Synthesis, Structure, Surface and Antimicrobial Properties of New Oligomeric Quaternary Ammonium Salts with Aromatic Spacer

Bogumił Brycki^{1,*}, Anna Koziróg², Iwona Kowalczyk¹, Tomasz Pospieszny¹, Paulina Materna¹, Jędrzej Marciniak³

¹ Laboratory of Microbiocides Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland, E-Mails: brycki@amu.edu.pl (B.B.); <u>iwkow@amu.edu.pl</u> (I.K.); tposp@amu.edu.pl (T.P.); p_materna@wp.pl (P.M.);

² Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; E-Mails: anna.kozirog@p.lodz.pl (A.K.)

³ Department of Materials Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland, E-Mail: jedrzej.marciniak@amu.edu.pl (J.M.).

* Authors to whom correspondence should be addressed; E-Mails: brycki@amu.edu.pl (B.B.); phone: +48-61-829-1694 (B.B.).

Table S1. Experimental data of synthesized di- tri- and tetrameric alkylammonium surfactants with aromatic spacer and with different chai	in lengths.
---	-------------

	Molar Rea	Reaction		Melting		%	N	C	% C	% H	
Compound	mass [g/mol]	Time [h]	Yield [%]	point [°C]	Molecular formula	AE	calc.	AE	calc.	AE	calc.
2	466,35	4	90	201-203	C20H38N2Br2	5,93	5,93	50,43	50,96	8,44	9,39
3	522,45	6	80	206-207	C24H46N2Br2 x 0,5 H2O	5,34	5,27	54,19	54,24	9,12	8,91
4	578,56	8	90	210-211	C28H54N2Br2	4,99	4,84	58,26	58,13	9,60	9,41
5	634,67	8	90	216-217	C32H62N2Br2	4,54	4,41	60,33	60,56	10,03	9,85
6	690,78	9	95	219-220	C36H70N2Br2	4,28	4,06	62,34	62,61	10,39	10,21
7	746,89	9	95	221-222	C40H78N2Br2	3,66	3,75	64,22	64,33	10,69	10,53
8	802,99	10	90	223-224	C44H86N2Br2	3,56	3,49	65,76	65,81	10,98	10,79
9	859,1	10	90	224-225	C48H94N2Br2	3,40	3,26	67,43	67,11	11,26	11,03
10	660,46	4	50	218-219	C27H54N3Br3 x H2O	5,76	6,19	47,33	47,80	8,53	8,32
11	744,62	6	50	221-222	C33H66N3Br3 x 1,5 H2O	5,25	5,45	51,64	51,37	9,22	9,01

12	828,79	7	60	223-224	C39H78N3Br3 x H2O	4,69	4,96	55,41	55,32	9,78	9,52
13	912,95	8	40	225-226	C45H90N3Br3 x H2O	4,28	4,51	58,39	58,06	10,14	9,96
14	997,11	10	70	227-228	C51H102N3Br3 x 2 H2O	4,03	4,07	59,06	59,29	10,38	10,34
15	1081,27	12	60	229-230	C57H114N3Br3 x 2 H2O	3,63	3,76	61,01	61,28	10,59	10,64
16	1165,43	13	50	232-234	C63H126N3Br3 x 1,5 H2O	3,34	3,52	64,20	63,46	11,10	10,90
17	1249,6	15	85	235-236	C69H138N3Br3 x H2O	3,23	3,31	65,45	65,38	11,29	11,13
18	966,79	7	15	217-219	C42H86N4Br4 x H2O	5,51	5,69	51,36	51,22	9,34	9,01
19	1079,01	9	5	220-221	C50H102N4Br4 x 2 H2O	4,69	5,02	54,69	53,86	9,83	9,58
20	1191,22	10	30	221-223	C58H118N4Br4 x H2O	4,47	4,63	57,34	57,61	10,05	10,00
21	1303,44	12	70	224-226	C66H134N4Br4 x 2 H2O	4,24	4,18	59,22	59,18	10,52	10,38
22	1415,63	13	50	225-226	C74H150N4Br4 x H2O	4,13	3,91	61,65	62,00	10,62	10,69
23	1527,84	14	62	228-230	C82H166N4Br4 x H2O	3,73	3,62	63,46	63,71	10,73	10,95

The structures and numbering protons and carbons of compounds 1c-23.

Protons	1c ^b	2 ^a	3 ª	3 ^b	4 ^a	4 ^b	5ª	5 ^b	6 ^a	6 ^b	7 ª	8 ^a	9 ª	10 ^a	10 ^b
а	7.37	7.76	7.76	7.86	7.75	7.84	7.75	7.84	7.75	7.82	7.75	7.75	7.74	8.09	8.01
b	4.60	4.66	4.66	5.28	4.64	5.29	4.65	5.29	4.64	5.28	4.64	4.64	4.64	4.73	4.83
с	-	3.11	3.11	3.27	3.10	3.26	3.10	3.26	3.10	3.25	3.10	3.09	3.10	3.22	3.11
d	-	3.43	3.41	3.61	3.40	3.60	3.40	3.60	3.39	3.59	3.40	3.38	3.38	3.54	3.42
e	-	1.46	1.41	1.37	1.33, 1.41	1.37, 1.27	1.30, 1.41	1.37, 1.26	1.28, 1.42	1.26, 1.37	1.29, 1.42	1.28, 1.41	1.28, 1.42	1.43	1.42
f	-	1.90	1.91	1.86	1.91	1.86	1.92	1.86	1.91	1.85	1.91	1.91	1.91	1.89	1.92
g	-	1.05	0.94	0.88	0.91	0.88	0.90	0.88	0.90	0.88	0.90	0.89	0.90	1.04	0.94
h	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^a in CD₃OD as solvent; ^b in CDCl₃ as solvent

