Synthesis and improved cross-linking properties of C5-modified furan bearing PNAs

Joke Elskens ${ }^{1}$, Alex Manicardi ${ }^{1,2}$, Valentina Costi ${ }^{2}$, Annemieke Madder ${ }^{1 *}$, Roberto Corradini ${ }^{2 *}$

${ }^{1}$ Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Gent 9000, Belgium.
${ }^{2}$ Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy

Supplementary Material - Table of contents

 Solid Phase Diels-Alder optimizationSolvent and maleimide concentration optimization 2
Figure S1: UPLC analysis of products obtained using N-(N-Boc-2-
amminoethyl)maleimide as protecting group
Maleimide concentration and equivalents optimization
3
3
Figure S2: relative by-product formation 4
Maleimide equivalents and reaction time optimization 4
Figure S3: relative by-product formation 5
Visualization of the retro-DA reaction time course 6
Figure S4: time course of the retro-DA reaction 6
HPLC-DAD-HRMS chromatograms 7
Figure S5: Overview of the PNA sequences and furan-PNA building blocks 7
Figure S6: HPLC-DAD-HRMS chromatogram of purified PNA 2 8
Figure S7: HPLC-DAD-HRMS chromatogram of purified PNA 3 9
Figure S8: HPLC-DAD-HRMS chromatogram of purified PNA 5 10
Figure S9: HPLC-DAD-HRMS chromatogram of purified PNA 6
Figure S10: HPLC-DAD-HRMS chromatogram of purified PNA 8 12
Figure S11: HPLC-DAD-HRMS chromatogram of purified PNA 9
PAGE analysis 14
Figure S12: PAGE analysis of the cross-link experiment between ON1-ON4 and 14 PNA1-PNA3
Figure S13: PAGE analysis of the cross-link experiment between ON1-ON4 15 and PNA4-PNA6
Figure S14: PAGE analysis of the cross-link experiment between ON1-ON4 15 and PNA7-PNA9
Figure S15: PAGE analysis of the strand displacement experiment between 16
ON1-ON2 and PNA1-PNA9
MALDI analysis 17
Figure S16: MALDI analysis of the cross-link product of ON2 and PNA4 17
Figure S17: HPLC trace and MALDI analysis of the cross-link product of ON1 18
and PNA2
Mechanism of Interstrand Crosslink formation 19
Figure S18: Schematic representation of interstrand crosslink formation 19 Solid Phase Diels-Alder optimization
In order to optimize the Diels-Alder reaction conditions on the solid phase, a small PNA sequence was N -capped with 2-furanpropionic acid (Fur-GATCT-Gly-NH2, loading 7,45 mg/ $\mu \mathrm{mol}$).

Solvent and maleimide concentration optimization

General protocol

1- Load a $200 \mu \mathrm{~L}$ Eppendorf with $0.2 \mu \mathrm{~mol}$ resin (approx. 1.86 mg);

2- Prepare desired solutions of N -(N-Boc-2-amminoethyl)maleimide, and transfer them to the Eppendorf tube;

3- Allow Diels-Alder reaction for 15 hours at $90^{\circ} \mathrm{C}$

4- Transfer the resin beads in a 1 mL SPE tube equipped with PE frit and wash the resin with DMF/DCM;

5- Add $100 \mu \mathrm{~L}$ of a 10% m-cresol solution in TFA and allow to react for $1 \mathrm{~h} 30^{\prime}$;
6- Percolate the solution in a 2 mL Eppendorf tube, and wash the resin with $80 \mu \mathrm{~L}$ TFA;
7- Add 1.8 mL ethyl ether and allow to precipitate for 2 h at $-20^{\circ} \mathrm{C}$;
8- Recover the precipitate by centrifugation, and wash the pellet with ethyl ether;
9- Redissolve the dry pellet in $500 \mu \mathrm{~L} \mathrm{mQ}$, transfer in a $500 \mu \mathrm{~L}$ Eppendorf tube and heat for 15 hours at $90^{\circ} \mathrm{C}$;

10- Submit the samples to UPLC-MS analysis.

Solution used

Eq. maleimide / Concentration	Solvent: Toluene	Solvent: DMF
$100 \mathrm{eq} / 2 \mathrm{M}$	Test A1	Test B1
$50 \mathrm{eq} / 1 \mathrm{M}$	Test A2	Test B2
$20 \mathrm{eq} / 0.5 \mathrm{M}$	Test A3	Test B3
$10 \mathrm{eq} / 0.25 \mathrm{M}$	Test A4	Test B4
$5 \mathrm{eq} / 0.125 \mathrm{M}$	\backslash	Test B5

Target identification

PNA \Charge	No charge	$2+$	$3+$	$4+$
Target	1546.5	774	516	387
Alkylated	1712.7	857	571	429
Cycloaddition by-prod	1686.6	844	563	422

Results: when toluene is used as a solvent, it is not possible to prevent furan alkylation or the formation of a by-product with an additional unit of maleimide connected to the PNA strand. When using DMF it is possible to prevent the alkylation ($20 \mathrm{eq} / 0.5 \mathrm{M}$ seems enough) but not the formation of the extra by-product. In all cases the alkylation of the furan is inversely proportional to the amount of maleimide used, while the formation of the by-product is directly proportional.

