ethyl_ester;
2-[(6Z.9Z_12Z)-heptadeca-6_9_12-trienyI]-6-hydroxybenzoic_acid;
chrysophanol-8-beta-D-glucoside; 3_4-dihydro-3-methoxypaederoside; Melittoside;
beta-methoxylforsythoside; glucobrassicin; manninotriose; D-mannitol_monohexadecanoate;
4__O-methyl_myricetin_3-O-(6-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside;
(-)-epicatechin-3-O-gallate

Chopra et al., 2016, USA [101] niclosamide, sertraline, clomifene, mebendazole, deslanoside, digoxin, raloxifene, clemastine,
tamoxifen

Dapiaggi et al., 2015, Italy [102] GA-017, GA-246, VPL-27, VPL-29, VPL-42, VPL-48, VPL-57, VPL-58, VPL-60

Zhao et al., 2016, USA [12]

Top results: indinavir, sinefungin. Other results: maraviroc, abacavir, telbivudine, cidofovir,
montelukast, iloprost, salmeterol xinafoate, travoprost, latanoprost, remikiren, vitamin K1,
mitoxantrone, labetalol hydrochloride, tafluprost, misoprostol, carboprost, fosinopril,
Benzylpenicilloyl Polylysine, Bimatoprost, Nebivolol, valrubicin, Tamsulosin, Mycophenolate Mofetil,
SAM, aza-Sadenosyl-Lmethionine, A9145C, Maraviroc, Telbivudine, Cidofovir

Glanzer et al., 2016, USA [103] ZINC_05328460

Golkar et al., 2015, Denmark, USA [104] hsa-miR-607, hsa-miR-5699-5p, hsa-miR-4682, hsa-miR-4692, hsa-miR-548az, hsa-miR-4526,
hsa-miR-3065-5p, hsa-miR-145-3p, hsa-miR-491-3p, hsa-miR-4633-3p, hsa-miR-491-3p, hsa-miR-548-3p
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Table 3. Cont.

Author, Year, Country Reported Candidate Compounds and Biologics

Ahmad et al., 2017, Pakistan [105] dronedarone 1D, amiodarone 2A, and other dronedarone and amiodarone derivatives

Abazari et al., 2015, Iran [106] 10 unlabeled, 4 selected as top candidates

El-Din et al., 2016, Egypt [107] PubChem CIDs: 416,724, 374,108, 3,851,453, 256,623, 44,149,862, 254,616, 3183

Raj et al., 2015, India [108] Gossypetin and Toxifolin (top 2). Other relevant results: ST50903219, ST50940361, ST101866, ST078351.

Bagchi et al., 2009, India [109] andrographolide

Tambunan et al., 2017, Indonesia [110] cycloartocarpin, letestuianin B, lissoclin A, varamine A, lissoclibadin 4, cystodytin J,
(−)-N-methylcoclaurine, (−)-matairesinol, cardamonine, reticuline

Shah, et al., 2015, India [111] deslanoside, digoxin, vincristine, vinorelbine, and several unnamed ZINC compounds and
investigational compounds

Ekins et al., 2014, USA [114] selective estrogen receptor modulators (SERMs) and anti-malarials

Ekins et al., 2015, USA [112] quinacrine, pyronaridine, tilorone

Veljkovic et al., 2015, Serbia, France, USA, Canada [117] 267 approved and 382 experimental drugs. Notable classes: antimalarials and antibiotics (macrolides,
pleuromutilins , aminoglycosides).

Veljkovic et al., 2015, Serbia, The Netherlands, Canada,
USA [116] ibuprofen

Palamthodi et al., 2012, India [118]

VP35 compounds: 2-(2,3-diamino-3-oxopropyl)sulfynyl acetic acid; 5-cyclohexypyridine 2-caboxylic
acid; Copper carboxymethoxyananide dihydrate; 2,
3-dihydroxy-3-[(4-methylphenyl)carbamoyl]propanoic acid. VP40 compounds:
2-(1,3-benzothiazol-2-ylsulfanyl)acetate; 2-(1,8-dihydroxy-9-oxo-10h-anthracen-2yl)acetic acid;
1-[(2s,4s,5r)-4-hydroxy-5-methyloxolan-2-yl]-5-methylpyrimidine,2,4 dione;
1-[(2r, 4s, 5s)-5-(hydroxymethyl)-4-methyloxolan-2-yl]-1,2,4-triazole-3-carboxamide.
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Table 4. A selection of software used in the studies reviewed. Generally, authors only reported primary scientific software used. Other software, automation scripts,
operating systems, cluster management software, APIs, or other elements of the studies were usually not specifically reported. Some authors reported abstract or
architectural descriptions of computational pipelines or platforms. Reproducibility of future work can be enhanced by reporting details on the entire software stack,
software parameters, and hardware environment. A standard protocol for reporting the computational environment is needed in order to facilitate the comparison
of research.

