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Abstract: Harmine belongs to a group of β-carboline alkaloids endowed with antitumor properties.
Harmine and its derivatives are thought to bind to DNA and interfere with topoisomerase activities.
We investigated the base-dependent binding of harmine, and three of its synthetic anticancer-active
derivatives to the genomic DNA from calf thymus and two synthetic 20-mer double helices,
the poly(dG-dC)·poly(dG-dC) and the poly(dA-dT)·poly(dA-dT), by means of UV-Vis and circular
dichroism (CD) spectroscopies. The data show that the DNA binding and stabilising properties of the
investigated derivatives are base pair-dependent. These results could be used as a guide to design
and develop further bioactive analogues.
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1. Introduction

Harmine (HR) is a widespread natural tricyclic β-carboline alkaloid, isolated from the seeds of
Peganum harmala, a middle-eastern plant that has been known about for a long time and used in folk
medicine [1–3]. Its structure is characterised by a pyridine ring fused to an indolyl ring, a methyl and
a methoxy group at positions 1 and 7, respectively. Regardless of popular beliefs, there is a kernel
of truth in the supposed beneficial effects of HR as it was proved to possess many very interesting
properties, including antimicrobial, antioxidative, antitumor, anti-inflammatory, cytotoxic activity,
and more [4–12]. It goes without saying that the anticancer property has emerged as the foremost
alluring facet, prompting many groups to dedicate their efforts to synthesising harmine derivatives
with enhanced antitumor properties against human cancer-cells [11,13,14].

The HR antiproliferative mechanism of action is far from being fully disclosed but it has become
clear that the DNA intercalation is a driving force. HR is mainly known to interfere with the DNA
topoisomerase activity [15], but also to induce DNA damage [16], and to inhibit the telomerase that
leads to cell senescence [17]. The key factors are the HR tricyclic planar molecular geometry and
identities and arrangement of its substituents [14,18,19].

To achieve a deeper understanding of the HR-derivatives binding to the DNA, herein we report a
UV/Vis- and CD-based investigation of the DNA-binding properties of three synthetic HR derivatives
(compounds I–III, Figure 1), which were previously proved to have enhanced activity against human
prostate cancer cells (PC-3) in the µM range [14]. The joint UV/Vis-circular dichroism approach is
widely adopted for studying DNA-ligand systems [18,20,21]. It is readily diagnostic of the ligand-DNA
interaction and of the ensuing stabilisation effects, as well as for the binding-induced structural
perturbations. Last and by no means least, the required sample amount is modest compared to
other techniques. Calf thymus DNA (ctDNA) was used as a reference, and two synthetic 20-mer
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duplexes were investigated for assessing the differential behaviour against GC and AT segments:
the poly(dG-dC)·poly(dG-dC), hereafter d(GC)10, and the poly(dA-dT)·poly(dA-dT), referred to as
d(AT)10 from now on.
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Figure 1. Chemical structure of harmine (7-methoxy-1-methyl-9H-pyrido(3,4-b)indole), and its
synthetic derivatives: I (4-methoxy-1-methyl-9H-pyrido(3,4-b)indole), II (4-methoxy-1,9-dimethyl-9H-
pyrido(3,4-b)indole), and III (3-benzyl-1-methoxy-6-oxo-6H-indole[3,2,1-de]-[1,5]-naphthyridinin-
3-ium bromide).

On a structural basis, I differs from HR in the methoxy group at position 4 rather than 7.
Compound II has an additional methyl group at position 9 with respect to I, whereas III features a
fourth ring fused to the β-carboline structure, with a methoxy in position 4 and a benzyl group bound
to the pyridine nitrogen (Figure 1).

2. Results

2.1. UV-Vis

The interaction between the investigated compounds and the DNA was analysed by UV-Vis
spectroscopy. First, UV melting curves of the ctDNA at increasing HR concentration were recorded
to evaluate the HR binding and stabilising capability. Harmine sizeably stabilises the ctDNA even at
the 0.10 [harmine]:[ctDNA]bp ratio, whereas only a slight difference occurs between the UV thermal
denaturation profiles at [harmine]:[ctDNA]bp ratios of 0.33 and 0.50, with the latter showing the
maximum stabilizing effect (∆Tm = 20 ◦C) (Figure 2a). The 0.50 ratio was thereby picked as a standard
for the measures to follow, for studying the interaction between HR and its synthetic derivatives with
either ctDNA, d(GC)10 or d(AT)10.

As Figure 2b depicts and Table 1 summarises, UV melting data clearly show that each of
the ligands stabilises the ctDNA [22]. Harmine works better than I and II, although, interestingly,
the melting profile of the ctDNA with III exhibits two inflection points.
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Figure 2. Normalised UV-Vis thermal melting profiles of Calf thymus DNA (ctDNA) at increasing
[HR]:[ctDNA]bp ratio (a); and at [ligand]:[ctDNA]bp of 0.50 (b). The ligand concentrations were
increased over a fixed (ctDNA)bp. Melting curves were obtained monitoring the absorbance at 260 nm
as a function of temperature.
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Table 1. Melting temperatures of the ctDNA, d(GC)10, and d(AT)10 in the absence and presence of
harmine, I, II, and III at 0.50 [ligand]:[DNA]bp ratio obtained by UV melting experiments.

