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Abstract: Prostate cancer is a major public health problem worldwide. For the development of
potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the
saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate
(PC-3, LNCaP, and DU145) cancer cell lines for their anticancer activities. The majority of the
compounds exhibited excellent selective activity for the tested cancer cells. Compounds 4 and 12
exhibited strong cytotoxic activities against DU145 cells (half maximal inhibitory concentration
(IC50) < 2 µM). The structure–activity relationship (SAR) of these arylpiperazine derivatives was also
discussed based on the obtained experimental data. This work provides a potential lead compound
for anticancer agent development focusing on prostate cancer therapy.
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1. Introduction

The selective targeting of tumor cells is the goal of modern cancer chemotherapy that is aimed
at overcoming the nonspecific toxicity of most anticancer agents against normal cells [1]. At present,
much of the successful cancer chemotherapy probably lies in utilizing differences in cell kinetics
between tumor and normal tissue, because most drugs can show some selective toxicity toward
rapidly dividing cells compared to noncycling cells [2]. Thus, drugs that are designed are expected
to have high affinity to the novel targets, and they not only inhibit the proliferation but also the
differentiation of tumor cells and speed up their death [3]. As the second-most common cancer
worldwide for males, prostate cancer is a challenge for researchers because of the absence of any
available and effective treatments. The development and progression of prostate cancer is directly
related to the androgen receptor (AR) [4–7]. AR is a cytoplasmic receptor that mediates gene
expression and regulates the binding of androgens, such as testosterone (T) and its active metabolite
dihydrotestosterone (DHT). In order to induce their biological effects, androgens have to bind to the
AR: the hormone–receptor complex binds DNA and modulates gene expression [8]. Upon androgen
stimulation, the proliferation of prostate cells is increased and a malignant tumor can develop [8].
Current therapies (radical prostatectomy, chemotherapy, local radiotherapy, or hormonotherapy)
are successfully applied in treating localized, androgen-dependent prostate cancer [9]. However,
the treatment of hormone-refractory prostate cancer (HRPC) remains hindered by the inevitable
progression of resistance to first-line treatment. Therefore, the development of novel anti-prostate
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cancer drugs that are effective against both the androgen-dependent and androgen-independent types
of HRPC is now urgently required [10].

Naftopidil (Figure 1), an arylpiperazine compound, is one of the most widely used α1-adrenergic
receptor antagonists for the treatment of benign prostatic hyperplasia (BPH) [11,12]. Studies have
shown that naftopidil could possibly exert an anticancer effect and inhibit prostate cancer cell growth
by arresting the G1 cell cycle phase [13,14] and inducing apoptosis in malignant mesothelioma cell
lines [15]. Saccharin (1,2-Benzisothiazole-3-one-1,1-dioxide) has been widely incorporated into a variety
of biologically active compounds. The saccharin moiety has been identified as an important molecular
component in various classes of α1a adrenergic receptor antagonists [16], 5HT1a antagonists [17],
human leukocyte elastase (HLE) inhibitors [18–22], analgesics [23], human mast cell tryptase
inhibitors [24], and aldehyde dehydrogenase inhibitors [25]. Moreover, arylpiperazine derivatives
have been reported as anticancer drugs for the site-directed chemotherapy of prostate cancer in
our previous works [26–28], and some derivatives have shown significant cytotoxic activity against
the tested prostate cancer cell lines. Inspired by these, we herein report the synthesis of a series
of novel arylpiperazine derivatives containing the saccharin moiety to identify new anti-prostate
cancer drug candidates to treat prostate cancer. All of the synthesized compounds were evaluated
for their cytotoxic activities against the androgen-insensitive human prostate cancer cell line PC-3,
the androgen-sensitive human prostate cancer cell line LNCaP, the androgen-insensitive human
prostate cancer cell line DU145, and the human prostate epithelial cell line WPMY-1. As we expected,
compared to arylpiperazine derivatives with the 1,3-benzodioxol moiety [26] and arylpiperazine
derivatives with the 3,5-dimethoxyphenoxyl moiety [27], these designed derivatives exhibited potent
cytotoxic activities against the tested cancer cells (half maximal inhibitory concentration (IC50) < 6 µM),
and displayed excellent selective activity for the tested cancer cells.
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Figure 1. Structures of naftopidil.