Figure S1. UPLC analysis of products obtained for Fur-GATCT-Gly-NH2 PNA synthesis obtained under various conditions (A1-A4 and B1-B5 tests reported above) using N-(N-Boc-2amminoethyl)maleimide as protecting group. Left column: tests A, reference; Right column: tests B. Top panels: UPLC-MS traces; middle panels: MS spectra of 2.40-3.30 minutes region; bottom panels: MS spectra of 5.00-6.00 minutes region. MW target (red boxes) $=1546.5 ;\left[\mathrm{MH}_{2}\right]^{2+}=774.3 ;\left[\mathrm{MH}_{3}\right]^{3+}=$ 516.5; MW alkylated product $=1712,7$ (blue boxes); $\left[\mathrm{MH}_{2}\right]^{2+}=857.4 ;\left[\mathrm{MH}_{3}\right]^{3+}=571.9 \mathrm{MW}$ cycloadduct $=1686,6$ (green boxes); $\left[\mathrm{MH}_{2}\right]^{2+}=844.3 ;\left[\mathrm{MH}_{3}\right]^{3+}=563.2$.

Maleimide concentration and equivalents optimization

General protocol
1- Load a $200 \mu \mathrm{~L}$ Eppendorf with $0.2 \mu \mathrm{~mol}$ resin (approx. 1.86 mg);

2- Prepare desired solutions of N-(N-Boc-2-amminoethyl)maleimide, and transfer them to the Eppendorf tube;

3- Run each condition in triplicate;

4- Allow Diels-Alder reaction to proceed for 7.5 hours at $90^{\circ} \mathrm{C}$
5- Transfer the resin beads in a 1 mL SPE tube equipped with PE frit and wash the resin with DMF/DCM;

6- Add $100 \mu \mathrm{~L}$ of a $10 \% \mathrm{~m}$-cresol solution in TFA and allow to react for 1 h 30 min ;
7- Percolate the solution in a 2 mL Eppendorf tube, and wash the resin with $80 \mu \mathrm{~L}$ TFA;
8- Add 1.8 mL ethyl ether and allow to precipitate for 2 h at $-20^{\circ} \mathrm{C}$;
9- Recover the precipitate by centrifugation, and wash the pellet with ethyl ether;

10- Redissolve the dry pellet in $500 \mu \mathrm{~L} \mathrm{mQ}$, transfer in a $500 \mu \mathrm{~L}$ Eppendorf tube and heat for 5 hours at $90^{\circ} \mathrm{C}$;

11- Submit the samples to UPLC-MS analysis.
12- Data analysis

Solution used

Maleimide concentration	30 eq	20 eq	10 eq
0.5 M	\backslash	Test B1	Test C1
0.25 M	Test A2	Test B2	Test C2
0.1 M	Test A3	Test B3	\backslash

Target identification

PNA \Charge	No charge	$2+$	$3+$	$4+$
Target	1546.5	774	516	387
Alkylated	1712.7	857	571	429
Cycloaddition by-prod	1686.6	844	563	422

Data analysis: For each single UPLC-MS trace three different XIC where obtained extracting the signal relative to the $2+$ and $3+\mathrm{m} / \mathrm{z}$ signals. Peaks were then integrated using MassLynx 4.0 algorithm. Results: 20 equivalent of maleimide at a concentration of 0.25 M gives the best results in term of byproduct formation.

Figure S2. Relative by-product formation for Fur-GATCT-Gly-NH2 PNA synthesis obtained under various conditions (A1-A4 and B1-B5 tests reported above) using N -(N-Boc-2amminoethyl)maleimide as protecting group. Quantities are normalized to target product intensity in the UPLC-MS analysis (carried out as in figure S1). Data presented are an average of 3 different experiments.