Ligand Tm (◦C ± 1)

ctDNA d(GC)10 d(AT)10

No ligand 55 >85 35
Harmine 75 >85 45

I 62 >85 52
II 65 >85 52
III ≈60–≈82 >90 42

Figure 3 shows the UV-Vis spectra of both the free and ctDNA-bound ligands, which all intensely
absorb in the 240–300 nm region and lesser in the 300–400 nm range. Each experimental ligand-ctDNA
spectrum sizeably differs from the corresponding arithmetical ligand-ctDNA sum, highlighting the
ligand-ctDNA interaction.
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are well detected. On the contrary, the Tm values of the d(GC)10 complexes are invariably higher than 
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ligand-ctDNA sum spectra are reported as well.

Further base-dependent information came from the melting experiments performed with either
d(GC)10 (Figure 4a) or d(AT)10 (Figure 4b). The melting temperatures in the case of d(AT)10 complexes
are well detected. On the contrary, the Tm values of the d(GC)10 complexes are invariably higher than
80 ◦C, but not accurately measured due to the upper heating limit both in the absence and in the
presence of the ligands, as already reported in the case with GC sequences in similar experimental
conditions [20,21]. In any case, III clearly makes the most stable complex with the d(GC)10, bearing
witness to the key role that the benzyl group at position 3 and/or the fourth ring have in the
interaction with GC-rich segments (Figure 3a and Table 1). In the case of d(AT)10 (Figure 4b), the utmost
stabilisation was achieved with both I and II, whereas III and HR affect the Tm to a smaller extent.
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2.2. Circular Dichroism

Circular dichroism (CD) spectroscopy was also employed for gaining insights into the
conformational changes occurring upon β-carboline alkaloids binding to the DNA. Figure 5a shows
the CD spectra of the ligand-free and ligand-bound ctDNA ([ligand]:[ctDNA]bp). The addition of HR,
I or II extensively affects the ctDNA CD spectrum in the 240–300 nm interval, while minor changes
occur upon the administration of III. New induced dichroic signals (iCD) arise in the 300–400 nm
region purely due to the complex formation, since neither the DNA nor any of the ligands absorb in this
range. The iCDs arise in the 300–400 nm range for all the complexes except for the one involving III.
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The iCD finds root in the transition moments coupling of both the ligand and the surrounding
environs by the DNA, that is to say the reciprocal molecular orientation. While the iCD magnitude
can hardly be accounted for, its sign relies strongly on the orientation of the ligand with respect to the
DNA at the binding site [23,24]. This means the ligands can intercalate along the DNA axis as they
are all oriented in parallel planes or alternately flipped each other. The former case prompts a net CD
signal as seen for compounds I and II, whereas the latter might be the case with compound III where
positive and negative contributions elide each other.

The binding effects of HR, I, II, and III on the CD spectra of d(GC)10 and d(AT)10 are shown in
Figure 5b,c. The CD spectrum of the d(GC)10 is markedly affected by all the ligands and, again, iCDs
in the 300–400 nm region appear, with the exception of the complex made by III.

The CD spectrum of d(AT)10 is instead slightly modified by each of the ligands in the 240–340 nm
range yet no iCDs are detected in this case (Figure 5c).

3. Discussion

The harmine-derivatives family is very alluring for many purposes, including cancer treatment.
The comprehension of the mechanism of action, however, still has blind spots, although the
intercalation into DNA duplex is known to be responsible for hampering the DNA replication.
Synthetic harmine derivatives were proved to have enhanced antitumor properties according to
their molecular geometry and substituents configuration. Little is known about the sequence-specific
interaction of these compounds with the DNA and harmine was only recently demonstrated to
preferentially bind GC-rich segments [25].

We investigated the interaction of calf thymus DNA and of the d(GC)10 and d(AT)10 20-mer
duplexes with both harmine and three of its derivatives (compounds I–III), which recently were
proved to have enhanced anticancer activity [14].