2. Results and Discussion

2.1. Chemistry

As depicted in Scheme 1, a series of novel arylpiperazine derivatives were synthesized starting
from 2-(4-(bromomethyl)phenyl)ethanol 1. First, the nucleophilic substitution reaction of compound 1
with saccharin sodium in the presence of potassium carbonate (K2CO3) gave compound 2 (85% yield)
after 16 h at reflux, and then compound 2 was treated with 4-toluene-sulfonyl chloride in the presence
of triethylamine and a catalytic amount of 4-dimethylaminopyridine at 0 ◦C for 16 h to generate
compound 3 (85% yield). Finally, the reaction of compound 3 with various arylpiperazines in the
presence of K2CO3 was heated at reflux for 16 h to obtain arylpiperazine derivatives 4 to 21 (Scheme 1).
The structures of the compounds were confirmed using 1H-NMR, 13C-NMR, MS, and HRMS.

Reagents and conditions: (i) Saccharin Sodium, K2CO3, CH3CN, reflux, 16 h; (ii) TsCl, Et3N and
4-dimethylaminopyridine, Cl2CH2, 0 ◦C, 16 h; (iii) Arylpiperazines, K2CO3, CH3CN, reflux, 16 h.
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Scheme 1. The synthesis route of derivatives 4–21.

2.2. Structure–Activity Relationship (SAR) Analysis for Antitumor Activity

The synthesized target compounds 4–21 were evaluated for their in vitro cytotoxic activities
against three human prostate cancer cell lines (PC-3, LNCaP, and DU145) and compared with their
effects on the human prostate epithelial cell line WPMY-1 by CCK-8 assay [29–31]. Naftopidil and
finasteride [32] were taken as reference compounds, and the results are summarized in Table 1.

Table 1. In vitro cytotoxicity of compounds 4–21.

Compd. IC50 (µM) a

PC-3 b LNCaP b DU145 b WPMY-1 b

4 >50 >50 1.28 ± 0.04 >50
5 >50 >50 3.57 ± 0.08 >50
6 4.84 ± 0.17 >50 >50 48.27 ± 0.56
7 >50 >50 3.65 ± 0.10 >50
8 >50 >50 >50 ND c

9 5.43 ± 0.18 >50 >50 >50
10 4.38 ± 0.13 >50 2.28 ± 0.05 >50
11 >50 47.46 ± 2.17 >50 >50
12 >50 >50 1.14 ± 0.10 >50
13 >50 5.03 ± 0.13 >50 >50
14 14.57 ± 1.12 >50 3.39 ± 0.11 ND c

15 2.74 ± 0.11 3.43 ± 0.16 >50 >50
16 >50 >50 >50 ND c

17 >50 4.08 ± 0.15 >50 >50
18 2.25 ± 0.07 >50 9.05 ± 0.23 >50
19 >50 5.14 ± 0.16 >50 39.15 ± 0.17
20 2.66 ± 0.04 3.43 ± 0.10 >50 46.34 ± 0.51
21 3.73 ± 0.08 >50 >50 ND c

Naftopidil 42.10 ± 0.79 22.36 ± 0.61 34.58 ± 0.31 >50
Finasteride 17.83 14.53 13.53 −

a Half maximal inhibitory concentration (IC50) values are taken as means ± standard deviation from three
experiments; b PC-3, LNCaP, and DU145, human prostate cancer cell lines; WPMY-1, the human prostate epithelial
cell line; c ND = not determined.
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As shown in Table 1, the majority of the compounds exhibited a more effective cytotoxic activity
than the arylpiperazine derivatives with the 1,3-benzodioxol moiety [26] and the arylpiperazine
derivatives with the 3,5-dimethoxyphenoxyl moiety [27] against the tested cancer cell lines,
and exhibited excellent selective activity for the tested cancer cells (Figure 2). For example,
the compounds 6, 9, and 21 exhibited excellent selective activity for PC-3 cells over other cancer
cells, and the compounds 13, 17, and 19 exhibited excellent selective activity for LNCaP cells over
other cancer cells. Moreover, the compounds 4, 5, 7, 12, and 14 exhibited excellent selective activity for
DU145 cells over other cancer cells.