Maleimide equivalents and reaction time optimization

General protocol

1- Load a $200 \mu \mathrm{~L}$ Eppendorf with $0.2 \mu \mathrm{~mol}$ resin (approx. 1.86 mg);
2- Prepare the desired 0.25 M solution of N -(N-Boc-2-amminoethyl)maleimide, and transfer the correct amount to the Eppendorf tube;

3- Run each condition in triplicate;
4- Allow Diels-Alder reaction to proceed for the specified time at $90^{\circ} \mathrm{C}$
5- Transfer the resin beads in a 1 mL SPE tube equipped with PE frit and wash the resin with DMF/DCM;

6- Add $100 \mu \mathrm{~L}$ of a 10% m-cresol solution in TFA and allow to react for $1 \mathrm{~h} 30^{\prime}$;
7- Percolate the solution in a 2 mL Eppendorf tube, and wash the resin with $80 \mu \mathrm{~L}$ TFA;
8- Add 1.8 mL ethyl ether and allow to precipitate for 2 h at $-20^{\circ} \mathrm{C}$;
9- Recover the precipitate by centrifugation, and wash the pellet with ethyl ether;
10- Redissolve the dry pellet in $500 \mu \mathrm{~L} \mathrm{mQ}$, transfer in a $500 \mu \mathrm{~L}$ Eppendorf tube and heat for 5 hours at $90^{\circ} \mathrm{C}$;

11- Submit the samples to UPLC-MS analysis.
12- Data analysis

Conditions used

Maleimide amount	15 h at $90^{\circ} \mathrm{C}$	5 h at $90^{\circ} \mathrm{C}$
10 eq	Test A1	Test B1
20 eq	Test A2	Test B2
30 eq	Test A3	\backslash

Target identification

PNA \Charge	No charge	$2+$	$3+$	$4+$
Target	1546.5	774	516	387
Alkylated	1712.7	857	571	429
Cycloaddition by-prod	1686.6	844	563	422

Data analysis: For each single UPLC-MS trace three different XIC were obtained extracting the signal relative to the $2+$ and $3+\mathrm{m} / \mathrm{z}$ signals. Peaks were then integrated using MassLynx 4.0 algorithm.
Results: The use of 10 equivalents of maleimide at a concentration of 0.25 M gives the best results in terms of by-product formation, if the Diels-Alder reaction is conducted for a reduced time (5h).

Figure S3. Relative by-product formation for Fur-GATCT-Gly-NH2 PNA synthesis obtained under various conditions (A1-A4 and B1-B5 tests reported above) using N-(N-Boc-2amminoethyl)maleimide as protecting group. Quantities are normalized to target product intensity in the UPLC-MS analysis (carried out as in figure S1). Data presented are an average of 3 different experiments.

Visualization of retro-DA reaction time course

DA-Adduct Target furan-PNA

Figure S4. Time-course of the retro-DA reaction. UPLC-MS chromatograms (XIC with m / z selected for the Diels alder product (2.77 min) and for the Retro-Diels-Alder product (3.28 min) for reactions carried out for Fur-GATCT-Gly-NH2 PNA synthesis obtained using 20 equivalents of N-(N-Boc-2amminoethyl)maleimide in the protection step $\left(7.5 \mathrm{~h}\right.$ at $\left.90^{\circ} \mathrm{C}\right)$, and different times of the retro-DA reaction at $90^{\circ} \mathrm{C}$ after cleavage. a) before retro-DA; b-e: after $1,3,4$, and 5 h respectively.

HPLC-DAD-HRMS chromatograms

PNA 5: K, f

PNA 8: K, T(f)

PNA 3: R, F

PNA 6: R, f

PNA 9: R, T(f)

Figure S5. Overview of PNA sequences and furan-PNA monomers.

VC1-75 B \#775-978 RT: 13.38-16.30 AV: 102 NL: 1.59E6
T: FTMS + p ESI Full ms [300.00-2000.00]

Figure S6. HPLC-DAD-HRMS chromatogram of purified PNA 2. HPLC-UV at 254 nm trace (top), MS spectrum of the corresponding peak at 15.58 min (center) and mathematical deconvolution of the multicharged signals (insert). (MW: 3158.2976; Molecular formula: $\mathrm{C}_{132} \mathrm{H}_{169} \mathrm{~N}_{69} \mathrm{O}_{36}$).

VC1-50-1B \#890-979 RT: 15.40-16.91 AV: 45 NL: 1.45E5
F: FTMS + p ESI Full ms [300.00-2000.00]

Figure S7. HPLC-DAD-HRMS chromatogram of purified PNA 3. HPLC-UV at 254 nm trace (top), MS spectrum of the corresponding peak at 15.93 min (center) and mathematical deconvolution of the multicharged signals (insert). (MW: 3186.3051; Molecular formula: $\mathrm{C}_{132} \mathrm{H}_{169} \mathrm{~N}_{71} \mathrm{O}_{36}$).

VC1-76 \#795-1012 RT: 13.75-16.92 AV: 109 NL: 1.58E6
T: FTMS + p ESI Full ms [300.00-2000.00]

Figure S8. HPLC-DAD-HRMS chromatogram of purified PNA 5. HPLC-UV at 254 nm trace (top), MS spectrum of the corresponding peak at 15.70 min (center) and mathematical deconvolution of the multicharged signals (insert). (MW: 3296.3502; Molecular formula: $\mathrm{C}_{127} \mathrm{H}_{163} \mathrm{~N}_{65} \mathrm{O}_{35}$).