Author, Year, Country Selected Software, Algorithms, and Version Numbers

Han et al., 2014, USA [96] Autodock 4.0, CHARMM (MMFF), Accelrys LigScore2

Brown et al., 2014, USA [97] Autodock 4.0 (DOVIS PIPELINE), CHARMM35b2 (MMFF), LigScore2, REFMACS, Phenix, PRODRG2,
Coot, MolProbity, GraphPad Prism

Mirza et al., 2016, Pakistan, Belgium [98]

OpenBabel, Discovery Studio, UCSF Chimera (AMBER ff12SB force field for protein energy
minimization), CASTP, MUSCLE, Jalview 2.7, BLAST (PSI-BLAST), ALIGN2D, MODELLER 9.12,
CHARMM22, Autodock Vina, Mcule-pipeline, PyMol, DrugScore eXtended, DUD-e, Daylight,
NSCC.11, Molinspiration, OSIRIS, ADMET prediction suite (ACD/LABS), Molsoft, AdmetSAR,
Aggregator Advisor, MetaPrint2D, PAINS, clustalX, ligPlots

Kharkar et al., 2016, India [99] ROCS OpenEye Scientific Software Suite, AutoDock

Sharma et al., 2017, India [115] Phyre2, EasyModeller4, RAMPAGE, BLASTP, YASARA, Schrodinger Suite, GLIDE, Autodock,
Discovery Studio Visualizer

Karthick et al., 2016, (Hong Kong) China [100]

GROMACS (GROMOS43a1), iScreen (PLANTS), Autodock 4.2.6, Autodock Tools, AutoGrid, PEARLS,
PDBsum, UCSF Chimera, GROMACS (GROMOS43a1, SPC water model), PRODRG (EWALD
Algorithm, Lincs Algorithm), GROMACS_UTIL (g_rms, g_hbond), Molsoft, OSIRIS Property Explorer,
Protox Web Server, PROCHECK

Chopra et al., 2016, USA [101] COFACTOR, CANDOCK, ITASSER (HHBLITS, LOMETS, SPICKER, ModRefiner, KobaMin, et al.),
ChemAxon MarvinBeans molconverter v.5.11.3, Xemistry Cactvs Chemoinformatics Toolkit, CANDO

Dapiaggi et al., 2015, Italy [102]
GROMACS (AMBER99SB-ILDN, Generalized Amber Force Field, TIP3P, LINCS algorithm, velocity
rescale algorithm, Berendsen barostat, Particles Mesh Ewald algorithm), (MM/PBSA, APBS),
GROMACS_utility (g_covar, g_anaeig), VMD, Naccess

Zhao et al., 2016, USA [12] Verify3D, PROCHECK, SMAP, Modeller v9.14, I-TASSER, Autodock4, Autodock Vina, PLANTS,
Surflex, AutoDockTools 4, CASTp, Xleap, ACEMD (AMBER99SB, SHAKE algorithm), Pymol, Ligplot

Glanzer et al., 2016, USA [103] Molegro Docking, Molinspiration Property Calculation Service, Molegro Structure Protein Alignment,
UCSF CHIMERA
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Table 4. Cont.

Author, Year, Country Selected Software, Algorithms, and Version Numbers

Golkar et al., 2015, Denmark, USA [104] Software described in a cited publication

Ahmad et al., 2017, Pakistan [105] PREDATOR, PHD, GOR4, DPM, HNN, DSC, SIMPA96, SOPM, RONN, GLOBPLOT, DISSEMBLE,
MOE, RAMPAGE, ERRATE, Expasy-ProtoParam, MUSCLE server, PSI-BLAST

Abazari et al., 2015, Iran [106] GROMACS 4.5.4, PyRx / AutoDock Vina, FAFDrugs3, admetSAR, PROTOX

El-Din et al., 2016., Egypt [107] Chem Sketch, Swiss PDB Viewer, Autodock4 , Auto Grid, Auto Dock hydrogen module, UCSF
Chimera, PROTOX, Molsoft

Raj et al., 2015, India [108] Protein Preparation Wizard, SiteMap, GLIDE (Receptor Grid Generation Panel), QikProp v3.9

Bagchi et al., 2009, India [109] MODELLER, Swiss-PDBViewer, ACD/ChemSketch, RAMPAGE, ArgusLab 4.0.1, HEX_SERVER,
HHpred, BLAST

Tambunan et al., 2017, Indonesia [110] Molecular Operating Environment (MOE) 2014.09, UCSF Chimera 1.9, Vega ZZ 3.0.5, OSIRIS
DataWarrior 4.2.2

Shah, et al., 2015, India [111] Discovery Studio Visualizer 4.0, Swiss PDB viewer, Chimera, CastP server, AutoDock Vina 4.2,
GEMDOCK, Molinspiration

Ekins et al., 2014, USA [114] Discovery Studio 4.1 (CAESAR, FAST conformer generation, LibDock), CHARMM

Ekins et al., 2015, USA [112] Discovery studio, Mobile Molecular Data Sheet, R (programming language), other software described
in citation

Veljkovic et al., 2015, Serbia, France, USA, Canada [116]
Software undisclosed, showed equations for AQVN and EIIP and explained high level process,
secondary goal of this publication was to establish a web server for this type of study, “ebola screen”
web server (http://www.biomedconsulting.info/ebolascreen.php)

Veljkovic et al., 2015, Serbia, The Netherlands, Canada,
USA [117] Custom software for calculating AQVN and EIIP, VEGA ZZ, MOPAC 2009, Autodock Vina

Palamthodi et al., 2012, India [118] PYMOL, Chimera, Arguslab, AutoDock

http://www.biomedconsulting.info/ebolascreen.php
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Table 5. Frequency of software used in the studies reviewed. A nonexhaustive sample of the
types of software and servers and their minimal frequency of use for computational drug discovery
methods and techniques used in the treatment against EVD. Although researchers converge on a few
popular programs for common methods like molecular docking or molecular dynamics, there exists an
abundance of options for nearly every methodology.