The SAR analysis revealed the following: (1) Compounds 4 and 5 (IC50 = 1.28 and
3.57 µM, respectively) exhibited strong cytotoxic activities against DU145 cells, and compound 6
(IC50 = 4.84 µM) displayed strong cytotoxic activities against PC-3 cells. The activity profiles indicated
that the introduction of different functional groups at the 4-position of the piperazine ring was
beneficial for enhancing selectivity; (2) The position of the substituent on the phenyl interestingly
affected the cytotoxic activities. Amongst the compounds containing a methyl substituent, the order
of the cytotoxic activities of compounds 7 (3-CH3) and 8 (4-CH3) against DU145 cells could be
placed as follows: 7 > 8. However, the compounds with electron-donating groups on the phenyl
group showed another rule; for instance, the cytotoxic activities of compounds 9 (3-OCH3) and 10
(4-OCH3) against DU145 cells could be placed as follows: 10 (IC50 = 2.28 µM) > 9 (IC50 > 50 µM);
(3) For PC-3 cells, compound 7 and 8 lost potency (IC50 > 50 µM) compared with compound 9 and 10
(IC50 = 5.43 and 4.38 µM, respectively). These results suggest that a methyl group on the phenyl group
was inauspicious for anticancer activity; (4) Compared to compound 13 with a difluoro-substituted
group, compound 12 (IC50 = 1.14 µM) with a fluoro group at the p-position on the phenyl group
exhibited potent cytotoxic activities against DU145 cells and exhibited excellent selective activity
for DU145 cells over other cancer cells. Moreover, compound 12 displayed weak cytotoxic effects
on the human epithelial prostate normal cells WPMY-1. However, for LNCaP cells, compound 13
exhibited excellent selective activity; (5) Compounds with a chloro group at the m-position displayed
better activity for PC-3 and LNCaP cells than did the p-chloro-substituted group for PC-3 and LNCaP
cells, as exemplified by compound 15 (IC50 = 2.74 and 3.43 µM, respectively) with significantly
improved activity, while compound 16 exhibited weak cytotoxic activity. Moreover, compound 17
(IC50 = 4.08 µM), with a dichloro-substituted group, exhibited excellent selective activity for LNCaP
cells over other cancer cells, and displayed weak cytotoxic effects on the human epithelial prostate
normal cells WPMY-1; (6) Compound 18 (IC50 = 2.25 µM) displayed better activity for PC-3 cells than
the other tested compounds with the groups at the p-position on the phenyl group. These results
indicated that a bromo group at the p-position on the phenyl group was beneficial for anticancer
activity; (7) Compound 21 lost potency (IC50 > 50 µM) against LNCaP cells compared with compound
20 (IC50 = 3.43 µM). These results suggest that a trifluoromethyl group at the p-position on the phenyl
group was inauspicious for anticancer activity. However, compound 21 exhibited excellent selective
activity for PC-3 cells over other cancer cells.
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melting point apparatus (Shanghai Precision & Scientific Instrument Co., Ltd., Shanghai, China) and 
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MA, USA) in DMSO-d6 using TMS as an internal standard, and coupling constants (J) are in Hz. ESI 
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Technologies, Santa Clara, CA, USA), and HRMS spectra were recorded on the AB Sciex 5600 Triple 
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ether–ethyl acetate. 

Figure 2. Arylpiperazine derivatives containing the saccharin moiety inhibited cell viability (percent
relative to control) in the prostate cell lines PC-3, LNCaP, and DU145. All of the cells were exposed to
escalating concentrations of arylpiperazine derivatives respectively for 24 h, and the cell viability was
detected by CCK-8 assay.

3. Materials and Methods

3.1. Chemistry

All of the reagents and solvents used were commercially available. Solvents were dried and
purified prior to use using standard procedures. Melting points were determined on SGW X-4 micro
melting point apparatus (Shanghai Precision & Scientific Instrument Co., Ltd., Shanghai, China) and
are uncorrected. NMR spectra were determined on a Bruker AVANCE-500 spectrometer (Billerica,
MA, USA) in DMSO-d6 using TMS as an internal standard, and coupling constants (J) are in Hz.
ESI mass spectra were recorded on an Agilent 6460 Triple Quadrupole mass spectrometer (Agilent
Technologies, Santa Clara, CA, USA), and HRMS spectra were recorded on the AB Sciex 5600 Triple
TOF mass spectrometer (Foster, CA, USA). Flash column chromatography was performed with
silica gel (Qingdao Ocean Chemical Factory, Qingdao, China, 300–400 mesh) eluted with petroleum
ether–ethyl acetate.
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3.1.1. Synthesis of Saccharin N-((2-(4-(methyl)phenyl)ethanol) (2)

To a solution of compound 1 (5 g, 23.30 mmol) in acetonitrile (100 mL), saccharin sodium (5.61 g,
23.30 mmol) and potassium carbonate (12.80 g, 93.20 mmol) were added, and the reaction mixture
was stirred at reflux for 16 h. After cooling to ambient temperature, the reaction mixture was filtered
through a Buchner funnel. After filtration, the filtrate was concentrated in vacuo and the residue was
purified by silica gel column chromatography using ethyl acetate/petroleum ether (1/6, v/v) as eluent
to afford 6.30 g of compound 2 as a white solid. Yield: 85%; Mp 97 ◦C; 1H-NMR (500 MHz, DMSO-d6)
δ in ppm: 8.33 (d, J = 7.7 Hz, 1H,), 8.15–7.98 (m, 3H,), 7.33 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H),
4.87 (s, 2H), 3.58 (td, J = 7.0, 5.2 Hz, 2H,), 2.70 (t, J = 7.0 Hz, 2H),2.23 (t, J = 5.2 Hz, 1H); 13C-NMR
(126 MHz, DMSO-d6) δ in ppm: 158.58, 139.19, 136.82, 135.87, 135.30, 132.57, 128.98, 127.78, 126.18,
125.15, 121.61, 62.01, 41.47, 38.61; MS (ESI, m/z): 318.1 [M + 1]+.