Protons	11 ª	11 ^b	12 ^b	13 ^b	14 ª	14 ^b	15 ^b	16 ^b	17 ª	18 ^b	19 ^b	20 ^b	21 ^a	21 ^b	22 ^b	23 ^b
a	8.09	8.06	8.03	8.01	8.07	8.00	8.00	8.00	8.07	8.19	8.11	8.09	8.27	8.04	8.24	8.14
b	4.74	4.93	5,00	4.99	4.73	5.01	5.00	5.04	4.72	5.22	5.21	5.17	5.08	5.15	5.23	5.13
с	3.22	3.27	3.30	3.29	3.22	3.29	3.29	3.29	3.22	3.34	3.34	3.35	3.19	3.37	3.35	3.36
d	3.54	3.63	3.64	3.63	3.53	3.63	3.63	3.62	3.53	4.06	4.09	4.10	3.78	4.12	4.07	4.10
e	1.45	1.34	1.25, 1.34	1.25, 1.35	1.30, 1.41	1.34, 1.25	1.25, 1.34	1.25, 1.32	1.29	1.39	1.41	1.27, 1.40	1.30, 1.45	1.27, 1.40	1.39, 1.45	1.26, 1.40
f	1.90	1.80	1.79	1.78	1.90	1.78	1.79	1.78	1.91	1.83	1.83	1.82	1.93	1.79	1.82	1.81
g	1.04	0.88, 0.90	0.87	0.88	0.90	0.88	0.88	0.88	0.90	0.91	0.89	0.89	0.90	0.89	0.88	0.88
h	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table S3. The $^1\!\mathrm{H}$ NMR chemical shifts (ppm) of compounds 11-23.

 $^{\rm a}$ in CD3OD as solvent; $^{\rm b}$ in CDCl3 as solvent

Carbo n	1c ^b	2 ^a	3 ª	3 ^b	4 ^a	4 ^b	5 ª	5 ^b	6 ^a	6 ^b	7 ª	8 ^a	9 ª	10 ^a	10 ^b
a	137.	135.	135.	133.	135.	134.	135.	134.	135.	134.	135.	135.	135.	141.	139.
ű	6	0	0	9	0	0	0	0	0	0	0	0	0	2	6
b	28.7	66.0	66.1	64.5	66.2	64.7	66.2	64.7	66.2	64.8	66.2	66.1	66.0	66.1	64.5
с	-	50.6	50.6	49.3	50.6	49.4	50.6	49.3	50.6	49.4	50.5	50.6	50.6	50.6	49.1
d	-	67.9	67.9	66.1	67.9	65.9	67.9	66.0	67.9	66.0	68.0	68.1	67.8	68.0	66.7
e, f	-	25.7 <i>,</i> 20.8	32.5, 23.6, 23.7, 27.2	31.1, 26.0, 22.8, 22.3	32.9, 30.3, 27.5, 23.8, 23.7	31.5, 29.2, 29.0, 26.3, 22.9, 22.5	33.1, 30.7, 30.4, 27.5, 23.8	31.7, 29.3, 29.2, 29.1, 26.3, 22.9, 22.5	33.1, 30.8, 30.7, 30.5, 30.4, 27.5, 23.8	31.8, 29.5, 29.4, 29.3, 26.4, 23.0, 22.6	33.1, 30.8, 30.7, 30.6, 30.5, 30.4, 27.5, 23.8	33.1, 30.8, 30.7, 30.6, 30.5, 30.4, 27.5, 23.8	33.1, 30.8, 30.7, 30.5, 30.4, 27.5, 23.8	25.7, 20.9	24.4, 19.5
g	-	14.0	14.3	13.8	14.5	13.9	14.5	13.9	14.5	14.0	14.5	14.6	14.5	14.1	13.5

 Table S4. The ¹³C NMR chemical shifts (ppm) of compounds 1c-10.

h	133.	131.	131.	130.	131.	130.	131.	130.	131.	130.	131.	131.	131.	131.	129.
п	6	6	6	0	6	0	6	0	6	0	6	6	6	3	3

^a in CD₃OD as solvent; ^b in CDCl₃ as solvent

 Table S5. The ¹³C NMR chemical shifts (ppm) of compounds 11-23.