Software Count Method/Technique

Autodock 7 molecular docking
UCSF CHIMERA 7 visualization and analysis suite
Discovery Studio 5 affinity, ranking, modeling, workflow tooling
Autodock Vina 5 molecular docking
BLAST Suite 4 sequence alignment
CHARMM 4 molecular dynamics, minimization, analysis
Autodock Tools 3 structure preparation utilities, workflow tooling
GROMACS 3 molecular dynamics
Modeller 3 template-based modeling
Molsoft 3 suite of bioinformatic and cheminformatic tools
PROTOX 3 toxicity prediction
RAMPAGE 3 Ramachandran plot analysis
CASTP 3 binding and active site prediction/analysis
Molinspiration 3 cheminformatic software suite
Swiss PDB Viewer 3 visualization and analysis
PyMol 3 visualization
OSIRIS 3 chemical property analysis
ACD ChemSketch 2 chemical structure modeling, property analysis, logp
admetSAR 2 cheminformatics/ADMET analysis
AutoGrid 2 support tooling for AutoDock
GLIDE 2 docking
GROMACS_utils 2 support tooling for GROMACS simulations
I-TASSER 2 protein structure and function prediction
LigScore2 2 binding affinity prediction
MUSCLE 2 multiple alignment
PROCHECK 2 protein structure steriochemical quality analysis
PRODRG 2 small molecule topology generation for simulation use, energy minimization
ArgusLab 4.0.1 2 molecular modeling
MOE 2 suite of protein modeling, assessment, and analysis software
VEGA ZZ 2 molecular modeling suite
ADMET prediction suite
(ACD/LABS) 1 ADMET analysis

Aggregator Advisor 1 molecular aggregation prediction for biochemical assays
ALIGN2D 1 sequence structure alignment
biomedconsulting Ebola
screen server 1 AQVN and EIIP screening server for Ebola research

CANDO 1 drug discovery platform (docking, dynamics, multitargeting, and drug repurposing)
CANDOCK 1 fragment based docking with dynamics
ChemAxon MarvinBeans 1 computational chemistry suite
clustalX 1 multiple alignment
COFACTOR 1 protein functional annotation
Coot 1 visualization, modeling, analysis, validation
Daylight 1 cheminformatics, fingerprinting
DisEMBL 1 Intrinsic disorder prediction
DOVIS PIPELINE 1 virtual screening pipeline
DPM 1 promoter structure of co-regulated gene modeling
DrugScore eXtended 1 knowledge based protein-ligand complex scoring
DSC 1 protein secondary structure prediction
DUD-e 1 docking benchmarking, virtual screening support
EasyModeller4 1 interface for MODELLER with integrated analysis tooling
ERRAT 1 verifying protein structures determined by crystallography
Expasy-ProtoParam 1 protein physical and chemical analysis
FAFDrugs3 1 ADMET screening, virtual screening filtering
GLOBPLOT 1 intrinstic protein disorder, domain, and globularity prediction
GOR4 1 secondary structure prediction
GraphPad Prism 1 graphing and statistics
HEX_SERVER 1 docking
Hhpred 1 protein structure and function prediction
HNN 1 secondary structure prediction
iScreen 1 docking platform
Jalview 1 multiple sequence alignment editing, visualization and analysis
Ligplot+ 1 schematic diagrams of protein-ligand interactions
Mcule-pipeline 1 molecular modeling and cheminformatic screening interface for mcule database
MetaPrint2D 1 xenobiotic metabolism prediction, phase I metabolic site prediction
Mobile Molecular Data Sheet 1 mobile cheminformatics modeling and analysis
molconverter 1 utility for file format conversion
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Table 5. Cont.

Software Count Method/Technique

Molegro Docking 1 docking
Molegro Structure Protein
Alignment 1 alignment

MolProbity 1 protein structure validation
MOPAC 1 semiempirical quantum chemistry program
Naccess 1 atomic solvent accessible area prediction
NSCC 11 1 statistical software
OpenBabel 1 computational chemistry software suite
PDBsum 1 protein visualization and analysis
PEARLS 1 energetic analysis of receptor-ligand systems
PHD 1 secondary structure prediction
Phenix 1 structure determination software for X-ray crystallography and other methods
Phyre2 1 protein fold recognition
PLANTS 1 docking
PREDATOR 1 secondary structure prediction
protein preparation wizard 1 tools for protein structure preparation for simulation
PyRx 1 virtual screening pipeline
QikProp 1 ADME screening, prediction
R 1 statistical programming language/platform
REFMACS 1 maximum likelihood refinement analysis for protein structure data
ROCS OpenEye 1 virtual screening by shape comparison tool
RONN 1 protein disorder prediction
Schrodinger Suite 1 suite of protein modeling, assessment, and analysis software
SIMPA96 1 secondary structure prediction
SiteMap 1 binding site prediction
SMAP 1 protein-ligand interaction analysis
SOPM 1 secondary structure prediction
Surflex 1 docking
Verify3D 1 structure-sequence compatibility assessment
VMD 1 visualization, analysis
Xemistry Cactvs
Cheminformatics Toolkit 1 cheminformatics software suite

Xleap 1 tool that interfaces with LEAP/AMBER
YASARA 1 visualization, modeling, analysis
ACEMD 1 dynamics
Gemdock 1 docking

3. Discussion

3.1. Synthesis of Results

The salient points of all studies are included in Supplementary Table S1. A multitude of methods,
software, compounds, biologics, and protein structures (modeled or solved) have been used to
computationally predict therapeutics for the treatment of EVD. The studies mentioned here are of
highly variable quality and scientific merit. Several are not reproducible given the limited presentation
of details, an issue that hinders the efficient and reliable use of results from scientific studies and its
translation. This is particularly critical for EVD due to the speed at which the outbreaks happen and the
lack of any treatment [119]. As an example, Brown et al. [97] report excellent experiments and results,
including computational experimentation, structural contributions to the Protein Data Bank (PDB) [87]
and subsequent validation attempts with non-computational techniques at discovering inhibitors of
VP35. Their top inhibitors, however, are reported in the PDB under the ligand section of the submission
information and in the publication under names that are difficult to search for, which makes it difficult
to recapitulate or expand on the results in the context of EVD drug repositioning. Ideally, all the studies
reviewed here would clearly identify and fully report their results (such as compound names and
characteristics) in their publications.