3.1.2. Synthesis of Saccharin N-(4-(methyl)phenethyl 4-methylbenzenesulfonate) (3)

To a solution of compound 2 (5 g, 15.70 mmol), triethylamine (6.37 g, 63.10 mmol),
and 4-dimethylaminopyridine (0.19 g, 1.57 mmol) in dry dichloromethane (CH2Cl2, 100 mL)
at 0 ◦C was added dropwise a solution of 4-toluene sulfonyl chloride (4.47 g, 23.50 mmol) in
CH2Cl2 (10 mL). The reaction mixture was stirred at 0 ◦C for 16 h. Water (30 mL) was added
slowly, and the reaction mixture was extracted with CH2Cl2 (3 × 100 mL). The combined organic
phase was successively washed with water and brine, dried over anhydrous magnesium sulfate,
and concentrated in vacuo. The residue was purified by silica gel column chromatography using ethyl
acetate/petroleum ether (1/8, v/v) as eluent to afford 5.92 g of compound 3 as a white solid. Yield: 85%;
Mp 119–120 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.15–7.98 (m, 3H),
7.46 (d, J = 8.3 Hz, 2H,), 7.31 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H),
4.51 (s, 2H), 4.16 (t, J = 7.0 Hz, 2H), 2.91 (t, J = 7.0 Hz, 2H), 2.32 (s, 3H); 13C-NMR (126 MHz, DMSO-d6)
δ in ppm: 168.45, 144.31, 138.91, 138.25, 137.58, 132.46, 132.21, 130.42, 130.27, 129.28, 127.30, 126.83,
70.32, 48.09, 34.73, 24.32; MS (ESI, m/z): 472.1 [M + 1]+.

3.1.3. General Procedure for the Preparation of Arylpiperazine Derivatives 4–21

To a solution of 3 (100 mg, 0.23 mmol) in acetonitrile (CH3CN, 30 mL) was added the
corresponding arylpiperazine (1.2 equiv.) and potassium carbonate (6.0 equiv.). The reaction mixture
was stirred at reflux for 16 h. After cooling to ambient temperature, the reaction mixture was filtered
through a Buchner funnel. After filtration, the filtrate was concentrated in vacuo and the residue was
purified by silica gel column chromatography using ethyl acetate/petroleum ether (1/4, v/v) as eluent
to afford the corresponding products (4–21).

Saccharin N-(1-(4-(methyl)phenethyl)-4-phenylpiperazine) (4): White solid; Yield: 70%; Mp 147–148 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.5 Hz, 1H), 8.06 (td,
J = 7.6, 1.0 Hz, 1H), 8.01 (td, J = 7.6, 1.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.19 (dd,
J = 8.4, 7.5 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.76 (t, J = 7.6 Hz, 1H), 4.88 (s, 2H), 3.11 (t, J = 5.0 Hz,
4H), 2.76 (t, J = 7.6 Hz, 2H), 2.60–2.52 (m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 159.08,
151.52, 140.57, 137.32, 136.38, 135.80, 133.09, 129.36, 129.29, 128.38, 126.69, 125.66, 122.11, 119.20, 115.79,
60.03, 53.12, 48.63, 41.96, 32.80; MS (ESI, m/z): 462.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for
C26H27N3O3S, 462.1846, found, 462.1842.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(pyridin-2-yl)piperazine) (5): White solid; Yield: 45%;
Mp 149–150 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.5 Hz, 1H),
8.09 (ddd, J = 5.0, 2.0, 1.0 Hz, 1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.00 (td, J = 7.6, 1.0 Hz, 1H), 7.51 (ddd,
J = 8.7, 7.0, 2.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.7 Hz, 1H), 6.62 (dd,
J = 7.0, 5.0 Hz, 1H), 4.87 (s, 2H), 3.45 (t, J = 5.0 Hz, 4H), 2.76 (t, J = 7.6 Hz, 2H), 2.56–2.50 (m, 6H);
13C-NMR (126 MHz, DMSO-d6) δ in ppm: 159.06, 158.58, 147.51, 140.06, 137.41, 136.82, 135.87, 135.29,
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132.59, 128.78, 127.89, 126.19, 125.16, 121.61, 112.91, 107.02, 59.59, 52.43, 44.61, 41.46, 32.28; MS (ESI,
m/z): 463.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C25H26N4O3S, 463.1798, found, 463.1794.