Carbon	11 ^a	11 ^b	12 ^b	13 ^b	14 ª	14 ^b	15 ^b	16 ^b	17 ª	18 ^b	19 ^b	20 ^b	21 ^a	21 ^b	22 ^b	23 ^b
а	141.2	140	139.8	139.8	141.2	139.8	139.9	139.8	141.2	142.0	142.0	141.9	146.3	141.7	142.2	141.8
b	66.3	64.5	64.4	64.5	66.2	64.6	64.6	64.4	66.0	62.4	62.5	62.6	66.7	62.6	62.5	62.4
с	50.6	49.4	49.3	49.3	50.6	49.4	49.4	49.4	50.6	49.9	49.9	49.9	52.8	50.0	49.8	49.8
d	68.0	66.9	67.1	67.1	68.2	67.2	67.2	67.3	68.2	65.7	65.8	65.9	69.8	65.9	65.8	66.0
e, f	32.5, 27.2, 23.7, 23.6	31.3, 25.9, 22.7, 22.4	31.7, 29.2, 29.0, 26.2, 22.7, 22.5	31.8, 29.5, 29.4, 29.3, 29.2, 26.2, 22.7, 22.5	33.1, 30.8, 30.7, 30.5, 27.6, 23.8	31.8, 29.6, 29.4, 29.3, 22.8, 22.6	31.9, 29.6, 29.5, 29.3, 26.3, 22.8, 22.6	31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 26.2, 25.9, 22.8, 22.6	33.2, 30.9, 30.8, 30.7, 30.6, 30.5, 27.6, 26.7, 23.8	31.4, 26.0, 23.0, 22.4	31.6, 27.5, 26.0, 23.4, 22.7	31.7, 29.2, 27.4, 26.4, 23.2, 22.6	35.6, 33.3, 33.2, 33.0, 30.0, 26.5, 26.3	31.9, 29.6, 29.5, 29.3, 26.4, 23.2, 22.6	29.7, 29.6, 29.5, 29.4, 27.1, 26.5, 25.7, 23.2, 22.7	31.9, 29.7, 29.6, 29.5, 29.3, 26.4
g	14.4	14.0	14.0	14.0	14.5	14.0	14.1	14.1	14.5	13.9	13.9	14.0	17.0	14.1	14.1	14.1
h	131.3	129.3	129.2	129.2	131.3	129.3	129.3	129.3	131.3	132.4	132.7	132.5	136.5	132.5	132.6	132.5

^a in CD₃OD as solvent; ^b in CDCl₃ as solvent

a)

b)

c)

Figure S1. 2D NMR spectra of compound 21: COSY (a), HSQC (b) and HMBC (c).

Synthesis:

Synthesis1,4-*di*-[*N*-(1-*buty*])-*N*,*N*-*dimethylammoniummethyl*)*benzene dibromide* (**2**) RT = 4 h, white solid (90%), m. p. 201-203 °C. ¹H NMR (CD₃OD) δ : 7.76 ppm (4H, a), 4.66 ppm (4H, b), 3.43 ppm (4H, d), 3.11 ppm (12H, c), 1.90 ppm (4H, f), 1.46 ppm (4H, e), 1.05 ppm (6H, g). ¹³C NMR (CD₃OD) δ : 135.0 ppm (a), 131.6 ppm (h), 67.9 ppm (d), 66.0 ppm (b), 50.6 ppm (c), 25.7 and 20.8 ppm (e,f), 14.0 ppm (g). Elemental analysis for C₂₀H₃₈N₂Br₂ found (calc.): %N 5.93 (5.93); %C 50.43 (50.96); %H 8.44 (9.39). ESI(+)-MS (*m*/*z*): 153.1 (C₂₀H₃₈N₂/2). FT-IR (KBr) v_{max}: 3503, 3014, 2967, 2874, 1618, 1489, 1384, 1221, 1011, 942, 884, 826, 733.

1,4-*di*-[*N*-(1-*hexyl*)-*N*,*N*-*dimethylammoniummethyl*)*benzene dibromide* (**3**) RT = 6 h, white solid (80%), m. p. 206-207 °C. ¹H NMR (CD₃OD) δ : 7.76 ppm (4H, a), 4.66 ppm (4H, b), 3.41 ppm (4H, d), 3.11 ppm (12H, c), 1.91 ppm (4H, f), 1.41 ppm (12H, e), 0.94 ppm (6H, g). ¹H NMR (CDCl₃) δ : 7.86 ppm (4H, a), 5.28 ppm (4H, b), 3.61 ppm (4H, d), 3.27 ppm (12H, c), 1.86 ppm (4H, f), 1.37 ppm (12H, e), 0.88 ppm (6H, g). ¹³C NMR (CD₃OD) δ : 135.0 ppm (a), 131.6 ppm (h), 67.9 ppm (d), 66.1 ppm (b), 50.6 ppm (c), 32.5, 27.2, 23.7 and 23.6 ppm (e,f), 14.3 ppm (g). ¹³C NMR (CDCl₃) δ : 133.9 ppm (a), 130.0 ppm (h), 66.1 ppm (d), 64.5 ppm (b), 49.3 ppm (c), 31.1, 26.0, 22.8 and 22.3 ppm (e,f), 13.8 ppm (g). Elemental analysis for C₂₄H₄₆N₂Br₂ · 0.5 H₂O found (calc.): %N 5.34 (5.27); %C 54.19 (54.24); %H 9.12 (8.91). ESI(+)-MS (*m*/*z*): 181.2 (C₂₄H₄₆N₂/2).