The 2014 West African Ebola virus outbreak was characterized by a rapidly mutating and highly
genetically variable agent [89]. Differences in the genetics of a virus affect protein structure and function.
Similarly, changes in structure may affect binding and inhibition by compounds. Therefore, it is critical
for computational studies searching for modulators of protein function to identify the exact strain of
virus and/or protein structure(s) used. Additionally, identification and enumeration of compounds,
drugs, or chemicals enables potential replication of computational research. Computational research
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allows one to study many compounds and proteins with relatively little effort in scaling up. Treatments
for diseases have been discovered serendipitously from a variety of sources [120]. The highly diverse
compound set represented by the databases used gives a great opportunity to discover some regimen
which may work to effectively treat EVD. The variance in target coverage of each study, the diversity
of the computational methodologies implemented, and the large set of putative compounds reported
allows significant room for follow on studies which integrate the most promising approaches and
putative candidate compounds.

As highlighted in Table 3, a variety of compounds and biologics were reported as efficacious
candidates against EVD as determined by computational experiments or hybrid wet laboratory studies.
Data on compounds and drugs are large, heterogeneous, and complex, and thus computational
research can be highly varied and lack standardization [68,121,122]. Compound sets used in different
studies are rarely the same, and thus conclusions on potential treatments of EVD are vastly different.
Many mechanisms of drugs are represented in the results above. This can be viewed positively, in that
it highlights one of the benefits of computational research: the ease of screening and studying large
and hetereogeneous data sets in the search for treatments, and not being too focused and missing out
on potentially groundbreaking discoveries. Based solely on these computational studies, no single
class of compounds from the collective set of publications stand out; however, several results from
individual studies are promising.

As noted previously, a multitarget approach to drug therapy will produce results with a better
chance of avoiding polypharmacy and evading mutation driven resistance [57–65]. Several of the
reviewed studies utilized a multitarget approach in their search for treatments against EVD and are
thus reviewed in more depth here.

In their recently published article, Raj and Varadwaj [108] utilize a virtual screening pipeline
to identify flavanoids as inhibitors of the Ebola virus proteins VP40, VP35, VP24, and VP30.
Protein structures were obtained from the PDB and active sites were predicted using SiteMap from
the Schrodinger suite of software [123]. A three-tiered virtual screening approach to dock flavanoids
from the Timtec compound library using the Glide docking program was performed by the authors.
Flavanoids with the lowest energy of docking and most drug like properties were reported as top
results. Gossypetin (Timtec ST059622) and Taxifolin (Timtec ST060285) are reported as having strong
docking and higher inhibitotry potential against the four Ebola virus proteins than the best developed
drug and gold standard, BCX4330 [124]. Therefore, one may conclude that these flavanoids are
potentially useful as a multitarget treatment option in the fight against EVD.

Similarly, while not tackling the entirety of the Ebola virus genome as potential drug targets,
Mizra et al. [98] take an integrated computational approach to target VP35 and VP40 with a library of
over 145,000 natural compounds, phytochemicals, and flavanoids. This library was first screened for
drug-like properties. Next, those compounds with desirable properties were then subjected to docking
experiments using AutoDock Vina involving structures of VP35 and VP40, whose target binding
sites had been predicted using the Computed Atlas of Surface Topography of proteins (CASTp).
Ninety-one compounds were identified as binding with high affinity to both proteins and thus may
act as multitarget treatments of EVD. Several of the top compounds are listed in Table 3 of their
publication, with both a commercial name (for example, “Timtec-ST45161107”) and an IUPAC name
(“2-Oxo-N-(2-4-((2-oxo-2H-chromen-3-yl)carbonyl)-1-piperazinylethyl)-2H-chromene-3-carboxamide”).
More details including specific binding site amino acid interactions and calculated binding energies
are reported.

Shah et al. [111] used virtual screening to expand on a set of compounds which had been
experimentally confirmed by Kouznetsova et al. [125] to block entry into cells of Ebola virus-like
peptides. The experimental compounds and their pharmacophore and structural analogues were
docked to VP24, VP35, and VP40 using AutoDock Vina. Binding efficacy and physiochemical and
absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of top compounds
are reported. The authors predict deslanoside, digoxin, and vinorelbine, as well as several unnamed,
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analogous compounds from the ZINC database as effective inhibitors of the Ebola virus based on their
multiple protein binding affinities and properties.

Zhao et al. “developed a structural systems pharmacology approach, to identify drug-target
interactions on a proteome scale by integrating proteome-wide ligand binding site comparison,
protein-ligand docking, and molecular dynamics (MD) simulation with systems biology modeling,”
and applied their strategy to find FDA approved and experimental drugs which demonstrated potential
to inhibit Ebola virus proteins [12]. By focusing their proteome-wide binding site comparison and
protein-ligand docking procedure on two proteins critical to the Ebola virus life cycle, RNA polymerase
and VP24, the authors report indinavir and sinefungin as having the highest potential of FDA approved
drugs to treat EVD. One drawback of this otherwise scientifically meritorious study is a lack of
validation or a comparison to wet lab studies.