Saccharin N-(2-(4-(4-(methyl)phenethyl)piperazin-1-yl)pyrimidine) (6): White solid; Yield: 41%;
Mp 153–154 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.34 (d, J = 7.7 Hz, 2H), 8.32 (d, J = 7.5 Hz,
1H), 8.12 (d, J = 7.5 Hz, 1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.01 (td, J = 7.6, 1.0 Hz, 1H), 7.34 (d, J
= 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.61 (t, J = 5.0 Hz, 1H), 4.88 (s, 2H), 3.71 (br s, 4H), 2.76 (t,
J = 7.6 Hz, 2H), 2.55–2.50 (m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 161.19, 158.58, 157.86,
140.00, 136.82, 135.87, 135.29, 132.61, 128.77, 127.89, 126.19, 125.16, 121.61, 110.04, 59.51, 52.40, 43.23,
41.46, 32.19; MS (ESI, m/z): 464.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C24H25N5O3S, 464.1751,
found, 464.1748.

Saccharin N-(1-(4-(methyl)phenethyl)-4-m-tolylpiperazine) (7): White solid; Yield: 20%; Mp 126–127 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.5 Hz, 1H), 8.06 (t,
J = 7.6 Hz, 1H), 8.00 (t, J = 7.5 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 7.9 Hz,
1H), 6.73 (s, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.58 (d, J = 7.5 Hz, 1H), 4.87 (s, 2H), 3.10 (t, J = 5.0 Hz, 4H),
2.75 (t, J = 7.6 Hz, 2H), 2.60–2.48 (m, 6H), 2.23 (s, 3H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 159.08,
151.56, 140.58, 138.38, 137.32, 136.37, 135.79, 133.09, 129.28, 129.18, 128.38, 126.69, 125.66, 122.11, 120.04,
116.46, 113.03, 60.05, 53.15, 48.71, 41.96, 32.81, 21.89; MS (ESI, m/z): 476.1 [M + 1]+; HRMS (ESI) m/z
[M + 1]+: Calcd for C27H29N3O3S, 476.2002, found, 476.2000.