1,4-*di*-[*N*,*N*-*dimethyl*-*N*-(1-*octyl*)*ammoniummethyl*)*benzene dibromide* (4) RT = 8 h, white solid (90%), m. p. 210-211 °C. ¹H NMR (CD₃OD) δ : 7.75 ppm (4H, a), 4.64 ppm (4H, b), 3.40 ppm (4H, d), 3.10 ppm (12H, c), 1.91 ppm (4H, f), 1.41 and 1.33 ppm (20H, e), 0.91 ppm (6H, g). ¹H NMR (CDCl₃) δ : 7.84 ppm (4H, a), 5.29 ppm (4H, b), 3.60 ppm (4H, d), 3.26 ppm (12H, c), 1.86 ppm (4H, f), 1.27, 1.37 ppm (20H, e), 0.88 ppm (6H, g). ¹³C NMR (CD₃OD) δ : 135.0 ppm (a), 131.6 ppm (h), 67.9 ppm (d), 66.2 ppm (b), 50.6 ppm (c), 32.9, 30.3, 27.5, 23.7 and 23.7 ppm (e,f), 14.5 ppm (g). ¹³C NMR (CDCl₃) δ : 134.0 ppm (a), 130.0 ppm (h), 65.9 ppm (d), 64.7 ppm (b), 49.4 ppm (c), 31.5, 29.2, 29.0, 26.3, 22.9 and 22.5 ppm (e,f), 13.9 ppm (g). Elemental analysis for C₂₈H₅₄N₂Br₂ found (calc.): %N 4.99 (4.84); %C 58.26 (58.13); %H 9.60 (9.41). ESI(+)-MS (*m*/*z*): 209.2 (C₂₈H₅₄N₂/2).

1,4-*di*-[*N*-(1-*decyl*)-*N*,*N*-*dimethylammoniummethyl*)*benzene dibromide* (**5**) RT = 8 h, white solid (90%), m. p. 216-217 °C. ¹H NMR (CD₃OD) δ: 7.75 ppm (4H, a), 4.65 ppm (4H, b), 3.40 ppm (4H, d), 3.10 ppm (12H,

c), 1.92 ppm (4H, f), 1.41 and 1.30 ppm (28H, e), 0.90 ppm (6H, g). ¹H NMR (CDCl₃) δ : 7.84 ppm (4H, a), 5.29 ppm (4H, b), 3.60 ppm (4H, d), 3.26 ppm (12H, c), 1.86 ppm (4H, f), 1.37 and 1.26 ppm (28H, e), 0.88 ppm (6H, g). ¹³C NMR (CD₃OD) δ : 135.0 ppm (a), 131.6 ppm (h), 67.9 ppm (d), 66.2 ppm (b), 50.6 ppm (c), 33.1, 30.7, 30.4, 27.5 and 23.8 ppm (e,f), 14.5 ppm (g). ¹³C NMR (CDCl₃) δ : 134.0 ppm (a), 130.0 ppm (h), 66.0 ppm (d), 64.7 ppm (b), 49.3 ppm (c), 31.7, 29.3, 29.2, 29.1, 26.3, 22.9 and 22.5 ppm (e,f), 13.9 ppm (g). Elemental analysis for C₃₂H₆₂N₂Br₂ found (calc.): %N 4.54 (4.41); %C 60.33 (60.56); %H 10.03 (9.85). ESI(+)-MS (*m/z*): 237.2 (C₃₂H₆₂N₂/2).

1,4-*di*-[*N*-(1-*dodecyl*)-*N*,*N*-*dimethylammoniummethyl*)*benzene dibromide* (**6**) RT = 9 h, white solid (95%), m. p. 219-220 °C. ¹H NMR (CD₃OD) δ: 7.75 ppm (4H, a), 4.64 ppm (4H, b), 3.39 ppm (4H, d), 3.10 ppm (12H, c), 1.91 ppm (4H, f), 1.42 and 1.28 ppm (36H, e), 0.90 ppm (6H, g). ¹H NMR (CDCl₃) δ: 7.82 ppm (4H, a), 5.28 ppm (4H, b), 3.59 ppm (4H, d), 3.25 ppm (12H, c), 1.85 ppm (4H, f), 1.37 and 1.26 ppm (36H, e), 0.88 ppm (6H, g). ¹³C NMR (CD₃OD) δ: 135.0 ppm (a), 131.6 ppm (h), 67.9 ppm (d), 66.2 ppm (b), 50.6 ppm (c), 33.1, 30.8, 30.7, 30.5, 30.4, 27.5 and 23.8 ppm (e,f), 14.5 ppm (g). ¹³C NMR (CDCl₃) δ: 134.0 ppm (a), 130.0 ppm (h), 66.0 ppm (d), 64.8 ppm (b), 49.4 ppm (c), 31.8, 29.5, 29.4, 29.3, 26.4, 23.0 and 22.6 ppm (e,f), 14.0 ppm (g). Elemental analysis for C₃₆H₇₀N₂Br₂ found (calc.): %N 4.28 (4.06); %C 62.34 (62.61); %H 10.39 (10.21). ESI(+)-MS (*m*/*z*): 265.7 (C₃₆H₇₀N₂/2). FT-IR (KBr) v_{max}: 3402, 3009, 2959, 2918, 2854, 1490, 1456, 1430, 1219, 1005, 880, 824, 721.

1,4-*di*-[*N*,*N*-*dimethyl*-*N*-(1-*tetradecyl*)*ammoniummethyl*)*benzene dibromide* (7) RT = 9 h, white solid (95%), m. p. 221-222 °C. ¹H NMR (CD₃OD) δ : 7.75 ppm (4H, a), 4.64 ppm (4H, b), 3.40 ppm (4H, d), 3.10 ppm (12H, c), 1.91 ppm (4H, f), 1.42 and 1.29 ppm (44H, e), 0.90 ppm (6H, g). ¹³C NMR (CD₃OD) δ : 135.0 ppm (a), 131.6 ppm (h), 68.0 ppm (d), 66.2 ppm (b), 50.5 ppm (c), 33.1, 30.8, 30.7, 30.6, 30.5, 30.4, 27.5 and 23.8 ppm (e,f), 14.5 ppm (g). Elemental analysis for C₄₀H₇₈N₂Br₂ found (calc.): %N 3.66 (3.75); %C 64.22 (64.33); %H 10.69 (10.53). ESI(+)-MS (*m*/*z*): 293.5 (C₄₀H₇₈N₂/2).