Chopra et al. also recognized the importance of multitargeting. The authors’ CANDO platform
used “computational screening to assess multitarget binding and inhibition”, relying on the interaction
signature of a compound with “a library of protein structures that are considered representative
of the (current) structural universe, compared with how that individual compound interacts with
a specific protein” [101]. A highlight of this work is the corroboration of computationally derived
therapeutic candidates with experimental studies. The authors highlight compounds which are
predicted by the CANDO platform and which have been experimentally shown to inhibit the
Ebola virus by Johsanen et al. [126] and block the entry of Ebola virus-like particles into cells
by Kouznetsova et al. [125]. This study’s top candidates to target EVD which have preclinical
corroboration include niclosamide, sertraline, clomifene, mebendazole, deslanoside, and digoxin.
Several of these compounds, such as deslanoside and digoxin, were also listed by Shah et al. [111]
as top potential treatments of Ebola, marking an instance of concordance among experimental and
several computational studies. Several of these computational studies utilized a multitarget approach
and a library of FDA approved drugs, thereby enabling immediate repurposing (“off label use”) and
minimizing the need for phase 1 and phase 2 trials. Top candidates from Chopra et al. [101] without
validation include enfuvirtide, vancomycin, bleomycin, and octreotide.

3.2. Limitations

We considered only articles published in English. One seemingly apparent limitation is the
search period (January 2010–August 2017). However, to our knowledge, there are few articles
related to computational drug research for EVD treatment published before January 2010. Indeed,
the recent Ebola outbreak in West Africa has brought this issue to the fore and spurred a great
deal of research with the latest technologies and techniques. Ideally, potential therapeutics for
rare/unimportant/orphan/neglected diseases would be developed for the long term benefit of the
humanity. Such an effort may appear to have a low return in the short term; however, in the long term,
these infectious diseases could become widespread and engulf the planet in pandemic proportions
quickly and without warning. If that were to happen, there would not be ample time to develop
novel therapeutics from scratch, and thus computational research in these underserved diseases is a
worthwhile endeavor.

Direct comparison of disparate therapeutic candidates is difficult due to lack of uniformity
of compound libraries and limited description of compounds in some publications. For instance,
some authors reported compounds being studied only as “Ligand 1”, “Ligand 2”, etc. with no
other identifier (such as commercial or generic drug name) supplied. Unfortunately, this defeats
the purpose of such research to disseminate promising results for use in preclinical and clinical
validation studies to tackle immediate, emerging, and deadly public health threats. Listing many
compounds, while understanding that many of them are not ideal as treatments in their current
formulation, lends itself to serving as a starting point for further research and validation. Intense and
thorough investigation of a few compounds may be due to lack of computational power, or researchers
wanting to further lead compound development anticipating clinical studies in the near future, thereby
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maximizing likelihood of a candidate being approved for a particular indication and excluding
undeveloped drug candidates.

More broadly, computational research has inherent limitations. All computational work is
model based, and are an approximate representation of the real world [127]. This approximation is
addressed by Chopra et al. when discussing the CANDO platform, which does not consider nucleic
acid-compound interactions, post-translational modifications of proteins, or cell specific protein
expression and copy number [101]. However, the relative ease and cost of performing computational
research, especially when working with deadly pathogens, suggests that the research reviewed herein
represents a useful and important contribution for the development of safe and efficacious treatments
against EVD.

4. Materials and Methods

4.1. Protocol and Registration

There is little precedent for conducting systematic reviews of applied computational research, i.e.,
finding, reviewing, collating, appraising, and summarizing methods and results. Additionally, the use
of computational methods to tackle the threat of global pandemics due to the spread of the Ebola virus
is relatively new. During our search of published articles specifically on computational methods to
find treatments for EVD, we found only a handful of systematic reviews of computational methods
in general, including diverse topics such as fluid dynamics, aortic dissection [128], and malaria
detection [129]. Therefore, while standards exist for the scope, structure, and methodology of
traditional systematic reviews, including those in the Cochrane Database which summarize controlled
healthcare studies, few exist for systematic reviews of computational research. This work, which is
based on the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement [130],
is an early step toward the creation of a standard review methodology of computational methods [131].

4.2. Eligibility Criteria

We considered published studies which utilized a computational approach to drug discovery,
drug development, and drug repurposing to target the Ebola virus. Likewise, we also considered
research that investigated biologics, such as certain miRNAs, as potential therapeutic candidates for
Ebola viral inhibition. All publications were written in English and published between January 2010
and August 2017. Further detail on the characteristics of individual studies is covered in Section 2.2.
Studies focused only on protein structure prediction or determination, i.e., not as part of a larger drug
discovery effort, were excluded. Also excluded were publications on vaccine development, and those
where Ebola was only mentioned in passing, or as part of a larger general study on computational
methods. Combined computational and wet lab studies were considered when the computational
component was essential to the research design.

4.3. Outcomes

Outcomes of this review include drugs/compounds reported by study authors as the top/most
effective in treating EVD, scores and poses returned by molecular docking and/or dynamics
simulations indicating inhibition of key proteins (host or pathogen) involved in Ebola virus virulence,
common features of drugs with putative in vivo or in vitro activity (pharmacophore methods),
overlap (coverage) of computational results sets with wet lab based methods or subsequent validation
studies, potentially inhibitory miRNA candidate biologics, and use of a multitargeting approach.

4.4. Study Information Sources

Studies were identified and selected by searching a variety of electronic databases (including
PubMed and Google Scholar), scanning reference lists, and consultation with experts in the field of
proteomics-based drug repurposing.
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4.5. Search Terms

The resources mentioned above were searched for articles relevant to this systematic review
including but not limited to the following terms: “computational”, “drug”, “drug development”,
“drug discovery”, “drug repurposing”, “in silico”, and “in virtuale”. All searches included the term
“ebola” (i.e., logical AND operation).