Saccharin N-(1-(4-(methyl)phenethyl)-4-p-tolylpiperazine) (8): White solid; Yield: 43%; Mp 130–131 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.5 Hz, 1H), 8.07 (t,
J = 7.6 Hz, 1H), 8.01 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.15–7.02 (m,
1H), 6.79–6.69 (m, 2H), 6.58 (d, J = 7.4 Hz, 1H), 4.88 (s, 2H), 3.11 (br s, 4H), 2.79 (t, J = 7.6 Hz, 2H),
2.69–7.55 (m, 6H), 2.24 (s, 3H); MS (ESI, m/z): 476.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for
C27H29N3O3S, 476.2002, found, 476.2001.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(3-methoxyphenyl)piperazine) (9): White solid; Yield: 50%;
Mp 134–135 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.5 Hz,
1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.01 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz,
2H), 7.09 (t, J = 8.1 Hz, 1H), 6.51 (dd, J = 8.1, 2.0 Hz, 1H), 6.43 (t, J = 2.0 Hz, 1H), 6.35 (dd, J = 8.1,
2.0 Hz, 1H), 4.87 (s, 2H), 3.70 (s, 3H), 3.11 (t, J = 5.0 Hz, 4H), 2.75 (t, J = 7.6 Hz, 2H), 2.56–2.52 (m, 6H);
13C-NMR (126 MHz, DMSO-d6) δ in ppm: 160.64, 159.08, 152.89, 140.57, 137.32, 136.38, 135.80, 133.09,
130.03, 129.28, 128.38, 126.69, 125.66, 122.11, 108.47, 104.53, 101.87, 60.01, 55.31, 53.09, 48.60, 41.96,
32.80; MS (ESI, m/z): 492.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C27H29N3O4S, 492.1952,
found, 492.1948.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(4-methoxyphenyl)piperazine) (10): White solid; Yield: 52%;
Mp 149–150 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.5 Hz,
1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.01 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H),
6.87 (d, J = 9.1 Hz, 2H), 6.80 (d, J = 9.1 Hz, 2H), 4.88 (s, 2H), 3.67 (s, 3H), 3.00 (t, J = 5.0 Hz, 4H), 2.75 (t,
J = 7.6 Hz, 2H), 2.56–2.52 (m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 159.08, 153.30, 145.92,
137.32, 136.38, 135.80, 133.09, 129.28, 128.38, 126.69, 125.66, 122.11, 117.74, 114.69, 60.03, 55.64, 53.22,
50.03, 41.96, 32.80; MS (ESI, m/z): 492.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C27H29N3O4S,
492.1952, found, 492.1949.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(2-fluorophenyl)piperazine) (11): White solid; Yield: 43%;
Mp 137–138 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.5 Hz,
1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.00 (td, J = 7.6, 1.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz,
2H), 7.16–7.05 (m, 2H), 7.01 (td, J = 8.9, 1.5 Hz, 1H), 6.98–6.90 (m, 1H), 4.88 (s, 2H), 3.00 (t, J = 5.0 Hz,
4H), 2.75 (t, J = 7.6 Hz, 2H), 2.65–2.52 (m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 158.58, 155.88,
153.94, 140.08, 139.89, 139.83, 136.83, 135.87, 135.29, 132.58, 128.78, 127.88, 126.19, 125.15, 124.78, 124.75,
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122.19, 122.13, 121.61, 119.14, 119.11, 115.93, 115.77, 59.49, 52.65, 50.06, 50.04, 41.47, 32.24; MS (ESI,
m/z): 480.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C26H26FN3O3S, 480.1752, found, 480.1749.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(4-fluorophenyl)piperazine) (12): White solid; Yield: 40%;
Mp 152–153 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 7.5 Hz,
1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.00 (td, J = 7.6, 1.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz,
2H), 7.03 (t, J = 8.2 Hz, 2H), 6.98–6.87 (m, 2H), 4.87 (s, 2H), 3.06 (t, J = 5.0 Hz, 4H), 2.75 (t, J = 7.6 Hz,
2H), 2.57–2.52 (m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 159.08, 157.35, 155.47, 148.43,
140.56, 137.32, 136.37, 135.79, 133.09, 129.28, 128.38, 126.69, 125.65, 122.11, 117.52, 117.46, 115.77, 115.59,
59.97, 53.09, 49.42, 41.96, 32.79; MS (ESI, m/z): 480.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for
C26H26FN3O3S, 480.1752, found, 480.1750.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(2,4-difluorophenyl)piperazine) (13): White solid; Yield: 32%;
Mp 113–114 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 1H-NMR (500 MHz, DMSO) δ 8.32 (d,
J = 7.7 Hz, 1H), 8.11 (d, J = 7.5 Hz, 1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.00 (td, J = 7.6, 1.0 Hz, 1H), 7.35 (d,
J = 8.0 Hz, 2H), 7.29 (d, J = 8.2 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.11 (t, J = 8.2 Hz, 2H), 4.88 (s, 2H),
3.01 (br s, 4H), 2.86 (t, J = 7.6 Hz, 2H), 2.83–7.79 (m, 6H); MS (ESI, m/z): 498.0 [M + 1]+; HRMS (ESI)