1,4-*di*-[*N*-(1-*hexadecyl*)-*N*,*N*-*dimethylammoniummethyl*)*benzene dibromide* (8) RT = 10 h, white solid (90%), m. p. 223-224 °C. ¹H NMR (CD₃OD) δ: 7.75 ppm (4H, a), 4.64 ppm (4H, b), 3.38 ppm (4H, d), 3.09 ppm (12H, c), 1.91 ppm (4H, f), 1.41 and 1.28 ppm (52H, e), 0.89 ppm (6H, g). ¹³C NMR (CD₃OD) δ: 135.0 ppm (a), 131.6 ppm (h), 68.1 ppm (d), 66.1 ppm (b), 50.6 ppm (c), 33.1, 30.8, 30.7, 30.6, 30.5, 30.4, 27.5 and 23.8 ppm (e,f), 14.6 ppm (g). Elemental analysis for C44H86N2Br2 found (calc.): %N 3.56 (3.49); %C 65.76 (65.81); %H 10.98 (10.79). ESI(+)-MS (*m/z*): 321.6 (C44H86N2/2).

1,4-*di*-[*N*,*N*-*dimethyl*-*N*-(1-octadecyl)ammoniummethyl)benzene dibromide (**9**) RT = 10 h, white solid (90%), m. p. 224-225 °C. ¹H NMR (CD₃OD) δ : 7.74 ppm (4H, a), 4.64 ppm (4H, b), 3.38 ppm (4H, d), 3.10 ppm (12H, c), 1.91 ppm (4H, f), 1.42 and 1.28 ppm (60H, e), 0.90 ppm (6H, g). ¹³C NMR (CD₃OD) δ : 135.0 ppm (a), 131.6 ppm (h), 67.8 ppm (d), 66.0 ppm (b), 50.6 ppm (c), 33.1, 30.8, 30.7, 30.6, 30.5, 30.4, 27.5 and 23.8 ppm (e,f), 14.5 ppm (g). Elemental analysis for C₄₈H₉₄N₂Br₂ found (calc.): %N 3.40 (3.26); %C 67.43 (67.11); %H 11.26 (11.03). ESI(+)-MS (*m*/*z*): 349.8 (C₄₈H₉₄N₂/2). FT-IR (KBr) ν_{max} : 3383, 3025, 2921, 2851, 1487, 1420, 1384, 1221, 1011, 872, 826, 722.

1,3,5-tris-[N-(1-butyl)-N,N-dimethylammoniummethyl)benzene tribromide (**10**) RT = 4 h, white solid (50%), m. p. 218-219 °C. ¹H NMR (CD₃OD) δ: 8.09 ppm (3H, a), 4.73 ppm (6H, b), 3.54 ppm (6H, d), 3.22 ppm (18H, c), 1.89 ppm (6H, f), 1.43 ppm (6H, e), 1.04 ppm (9H, g). ¹H NMR (CDCl₃): 8.01 ppm (3H, a), 4.83 ppm (6H, b), 3.42 ppm (6H, d), 3.11 ppm (18H, c), 1.81 ppm (6H, f), 1.42 ppm (6H, e), 0.94 ppm (9H, g). ¹³C NMR (CD₃OD) δ: 141.2 ppm (a), 131.3 ppm (h), 68.0 ppm (d), 66.1 ppm (b), 50.6 ppm (c), 25.7 and 20.9 ppm (e,f), 14.1 ppm (g). ¹³C NMR (CDCl₃) δ: 139.6 ppm (a), 129.3 ppm (h), 66.7 ppm (d), 64.5 ppm (b), 49.1 ppm (c), 24.4 ppm (f), 19.5 ppm (e), 13.5 ppm (g). Elemental analysis for C₂₇H₅₄N₃Br₃ · H₂O found (calc.): %N 5.76 (6.19); %C 47.33 (47.80); %H 8.53 (8.32). ESI(+)-MS (*m*/*z*): 140.2 (C₂₇H₅₄N₃/3). FT-IR (KBr) vmax: 3434, 3014, 2983, 2878, 2076, 1642, 1488, 1454, 1384, 1190, 1038, 882, 754. 1,3,5-tris-[N-(1-hexyl)-N,N-dimethylammoniummethyl)benzene tribromide (11) RT = 6 h, white solid (50%), m. p. 221-222 °C. ¹H NMR (CD₃OD) δ: 8.09 ppm (3H, a), 4.74 ppm (6H, b), 3.54 ppm (6H, d), 3.22 ppm (18H, c), 1.90 ppm (6H, f), 1.45 ppm (18H, e), 1.04 ppm (9H, g). ¹H NMR (CDCl₃): 8.06 ppm (3H, a), 4.93 ppm (6H, b), 3.63 ppm (6H, d), 3.27 ppm (18H, c), 1.80 ppm (6H, f), 1.34 ppm (18H, e), 0.90 and 0.88 ppm (9H, g). ¹³C NMR (CD₃OD) δ: 141.2 ppm (a), 131.3 ppm (h), 68.0 ppm (d), 66.3 ppm (b), 50.6 ppm (c), 32.5, 27.2, 23.7 and 23.6 ppm (e,f), 14.4 ppm (g). ¹³C NMR (CDCl₃) δ: 140.0 ppm (a), 129.3 ppm (h), 66.9 ppm (d), 64.5 ppm (b), 49.4 ppm (c), 31.3, 29.9, 22.7 and 22.4 ppm (e, f), 14.0 ppm (g). Elemental analysis for C₃₃H₆₆N₃Br₃ · 1.5 H₂O found (calc.): %N 5.25 (5.45); %C 51.64 (51.37); %H 9.22 (9.01). ESI(+)-MS (*m/z*): 168.3 (C₃₃H₆₆N₃/3).