4.6. Study Selection

Titles and abstracts of articles obtained as a result of the search were reviewed together by the two
first authors. A publication was removed from further consideration if it did not meet the eligibility
criteria described in Section 4.2. All subsequent studies were carefully read and discussed by the
authors until a consensus was reached on appropriate characterization and a succinct explanation of
the reviewed publication.

4.7. Data Collection Process

Information regarding compounds/drugs and biologics evaluated, proteins to which compounds
were docked or compared, database sources, and software used were extracted from the reviewed
studies. Also extracted were results, including the names of the top candidate therapeutics to treat
EVD as identified by the authors. These were often based on some quantitative metric, such as scores
reported by virtual docking software.

4.8. Data Items

Data was collected on proteins (PDB identifiers, Uniprot accession numbers), compounds (lists,
sources of structures), Ebola strains (genetics), computing capabilities (model and characteristics of the
hardware on which the computational work was done), software (specific programs and algorithms
used to carry out the research design), comparison of computational work to preclinical or clinical
studies, preclinical and/or clinical validation of putative therapeutic candidates, and the use of a
multitargeting approach.

4.9. Bias in Individual Studies

PRISMA guidelines state that the risk of bias in individual studies must be assessed [130].
The notion of bias in computational drug research studies is not well established, and few tools
exist to systematically assess bias. There has been some work toward describing what such bias may
entail. Scannell et al. [132] argue that targeting a single molecule with a compound is a bias in and of
itself. This idea, which they refer to as “basic research–brute force" bias, leads to the conclusion that
virtual molecular docking experiments based on a single target, single ligand approach are inherently
flawed, and a better approach is to consider several targets or ligands, i.e., a multitarget approach.
The approach used to validate candidate therapeutics also presents another type of bias, since studies
with wet lab validation are less represented among the ones reviewed. The elucidation of this bias
is not the focus of this systematic review. As reported by Cleves et al. [133], the use and reliance on
two dimensional (2D) descriptors for compound screening leads to an inductive bias which precludes
research on truly novel compounds. Several of the reviewed studies rely on using 2D molecular
descriptors of compounds and thus may be subject to this type of bias. Moreover, screening libraries
themselves may be biased. Hert et al. [134] state screening libraries used in computational work are
inherently biased to contain compounds previously known to cause biologic effects, thereby indicating
a potential for lack of novelty in the entire drug development process (which in and of itself is indicative
of an evolutionary bias). One proposed solution to mitigate bias in screening is the development of
the Directory of Useful Decoys ( DUD) by Huang et al. [135], which would allow disparate methods
(i.e., various docking methods) to be compared using a single, standard set of ligands.
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5. Conclusions

The interpretation of our systematic review suggests the possibility of several drugs/compounds
that may have therapeutic benefit against EVD, and that computational methods are useful not only to
discover them, but also to elucidate their mechanisms of action and their likelihood of being efficacious
and eventually gaining regulatory approval. Exploring potential drugs via computational modeling is
a safe, frugal, and effective method to discover, develop, or repurpose potential treatments. The time
and cost advantages over traditional methods is key when attempting to find therapeutic options for
the treatment of an emerging, deadly disease with pandemic potential such as Ebola. Varying levels of
rigor of this research exemplifies the need for further preclinical and clinical validation of putative
therapeutic agents. Multitargeting approaches, especially those that are preclinically or clinically
validated, have the best potential to be the most effective. Several of the approaches in the studies
reviewed have the potential to be broadly applicable to other pathogens, outbreaks, epidemics,
pandemics, and general drug discovery and development. Validation studies should be undertaken
before any of these therapies can be recommended for clinical use, before the next Ebola outbreak arises.

Supplementary Materials: A comprehensive table that collates the data selected from each study reviewed is
available online as Supplementary Table S1.
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ADME absorption distribution metabolism excretion
ADMET absorption distribution metabolism excretion toxicity
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RG ResearchGate
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SVM Support vector machine

References

1. 2014 Ebola Outbreak in West Africa—Case Counts. Available online: https://www.cdc.gov/vhf/ebola/
outbreaks/2014-west-africa/case-counts.html (accessed on 25 July 2017).

2. 2017 Democratic Republic of the Congo, Bas Uélé District. Available online: https://www.cdc.gov/vhf/
ebola/outbreaks/drc/2017-may.html (accessed on 5 August 2017).

3. World Health Organization; Regional Office for Africa, Health Emergencies Programme. Ebola Virus Disease
Democratic Republic of Congo: External Situation Report; Technical Report 26; World Health Organization,
Regional Office for Africa: Brazzaville, Republic of the Congo, 2017.

https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html
https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html
https://www.cdc.gov/vhf/ebola/outbreaks/drc/2017-may.html
https://www.cdc.gov/vhf/ebola/outbreaks/drc/2017-may.html


Molecules 2017, 22, 1777 22 of 27

4. Group, T.P.I.W. A randomized, controlled trial of ZMapp for Ebola virus infection. N. Engl. J. Med. 2016,
375, 1448–1456, doi:10.1056/NEJMoa1604330. PMID: 27732819.

5. Van Griensven, J.; De Weiggheleire, A.; Delamou, A.; Smith, P.G.; Edwards, T.; Vandekerckhove, P.; Bah, E.I.;
Colebunders, R.; Herve, I.; Lazaygues, C.; et al. The use of Ebola convalescent plasma to treat Ebola virus
disease in resource-constrained settings: A perspective from the field. Clin. Infect. Dis. 2016, 62, 69–74.