m/z [M + 1]+: Calcd for C26H25F2N3O3S, 498.1657, found, 498.1652.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(2-chlorophenyl)piperazine) (14): White solid; Yield: 40%;
Mp 135–136 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 1H-NMR (500 MHz, DMSO) δ 8.33 (d,
J = 7.7 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.07 (t, J = 7.6 Hz, 1H), 8.01 (t, J = 7.6 Hz, 1H), 7.39 (dd, J = 8.0,
1.2 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.28 (td, J = 8.0, 1.2 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.14 (dd, J = 8.0,
1.2 Hz, 1H), 7.02 (td, J = 8.0, 1.2 Hz, 1H), 4.88 (s, 2H), 2.97 (br s, 4H), 2.75 (t, J = 7.6 Hz, 2H), 2.60–2.55
(m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 158.58, 149.01, 140.09, 136.82, 135.87, 135.29, 132.58,
130.28, 128.78, 128.02, 127.88, 127.55, 126.19, 125.16, 123.76, 121.61, 120.80, 59.50, 52.76, 50.79, 41.47,
32.26; MS (ESI, m/z): 496.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C26H26ClN3O3S, 496.1456,
found, 496.1454.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(3-chlorophenyl)piperazine) (15): White solid; Yield: 37%;
Mp 143–144 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.6 Hz,
1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.01 (td, J = 7.6, 1.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz,
2H), 7.19 (t, J = 8.2 Hz, 1H), 6.92 (t, J = 2.0 Hz, 1H), 6.88 (dd, J = 8.2, 2.0 Hz, 1H), 6.76 (dd, J = 7.9,
2.0 Hz, 1H), 4.87 (s, 2H), 3.15 (t, J = 5.0 Hz, 4H), 2.75 (t, J = 7.6 Hz, 2H), 2.56–2.52 (m, 6H); 13C-NMR
(126 MHz, DMSO-d6) δ in ppm: 159.08, 152.75, 140.54, 137.32, 136.38, 135.80, 134.26, 133.10, 130.84,
129.29, 128.38, 126.69, 125.66, 122.11, 118.41, 114.91, 114.07, 59.95, 52.90, 48.08, 41.96, 32.77; MS (ESI,
m/z): 491.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C26H26ClN3O3S, 496.1456, found, 496.1453.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(4-bromophenyl)piperazine) (16): White solid; Yield: 42%;
Mp 158–159 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 1H-NMR (500 MHz, DMSO) δ 8.32 (d,
J = 7.7 Hz, 1H), 8.11 (d, J = 7.5 Hz, 1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.00 (td, J = 7.6, 1.0 Hz, 1H), 7.33 (d,
J = 8.1 Hz, 2H), 7.26–7.16 (m, 4H), 6.92 (d, J = 9.0 Hz, 2H), 4.87 (s, 2H), 3.10 (t, J = 5.0 Hz, 4H), 2.74 (t,
J = 7.6 Hz, 2H), 2.61–2.50 (m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 158.58, 149.81, 140.05,
136.82, 135.87, 135.29, 132.59, 128.78, 128.54, 127.88, 126.19, 125.15, 122.19, 121.60, 116.72, 59.45, 52.44,
47.96, 41.46, 32.27; MS (ESI, m/z): 445.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C26H26ClN3O3S,
496.1456, found, 496.1455.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(2,3-dichlorophenyl)piperazine) (17): White solid; Yield: 37%;
Mp 178–179 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 1H-NMR (500 MHz, DMSO) δ 8.33 (d,
J = 7.6 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.07 (td, J = 7.6, 1.0 Hz, 1H), 8.01 (td, J = 7.6, 1.0 Hz, 1H),
7.34 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 3.5 Hz, 2H), 7.29 (br s, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.14 (dd, J = 6.8,
3.5 Hz, 1H), 4.88 (s, 2H), 2.99 (br s, 4H), 2.76 (t, J = 7.6 Hz, 2H), 2.61–7.29 (m, 6H); 13C-NMR (126 MHz,
DMSO-d6) δ in ppm: 158.59, 151.16, 140.06, 136.82, 135.88, 135.30, 132.57, 128.79, 128.41, 127.88, 126.19,
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125.96, 125.16, 124.30, 121.61, 119.56, 59.43, 52.68, 50.87, 41.46, 32.23; MS (ESI, m/z): 530.0 [M + 1]+;
HRMS (ESI) m/z [M + 1]+: Calcd for C26H25Cl2N3O3S, 530.1066, found, 530.1062.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(4-bromophenyl)piperazine) (18): White solid; Yield: 42%;
Mp 105–106 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.5 Hz,
1H), 8.06 (td, J = 7.6, 1.0 Hz, 1H), 8.00 (td, J = 7.6, 1.0 Hz, 1H), 7.39–7.30 (m, 4H), 7.23 (d, J = 8.0 Hz, 2H),
6.88 (d, J = 9.1 Hz, 2H), 4.87 (s, 2H), 3.11 (t, J = 5.0 Hz, 4H), 2.75 (t, J = 7.6 Hz, 2H), 2.59–2.52 (m, 6H);
13C-NMR (126 MHz, DMSO-d6) δ in ppm: 159.08, 150.65, 140.54, 137.31, 136.38, 135.80, 133.09, 131.90,
129.28, 128.38, 126.68, 125.66, 122.11, 117.69, 110.32, 59.95, 52.91, 48.31, 41.96, 32.77; MS (ESI, m/z):
542.0 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C26H26BrN3O3S, 540.0951, found, 540.0947.