1,3,5-tris-[N,N-dimethyl-N-(1-octyl)ammoniummethyl)benzene tribromide (**12**) RT = 7 h, white solid (60%), m. p. 223-224 °C. ¹H NMR (CDCl₃) δ : 8.03 ppm (3H, a), 5.00 ppm (6H, b), 3.64 ppm (6H, d), 3.30 ppm (18H, c), 1.79 ppm (6H, f), 1.34 and 1.25 ppm (30H, e), 0.87 ppm (9H, g). ¹³C NMR (CDCl₃) δ : 139.8 ppm (a), 129.2 ppm (h), 67.1 ppm (d), 64.4 ppm (b), 49.3 ppm (c), 31.7, 29.2, 29.0, 26.2, 22.7 and 22.5 ppm (e,f), 14.0 ppm (g). Elemental analysis for C₃₉H₇₈N₃Br₃ · H₂O found (calc.): %N 4.69 (4.96); %C 55.41 (55.32); %H 9.78 (9.52). ESI(+)-MS (*m*/*z*): 196.4 (C₃₉H₇₈N₃/3).

1,3,5-tris-[N-(1-decyl)-N,N-dimethylammoniummethyl)benzene tribromide (**13**) RT = 8 h, white solid (40%), m. p. 225-226 °C. ¹H NMR (CDCl₃) δ : 8.01 ppm (3H, a), 4.99 ppm (6H, b), 3.63 ppm (6H, d), 3.29 ppm (18H, c), 1.78 ppm (6H, f), 1.35 and 1.25 ppm (42H, e), 0.88 ppm (9H, g). ¹³C NMR (CDCl₃) δ : 139.8 ppm (a), 129.9 ppm (h), 67.1 ppm (d), 64.5 ppm (b), 49.3 ppm (c), 31.8, 29.5, 29.4, 29.3, 29.2, 26.2, 22.7 and 22.5 ppm (e,f), 14.0 ppm (g). Elemental analysis for C₄₅H₉₀N₃Br₃ · H₂O found (calc.): %N 4.28 (4.51); %C 58.39 (58.06); %H 10.14 (9.96). ESI(+)-MS (*m*/*z*): 224.2 (C₄₅H₉₀N₃/3).

1,3,5-tris-[N-(1-dodecyl)-N,N-dimethylammoniummethyl)benzene tribromide (**14**) RT = 10 h, white solid (70%), m. p. 227-228 °C. ¹H NMR (CD₃OD) δ : 8.07 ppm (3H, a), 4.73 ppm (6H, b), 3.53 ppm (6H, d), 3.22 ppm (18H, c), 1.90 ppm (6H, f), 1.41 and 1.30 ppm (54H, e), 0.90 ppm (9H, g). ¹H NMR (CDCl₃) δ : 8.00 ppm (3H, a), 5.01 ppm (6H, b), 3.63 ppm (6H, d), 3.29 ppm (18H, c), 1.78 ppm (6H, f), 1.34 and 1.25 ppm (54H, e), 0.88 ppm (9H, g). ¹³C NMR (CD₃OD) δ : 141.2 ppm (a), 131.3 ppm (h), 68.2 ppm (d), 66.2 ppm (b), 50.6 ppm (c), 33.1, 30.8, 30.7, 30.5, 27.6 and 23.8 ppm (e,f), 14.5 ppm (g). ¹³C NMR (CDCl₃) δ : 139.8 ppm (a), 129.3 ppm (h), 67.2 ppm (d), 64.6 ppm (b), 49.4 ppm (c), 31.8, 29.6, 29.4, 29.3, 22.8 and 22.6 ppm (e,f), 14.0 ppm (g). Elemental analysis for C₅₁H₁₀₂N₃Br₃ · 2 H₂O found (calc.): %N 4.03 (4.07); %C 59.06 (59.29); %H 10.38 (10.34). ESI(+)-MS (*m*/*z*): 252.5 (C₅₁H₁₀₂N₃/3). FT-IR (KBr) v_{max}: 3437, 3018, 2928, 2854, 1755, 1490, 1468, 1436, 1381, 1195, 1033, 753, 724.

1,3,5-tris-[N,N-dimethyl-N-(1-tetradecyl)ammoniummethyl)benzene tribromide (**15**) RT = 12 h, white solid (60%), m. p. 229-230 °C. ¹H NMR (CDCl₃) δ: 8.00 ppm (3H, a), 5.00 ppm (6H, b), 3.63 ppm (6H, d), 3.29 ppm (18H, c), 1.79 ppm (6H, f), 1.34 and 1.25 ppm (66H, e), 0.88 ppm (9H, g). ¹³C NMR (CDCl₃) δ: 139.9 ppm (a), 129.3 ppm (h), 67.2 ppm (d), 64.6 ppm (b), 49.4 ppm (c), 31.9, 29.6, 29.5, 29.3, 26.3, 22.8 and 22.6 ppm (e,f), 14.1 ppm (g). Elemental analysis for C₅₇H₁₁₄N₃Br₃ · 2 H₂O found (calc.): %N 3.63 (3.76); %C 61.01 (61.28); %H 10.59 (10.64). ESI(+)-MS (*m*/*z*): 280.5 (C₅₇H₁₁₄N₃/3). FT-IR (KBr) ν_{max}: 3435, 3018, 2920, 2853, 1620, 1489, 1469, 1432, 1373, 1197, 1030, 897, 753, 722, 672.