UV-Vis absorption confirms all the ligands to stabilise the ctDNA sequence in the order HR > II > I
(Table 1). Sequence-specific behaviours were found as the d(AT)10 is greatly stabilised by both I and II
(∆Tm = +17 ◦C) and to a smaller extent by HR and III (∆Tm = +10 and +7 ◦C, respectively). In contrast,
compound III clearly makes the most stable d(GC)10 complex though the upper heating limit, which
prevented us from pinpointing the Tm values. This is consistent with previous findings in resembling
experimental conditions [20,21]. In contrast, I and II barely affect the Tm of the GC-rich fragment.
Notably, the UV thermal denaturation profile of ctDNA in the presence of compound III exhibits
two inflection points. The more complex ctDNA thermal denaturation process as compared to
monotonous 20-mer sequences can make this intelligible. The ctDNA features both AT- and GC-rich
shuffled segments that undergo differential thermal denaturation. In terms of Tm, compound III
has a much weaker effect on AT segments countered by the very strong impact on the GC stretches
thereby introducing a massive Tm gap between the two, which detectable by our UV investigation.
In contrast, the much smaller behaviour bias that HR, I, and II exhibit towards AT and GC results
in narrower Tm splitting, which is conceivably undetectable in a UV melting study, at least in these
experimental conditions. Comparable two-inflection UV thermal profile had been reported for a
9-benzyl-substituted harmine derivative compound [18].

Given these findings, cautious structural consideration can be drawn. Although precise ∆Tm are
not available for the d(GC)10, the methoxy group position switch from 7 to 4 appears to hinder the
d(GC)10 stability while sensibly hardening the d(AT)10 at a comparison of the melting profiles of HR
and I reported in Figure 4a,b. No stabilising effect to d(AT)10 is appreciable upon addition of the methyl
group at position 9, whereas the d(GC)10 thermal profile is perturbed. Anyway, one could hypothesise
a DNA pre-melting secondary structure transition as already seen for poly(dA-dT) poly(dA-dT)
duplex [26,27]. As compared to harmine, the fourth ring with an extra H-bond acceptor, the benzyl
group, and the static positive charge featured by III markedly enhance the d(GC)10-selective thermal
stabilisation whilst even bearing reduced effectiveness on d(AT)10.
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Among the harmine derivatives previously addressed, compound III demonstrated the utmost
antiproliferative capacity towards PC-3 cells [14]. Notably, many DNA-intercalating, anticancer-active
drugs have indeed been reported to exhibit preferential binding to GC-rich segments, amid a
long-lasting hypothesis of a positive correlation between in vivo antitumor activity and the preferential
binding to GC-rich DNA sequences [28]. Given these findings and structural observations, III may
serve as a hit-compound to start from for advancing the rational design of sequence-specific,
DNA-intercalating, and anticancer-active small molecules.

4. Materials and Methods

4.1. Chemicals

The 4-methoxy-1-methyl-9H-pyrido(3,4-b)indole (I), the 4-methoxy-1,9-dimethyl-9H-pyrido
(3,4-b)indole (II) and, the 3-benzyl-1-methoxy-6-oxo-6H-indole(3,2,1-de)-(1,5)-naphthyridinin-3-ium
(III) were synthesised according to procedures reported elsewhere [14]. Harmine and its derivatives
were dissolved in DMSO. The calf thymus DNA and the 20-mer oligonucleotides were purchased
from Sigma Aldrich (Milan, Italy) and biomers.net (biomers.net GmbH, Ulm, Germany), respectively.
A 1 mM sodium phosphate, 0.1 mM EDTA buffer at pH 7.0 was used for dissolving the ctDNA and
the d(GC)10, whereas a 40.0 mM sodium phosphate, 0.1 mM EDTA buffer at pH 7.0 was used for
the d(AT)10. The ctDNA concentration was determined spectrophotometrically by using the molar
extinction coefficient value (λ 260 nm) per base-pairs of 13,200 cm−1 M−1 [29]. The 20-mer d(GC)10

and d(AT)10 duplex concentrations were determined by the nearest-neighbour method using molar
extinction coefficient values at λ 260 nm of 315,988 and 316,144 cm−1 M−1, respectively [30]. The per
base-pair concentrations for the d(AT)10 and d(GC)10 were calculated by multiplying by twentyfold
those of the respective duplex. MilliQ filtered water was used.

4.2. UV Measurements

UV-Vis absorption spectra were recorded by using a Jasco V-530 spectrometer (Jasco
International Co., Tokyo, Japan) equipped with a PTC-348WI thermoelectrically controlled cell holder
(Jasco International Co., Tokyo, Japan), at 10 ◦C for the d(AT)10 and 25 ◦C for ctDNA and d(GC)10

in the 400–230 nm range using twin quartz cells, 0.1 cm optical path. UV melting experiments were
registered at 260 nm in the 25–95 ◦C range for the d(GC)10 and 10–80 ◦C for the d(AT)10, temperature
ramp 1 ◦C min−1. The UV melting curves were normalised to the 0–1 range and melting temperatures
calculated by first derivative.

4.3. CD Measurements

A Jasco J-715 spectropolarimeter (Jasco International Co., Tokyo, Japan) was used for circular
dichroism measures by using a 0.1 cm path length cuvette in a Peltier-thermostatted cell holder at both
10 and 25 ◦C. The scan rate was 20 nm min−1 and bandwidth 2.0 nm. Spectra were collected in the
400–230 nm range and averaged over three collections.
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