6. DiMasi, J.A. New drug development in the United States from 1963 to 1999. Clin. Pharmacol. Ther. 2001,
69, 286–296.

7. DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development
costs. J. Health Econom. 2003, 22, 151–185.

8. Recognizing the Biosafety Levels. Available online: https://www.cdc.gov/training/quicklearns/biosafety/
(accessed on 25 July 2017).

9. Drug Repurposing at NCATS. Available online: https://ncats.nih.gov/preclinical/repurpose (accessed on
25 July 2017).

10. Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M.H.D. Drug repositioning and
repurposing: Terminology and definitions in literature. Drug Discov. Today 2015, 20, 1027–1034.

11. Brown, A.S.; Patel, C.J. A review of validation strategies for computational drug repositioning.
Brief. Bioinform. 2016, doi:10.1093/bib/bbw110.

12. Zhao, Z.; Martin, C.; Fan, R.; Bourne, P.E.; Xie, L. Drug repurposing to target Ebola virus replication and
virulence using structural systems pharmacology. BMC Bioinform. 2016, 17, 90.

13. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev.
2014, 66, 334–395.

14. Ou-Yang, S.s.; Lu, J.y.; Kong, X.q.; Liang, Z.j.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol.
Sin. 2012, 33, 1131.

15. Li, J.; Zheng, S.; Chen, B.; Butte, A.J.; Swamidass, S.J.; Lu, Z. A survey of current trends in computational
drug repositioning. Brief. Bioinform. 2015, 17, 2–12.

16. Kapetanovic, I. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological
approach. Chem. Biol. Inter. 2008, 171, 165–176.

17. Clark, D.E.; Pickett, S.D. Computational methods for the prediction of ‘drug-likeness’. Drug Discov. Today
2000, 5, 49–58.

18. Dopazo, J. Genomics and transcriptomics in drug discovery. Drug Discov. today 2014, 19, 126–132.
19. March-Vila, E.; Pinzi, L.; Sturm, N.; Tinivella, A.; Engkvist, O.; Chen, H.; Rastelli, G. On the integration of in

silico drug design methods for drug repurposing. Front. Pharmacol. 2017, 8, doi:10.3389/fphar.2017.00298.
20. Shoichet, B.K.; Walters, W.P.; Jiang, H.; Bajorath, J. Advances in computational medicinal chemistry:

A reflection on the evolution of the field and perspective going forward. J. Med. Chem. 2016, 59, 4033–4034.
21. Ferreira, L.G.; dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug

design strategies. Molecules 2015, 20, 13384–13421.
22. Carvalho, A.L.; Trincão, J.; Romão, M.J. X-ray crystallography in drug discovery. In Ligand-Macromolecular

Interactions in Drug Discovery: Methods and Protocols; Roque, A.C.A., Ed.; Humana Press: New York, NY, USA,
2010; pp. 31–56.

23. Pellecchia, M.; Bertini, I.; Cowburn, D.; Dalvit, C.; Giralt, E.; Jahnke, W.; James, T.L.; Homans, S.W.;
Kessler, H.; Luchinat, C.; et al. Perspectives on NMR in drug discovery: A technique comes of age. Nat. Rev.
Drug Discov. 2008, 7, 738.

24. Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein
modeling. Electrophoresis 1997, 18, 2714–2723.

25. Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function
prediction. Nat. Protocols 2010, 5, 725.

26. Laurie, A.T.; Jackson, R.M. Q-SiteFinder: An energy-based method for the prediction of protein–ligand
binding sites. Bioinformatics 2005, 21, 1908–1916.

27. Willett, P. Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 2006, 11, 1046–1053.
28. Katara, P. Role of bioinformatics and pharmacogenomics in drug discovery and development process.

Netw. Model. Anal. Health Inform. Bioinform. 2013, 2, 225–230.

https://www.cdc.gov/training/quicklearns/biosafety/
https://ncats.nih.gov/preclinical/repurpose


Molecules 2017, 22, 1777 23 of 27

29. Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.;
Subramanian, A.; Ross, K.N.; et al. The Connectivity Map: Using gene-expression signatures to connect
small molecules, genes, and disease. Science 2006, 313, 1929–1935.

30. Yang, S.Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances.
Drug Discov. Today 2010, 15, 444–450.

31. Khedkar, S.A.; Malde, A.K.; Coutinho, E.C.; Srivastava, S. Pharmacophore modeling in drug discovery and
development: An overview. Med. Chem. 2007, 3, 187–197.

32. Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.;
Martin, Y.C.; Todeschini, R.; et al. QSAR modeling: Where have you been? Where are you going to? J. Med.
Chem. 2014, 57, 4977–5010.

33. Perkins, R.; Fang, H.; Tong, W.; Welsh, W.J. Quantitative structure-activity relationship methods: Perspectives
on drug discovery and toxicology. Environ. Toxicol. Chem. 2003, 22, 1666–1679.

34. Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug
discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935.

35. Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. New methods for
ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of
similarity searching. J. Chem. Inf. Model. 2006, 46, 462–470.

36. Medina-Franco, J.L.; Martínez-Mayorga, K.; Giulianotti, M.A.; Houghten, R.A.; Pinilla, C. Visualization of
the chemical space in drug discovery. Curr. Comput. Aided Drug Des. 2008, 4, 322–333.

37. Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today
2015, 20, 318–331.