1,3,5-tris-[N-(1-hexadecyl)-N,N-dimethylammoniummethyl)benzene tribromide (**16**) RT = 13 h, white solid (50%), m. p. 232-234 °C. ¹H NMR (CDCl₃) δ: 8.00 ppm (3H, a), 5.04 ppm (6H, b), 3.62 ppm (6H, d), 3.29 ppm (18H, c), 1.78 ppm (6H, f), 1.32 and 1.25 ppm (78H, e), 0.88 ppm (9H, g). ¹³C NMR (CDCl₃) δ: 139.8 ppm (a), 129.3 ppm (h), 67.3 ppm (d), 64.4 ppm (b), 49.4 ppm (c), 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 26.2, 25.9, 22.8 and 22.6 ppm (e,f), 14.1 ppm (g). Elemental analysis for C₆₃H₁₂₆N₃Br₃ · 1.5 H₂O found (calc.): %N 3.34 (3.52); %C 64.20 (63.46); %H 11.10 (10.90). ESI(+)-MS (*m*/*z*): 308.6 (C₆₃H₁₂₆N₃/3).

1,3,5-tris-[N,N-dimethyl-N-(1-octadecyl)ammoniummethyl)benzene tribromide (17) RT = 15 h, white solid (85%), m. p. 235-236 °C. ¹H NMR (CD₃OD) δ : 8.07 ppm (3H, a), 4.72 ppm (6H, b), 3.53 ppm (6H, d),

3.22 ppm (18H, c), 1.91 ppm (6H, f), 1.29 ppm (90H, e), 0.90 ppm (9H, g). ¹³C NMR (CD₃OD) δ: 141.2 ppm (a), 131.3 ppm (h), 68.2 ppm (d), 66.0 ppm (b), 50.6 ppm (c), 33.2, 30.9, 30.8, 30.7, 30.6, 30.5, 27.6, 26.7 and 23.8 ppm (e,f), 14.5 ppm (g). Elemental analysis for C₆₉H₁₃₈N₃Br₃ · H₂O found (calc.): %N 3.23 (3.31); %C 65.45 (65.38); %H 11.29 (11.13). ESI(+)-MS (*m*/*z*): 336.6 (C₆₉H₁₃₈N₃/3). FT-IR (KBr) ν_{max}: 3426, 3012, 2921, 2852, 1717, 1625, 1465, 1453, 1373, 1190, 1030, 904, 755, 720.

1,2,4,5-tetrakis-[N-(1-hexyl)-N,N-dimethylammoniummethyl)benzene tetrabromide (**18**) RT = 7 h, white solid (15%), m. p. 217-219 °C. ¹H NMR (CDCl₃) δ : 8.19 ppm (2H, a), 5.22 ppm (8H, b), 4.06 ppm (8H, d), 3.34 ppm (24H, c), 1.83 ppm (8H, f), 1.39 ppm (24H, e), 0.91 ppm (12H, g). ¹³C NMR (CDCl₃) δ : 142.0 ppm (a), 132.4 ppm (h), 65.7 ppm (d), 62.4 ppm (b), 49.9 ppm (c), 31.4, 26.0, 23.0 and 22.4 ppm (e,f), 13.9 ppm (g). Elemental analysis for C₄₂H₈₆N₄Br₄ · H₂O found (calc.): %N 5.51 (5.69); %C 51.36 (51.22); %H 9.34 (9.01). ESI(+)-MS (*m*/*z*): 161.8 (C₄₂H₈₆N₄/4).

1,2,4,5-tetrakis-[N,N-dimethyl-N-(1-octyl)ammoniummethyl)benzene tetrabromide (**19**) RT = 9 h, white solid (5%), m. p. 220-221 °C. ¹H NMR (CDCl₃) δ : 8.11 ppm (2H, a), 5.21 ppm (8H, b), 4.09 ppm (8H, d), 3.34 ppm (24H, c), 1.83 ppm (8H, f), 1.41 ppm (40H, e), 0.89 ppm (12H, g). ¹³C NMR (CDCl₃) δ : 142.0 ppm (a), 132.7 ppm (h), 65.8 ppm (d), 62.5 ppm (b), 49.9 ppm (c), 31.6, 27.5, 26.0, 23.4 and 22.7 ppm (e,f), 13.9 ppm (g). Elemental analysis for C₅₀H₁₀₂N₄Br₄ · 2 H₂O found (calc.): %N 4.69 (5.02); %C 54.69 (53.86); %H 9.83 (9.58). ESI(+)-MS (*m*/*z*): 189.8 (C₅₀H₁₀₂N₄/4).