Saccharin N-(2-(4-(4-(methyl)phenethyl)piperazin-1-yl)benzonitrile) (19): White solid; Yield: 46%;
Mp 146–147 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d, J = 7.6 Hz,
1H), 8.07 (td, J = 7.6, 1.0 Hz, 1H), 8.01 (td, J = 7.6, 1.0 Hz, 1H), 7.69 (dd, J = 7.7, 1.5 Hz, 1H), 7.59 (td, J = 7.7,
1.5 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 1H), 7.08 (t, J = 7.6 Hz,
1H), 4.88 (s, 2H), 3.15 (t, J = 5.0 Hz, 4H), 2.77 (t, J = 7.6 Hz, 2H), 2.63–2.57 (m, 6H); 13C-NMR (126 MHz,
DMSO-d6) δ in ppm: 158.58, 155.22, 140.03, 136.82, 135.87, 135.29, 134.29, 134.20, 132.60, 128.80, 127.89,
126.19, 125.16, 121.87, 121.61, 118.99, 118.24, 104.65, 59.34, 52.57, 51.08, 41.47, 32.21; MS (ESI, m/z):
487.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C27H26N4O3S, 487.1798, found, 487.1796.

Saccharin N-(4-(4-(4-(methyl)phenethyl)piperazin-1-yl)benzonitrile) (20): White solid; Yield: 48%;
Mp 179–180 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 7.5 Hz,
1H), 8.07 (td, J = 7.6, 1.0 Hz, 1H), 8.00 (t, J = 7.6 Hz, 1H), 7.56 (d, J = 9.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H),
7.23 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 9.0 Hz, 2H), 4.87 (s, 2H), 3.31 (t, J = 5.0 Hz, 4H), 2.75 (t, J = 7.6 Hz,
2H), 2.65–2.47 (m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 158.58, 153.19, 140.00, 136.82, 135.88,
135.30, 133.26, 132.61, 128.78, 127.88, 126.18, 125.15, 121.61, 120.01, 113.99, 98.16, 59.35, 52.20, 46.31,
41.46, 32.22; MS (ESI, m/z): 487.0 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C27H26N4O3S, 487.1798,
found, 487.1797.

Saccharin N-(1-(4-(methyl)phenethyl)-4-(4-(trifluoromethyl)phenyl)piperazine) (21): White solid; Yield:
46%; Mp 108–109 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ in ppm: 8.33 (d, J = 7.7 Hz, 1H), 8.12 (d,
J = 7.6 Hz, 1H), 8.06 (td, J = 7.5, 1.0 Hz, 1H), 8.01 (t, J = 7.5 Hz, 1H), 7.49 (d, J = 8.8 Hz, 2H), 7.34 (d,
J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 4.88 (s, 2H), 3.26 (t, J = 5.0 Hz, 4H), 2.76 (t,
J = 7.6 Hz, 2H), 2.61–2.51 (m, 6H); 13C-NMR (126 MHz, DMSO-d6) δ in ppm: 159.08, 153.75, 140.52,
137.32, 136.38, 135.80, 133.11, 129.29, 128.38, 126.69, 126.61, 125.66, 122.11, 114.58, 60.22, 59.92, 52.80,
47.42, 41.96, 32.75; MS (ESI, m/z): 530.1 [M + 1]+; HRMS (ESI) m/z [M + 1]+: Calcd for C27H26N4O3S,
530.1720, found, 530.1718.

3.2. In Vitro Cytotoxic Assay

3.2.1. Cell Culture

PC-3 and WPMY-1 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM,
Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS, Hyclone, Logan, UT,
USA), 100 U/mL penicillin, and 0.1 mg/mL streptomycin (Invitrogen). DU145 cells were cultured in
RPMI1640 media supplemented with 10% fetal bovine serum (FBS, Hyclone), 100 U/mL penicillin,
and 0.1 mg/mL streptomycin (Invitrogen). LNCaP cells were cultured in F12 media supplemented
with 10% fetal bovine serum (FBS, Hyclone), 100 U/mL penicillin, and 0.1 mg/mL streptomycin
(Invitrogen). The cells were incubated at 37 ◦C in a humidified atmosphere with 5% CO2.

3.2.2. Assessment of Antitumor Activity by CCK-8 Assay

Cell proliferation was measured with the Cell Counting Kit-8 (CCK-8) assay kit (Dojindo Corp.,
Kumamoto, Japan). Cells were harvested during their logarithmic growth phase, seeded in 96-well
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plates at a density of 1 × 105 cells/mL, and cultured at 37 ◦C in a humidified incubator (5% CO2) for
24 h, followed by exposure to various concentrations of compounds tested for 24 h. Subsequently,
10 µL of CCK-8 (Dojindo) was added to each well, and the cells were then incubated for an additional
1 h at 37 ◦C to convert WST-8 into formazan. Cell growth inhibition was determined by measuring
the absorbance (Abs) at λ = 450 nm using a microplate reader. Three independent experiments were
performed. Cell growth inhibition was calculated according to the following equation:

Growth inhibition = (1 − OD of treated cells / OD of control cells) × 100%

OD = optical density
The half maximal inhibitory concentrations (IC50) were obtained from a linear regression analysis

of the concentration-response curves plotted for each tested compound.

4. Conclusions

In conclusion, this paper has reported the synthesis and biological evaluation against three human
prostate cancer cells and human prostate epithelial cells of a novel class of arylpiperazine derivatives
containing the saccharin moiety. The majority of the compounds exhibited excellent selective activity
for the tested cancer cells. Compounds 4 and 12 exhibited strong cytotoxic activities against DU145
cells (IC50 < 2 µM). The SAR analysis revealed that compounds with a group at the p-position on the
phenyl group exhibited potent cytotoxic activities against the tested cancer cells. Results from this
study could serve as a valuable guideline for further research on novel arylpiperazine derivatives.
Further research involving another novel class of arylpiperazine derivatives is in progress.
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