38. Balmith, M.; Faya, M.; Soliman, M.E. Ebola virus: A gap in drug design and discovery-experimental and
computational perspective. Chem. Biol. Drug Des. 2016.

39. Suvannang, N.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Molecular docking of
aromatase inhibitors. Molecules 2011, 16, 3597–3617.

40. Jenwitheesuk, E.; Horst, J.A.; Rivas, K.L.; Van Voorhis, W.C.; Samudrala, R. Novel paradigms for drug
discovery: Computational multitarget screening. Trends Pharmacol. Sci. 2008, 29, 62–71.

41. Méndez-Lucio, O.; Naveja, J.J.; Vite-Caritino, H.; Prieto-Martínez, F.D.; Medina-Franco, J.L. One drug for
multiple targets: A computational perspective. J. Mex. Chem. Soc. 2016, 60.

42. Overington, J.P.; Al-Lazikani, B.; Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov.
2006, 5, 993–996.

43. Imming, P.; Sinning, C.; Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev.
Drug Discov. 2006, 5, 821–834.

44. Campillos, M.; Kuhn, M.; Gavin, A.C.; Jensen, L.J.; Bork, P. Drug target identification using side-effect
similarity. Science 2008, 321, 263–266.

45. Whitebread, S.; Hamon, J.; Bojanic, D.; Urban, L. Keynote review: In vitro safety pharmacology profiling:
An essential tool for successful drug development. Drug Discov. Today 2005, 10, 1421–1433.

46. Liebler, D.C.; Guengerich, F.P. Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov.
2005, 4, 410.

47. Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. In silico methods for drug repurposing
and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 186–210.

48. What are the Possible Side Effects of a Drug and Where Can I Find the Most Current Information About My
Drug? Available online: https://www.fda.gov/aboutfda/transparency/basics/ucm194959.htm (accessed
on 25 July 2017).

49. Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem.
2005, 48, 6523–6543.

50. Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008,
4, 682–690.

51. Zimmermann, G.R.; Lehar, J.; Keith, C.T. Multi-target therapeutics: When the whole is greater than the sum
of the parts. Drug Discov. Today 2007, 12, 34–42.

52. Korcsmáros, T.; Szalay, M.S.; Böde, C.; Kovács, I.A.; Csermely, P. How to design multi-target drugs: Target
search options in cellular networks. Expert Opin. Drug Discov. 2007, 2, 799–808.

https://www.fda.gov/aboutfda/transparency/basics/ucm194959.htm


Molecules 2017, 22, 1777 24 of 27

53. Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.; Lavan, P.; Weber, E.;
Doak, A.K.; Côté, S.; et al. Large scale prediction and testing of drug activity on side-effect targets. Nature
2012, 486, 361.

54. Roth, B.L.; Sheffler, D.J.; Kroeze, W.K. Magic shotguns versus magic bullets: Selectively non-selective drugs
for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 2004, 3, 353–359.

55. Rix, U.; Hantschel, O.; Dürnberger, G.; Rix, L.L.R.; Planyavsky, M.; Fernbach, N.V.; Kaupe, I.; Bennett, K.L.;
Valent, P.; Colinge, J.; et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and
dasatinib reveal novel kinase and nonkinase targets. Blood 2007, 110, 4055–4063.

56. Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.;
Tran, T.B.; et al. Predicting new molecular targets for known drugs. Nature 2009, 462, 175.

57. De Lera, A.R.; Ganesan, A. Epigenetic polypharmacology: From combination therapy to multitargeted
drugs. Clin. Epigenet. 2016, 8, 105.

58. Horst, J.A.; Laurenzi, A.; Bernard, B.; Samudrala, R. Computational multitarget drug discovery.
In Polypharmacology in Drug Discovery; Peters, J.U., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA,
2012; pp. 263–301.

59. Jadhav, A.; Bansode, B.; Phule, D.; Shelar, A.; Patil, R.; Gade, W.; Kharat, K.; Karuppayil, S.M.
The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting.
World J. Microbiol. Biotechnol. 2017, 33, 96.

60. Melisi, D.; Piro, G.; Tamburrino, A.; Carbone, C.; Tortora, G. Rationale and clinical use of multitargeting
anticancer agents. Curr. Opin. Pharmacol. 2013, 13, 536–542.

61. Silver, L.L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 2007, 6, 41.
62. Li, K.; Schurig-Briccio, L.A.; Feng, X.; Upadhyay, A.; Pujari, V.; Lechartier, B.; Fontes, F.L.; Yang, H.; Rao, G.;

Zhu, W.; et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J. Med. Chem. 2014,
57, 3126–3139.

63. Giordano, S.; Petrelli, A. From single-to multi-target drugs in cancer therapy: When aspecificity becomes an
advantage. Curr. Med. Chem. 2008, 15, 422–432.

64. Petrelli, A.; Valabrega, G. Multitarget drugs: The present and the future of cancer therapy. Expert Opin.
Pharmacother. 2009, 10, 589–600.

65. Jenwitheesuk, E.; Samudrala, R. Identification of potential multitarget antimalarial drugs. JAMA 2005,
294, 1487–1491.

66. Bugatti, A.; Urbinati, C.; Ravelli, C.; De Clercq, E.; Liekens, S.; Rusnati, M. Heparin-mimicking sulfonic
acid polymers as multitarget inhibitors of human immunodeficiency virus type 1 Tat and gp120 proteins.
Antimicrob. Agents Chemother. 2007, 51, 2337–2345.

67. Balzarini, J.; Andrei, G.; Balestra, E.; Huskens, D.; Vanpouille, C.; Introini, A.; Zicari, S.; Liekens, S.; Snoeck, R.;
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