1,2,4,5-tetrakis-[N-(1-decyl)-N,N-dimethylammoniummethyl)benzene tetrabromide (**20**) RT = 10 h, white solid (30%), m. p. 221-223 °C. ¹H NMR (CDCl₃) δ : 8.09 ppm (2H, a), 5.17 ppm (8H, b), 4.10 ppm (8H, d), 3.35 ppm (24H, c), 1.82 ppm (8H, f), 1.40 and 1.27 ppm (56H, e), 0.89 ppm (12H, g). ¹³C NMR (CDCl₃) δ : 141.9 ppm (a), 132.5 ppm (h), 65.9 ppm (d), 62.6 ppm (b), 49.9 ppm (c), 31.7, 29.2, 27.4, 26.4, 23.2 and 22.6 ppm (e,f), 14.0 ppm (g). Elemental analysis for C₅₈H₁₁₈N₄Br₄ · H₂O found (calc.): %N 4.47 (4.63); %C 57.34 (57.61); %H 10.05 (10.00). ESI(+)-MS (*m*/z): 217.9 (C₅₈H₁₁₈N₄/4).

1,2,4,5-tetrakis-[N-(1-dodecyl)-N,N-dimethylammoniummethyl)benzene tetrabromide (**21**) RT = 12 h, white solid (70%), m. p. 224-226 °C. ¹H NMR (CD₃OD) δ: 8.27 ppm (2H, a), 5.08 ppm (8H, b), 3.78 ppm (8H, d), 3.19 ppm (24H, c), 1.93 ppm (8H, f), 1.45 and 1.30 ppm (72H, e), 0.90 ppm (12H, g). ¹H NMR (CDCl₃) δ: 8.04 ppm (2H, a), 5.15 ppm (8H, b), 4.12 ppm (8H, d), 3.37 ppm (24H, c), 1.79 ppm (8H, f), 1.40 and 1.27 ppm (72H, e), 0.89 ppm (12H, g). ¹³C NMR (CD₃OD) δ: 146.3 ppm (a), 136.5 ppm (h), 69.8 ppm (d), 66.7 ppm (b), 52.8 ppm (c), 35.6, 33.3, 33.2, 33.0, 30.0, 26.5 and 26.3 ppm (e,f), 17.0 ppm (g). ¹³C NMR (CDCl₃) δ: 141.7 ppm (a), 132.5 ppm (h), 65.9 ppm (d), 62.6 ppm (b), 50.0 ppm (c), 31.9, 29.6, 29.5, 29.3, 26.4, 23.2 and 22.6 ppm (e,f), 14.1 ppm (g). Elemental analysis for C₆₆H₁₃₄N₄Br₄ · 2 H₂O found (calc.): %N 4.24 (4.18); %C 59.22 (59.18); %H 10.52 (10.38). ESI(+)-MS (*m*/*z*): 245.9 (C₆₆H₁₃₄N₄/4). FT-IR (KBr) vmax: 3409, 3020, 2924, 2854, 1620, 1469, 1380, 1235, 1015, 891, 866, 849, 722.

1,2,4,5-tetrakis-[N,N-dimethyl-N-(1-tetradecyl)ammoniummethyl)benzene tetrabromide (**22**) RT = 13 h, white solid (50%), m. p. 225-226 °C. ¹H NMR (CDCl₃) δ: 8.24 ppm (2H, a), 5.23 ppm (8H, b), 4.07 ppm (8H, d), 3.35 ppm (24H, c), 1.82 ppm (8H, f), 1.45 and 1.39 ppm (88H, e), 0.88 ppm (12H, g). ¹³C NMR (CDCl₃) δ: 142.2 ppm (a), 132.6 ppm (h), 65.8 ppm (d), 62.5 ppm (b), 49.8 ppm (c), 29.7, 29.6, 29.5, 29.4, 27.1, 26.5, 25.7, 23.2 and 22.7 ppm (e,f), 14.1 ppm (g). Elemental analysis for C₇₄H₁₅₀N₄Br₄ · H₂O found (calc.): %N 4.13 (3.91); %C 61.65 (62.00); %H 10.62 (10.69). ESI(+)-MS (*m*/*z*): 273.9 (C₇₄H₁₅₀N₄/4). FT-IR (KBr) ν_{max}: 3020, 2924, 2854, 1620, 1469, 1380, 1235, 1015, 891, 866, 849, 722.

1,2,4,5-tetrakis-[N-(1-hexadecyl)-N,N-dimethylammoniummethyl)benzene tetrabromide (**23**) RT = 14 h, white solid (62%), m. p. 228-230 °C. ¹H NMR (CDCl₃) δ : 8.14 ppm (2H, a), 5.14 ppm (8H, b), 4.10 ppm (8H, d), 3.36 ppm (24H, c), 1.81 ppm (8H, f), 1.40 and 1.26 ppm (104H, e), 0.88 ppm (12H, g). ¹³C NMR (CDCl₃) δ : 141.8 ppm (a), 132.5 ppm (h), 66.0 ppm (d), 62.4 ppm (b), 49.8 ppm (c), 31.9, 29.7, 29.6, 29.5, 29.3 and 26.4 ppm (e,f), 14.1 ppm (g). Elemental analysis for C₈₂H₁₆₆N₄Br₄ · H₂O found (calc.): %N 3.73 (3.62);

%C 63.46 (63.71); %H 10.73 (10.95). ESI(+)-MS (m/z): 301.9 (C₈₂H₁₆₆N₄/4). FT-IR (KBr) ν_{max} : 3436, 3010, 2919, 2851, 1622, 1468, 1380, 1255, 1002, 722.