VC1-32 \#831-1022 RT: 14.36-17.10 AV: 96 NL: 2.68E6
T: FTMS + p ESI Full ms [300.00-2000.00]
666.08

Figure S9. HPLC-DAD-HRMS chromatogram of purified PNA 6. HPLC-UV at 254 nm trace (top), MS spectrum of the corresponding peak at 16.03 min (center) and mathematical deconvolution of the multicharged signals (insert). (MW: 3324.3570; Molecular formula: $\mathrm{C}_{127} \mathrm{H}_{163} \mathrm{~N}_{67} \mathrm{O}_{35}$).

Figure S10. HPLC-DAD-HRMS chromatogram of purified PNA 8. HPLC-UV at 254 nm trace (top), MS spectrum of the corresponding peak at 15.60 min (center) and mathematical deconvolution of the multicharged signals (insert). (MW: 3420.3795; Molecular formula: $\mathrm{C}_{137} \mathrm{H}_{173} \mathrm{~N}_{71} \mathrm{O}_{38}$).

VC2-01 \#785-1028 RT: 13.56-16.83 AV: 122 NL: 3.83E6
T: FTMS + p ESI Full ms [300.00-2000.00]

Figure S11. HPLC-DAD-HRMS chromatogram of purified PNA 9. HPLC-UV at 254 nm trace (top), MS spectrum of the corresponding peak at 15.77 min (center) and mathematical deconvolution of the multicharged signals (insert). (MW: 3448.3870; Molecular formula: $\mathrm{C}_{137} \mathrm{H}_{173} \mathrm{~N}_{73} \mathrm{O}_{38}$).

PAGE analysis

Crosslink samples were analyzed on a 20% polyacrylamide gel (acrylamide:bisacrylamide 19:1) prepared in 1x Tris-Borat-EDTA (TBE) buffer containing 7 M urea. The temperature of the gel was stabilized with a Julabo F12 at $25^{\circ} \mathrm{C}$. The power supply used for gel electrophoresis was a consort EV202 and a constant voltage of 230 V was used to run the gels. Gels were stained with SYBR gold (Thermo Fisher Scientific, Life Technologies) and pictures were taken with an Autochemi imaging system (UVP). $4 \mu \mathrm{~L}$ of the crosslink solution $(10 \mu \mathrm{M})$ were mixed with $16 \mu \mathrm{~L}$ formamide and from this mixture $8 \mu \mathrm{~L}$ were loaded on the gel. It should be noted that staining of PNA is considerably more difficult and much less sensitive that DNA staining. As a result individual ssPNA strands cannot be visualized on PAGE and can thus not be seen in the figures below. Consequently also PNADNA crosslinked complexes (boxes in purple) are only visualized with low intensity.
A DNA impurity occurring in all samples appears in all gels as a slower running spot between the cross-linked complex and the ssDNA spots, due to the considerably higher sensitivity of DNA for SybrGold staining

Figure S12. PAGE analysis: Cross-link experiment between ON 1-4 and PNA 1-3. Analysis was done on a 20% polyacrylamide gel (acrylamide:bisacrylamide 19:1) prepared in a TBE buffer containing 7M urea. A constant voltage of 230 V was applied at a temperature of $25^{\circ} \mathrm{C}$. Gels were stained with a SYBR gold solution and gels were analysed using an Autochemi Imaging system.

Figure S13. PAGE analysis: cross-link experiment between ON 1-4 and PNA 4-6. Analysis was done on a 20% polyacrylamide gel (acrylamide:bisacrylamide 19:1) prepared in a TBE buffer containing 7M urea. A constant voltage of 230 V was applied at a temperature of $25^{\circ} \mathrm{C}$. Gels were stained with a SYBR gold solution and gels were analysed using an Autochemi Imaging system.

Figure S14. PAGE analysis: cross-link experiment between ON 1-4 and PNA 7-9. Analysis was done on a 20% polyacrylamide gel (acrylamide:bisacrylamide 19:1) prepared in a TBE buffer containing 7M urea. A constant voltage of 230 V was applied at a temperature of $25^{\circ} \mathrm{C}$. Gels were stained with a SYBR gold solution and gels were analysed using an Autochemi Imaging system.

Figure S15. PAGE analysis. A) Strand displacement experiment of ON1 and PNA 1-9. B) Strand displacement experiment between ON 2 and PNA 1-9. Analysis was done on a 20% polyacrylamide gel (acrylamide:bisacrylamide 19:1) prepared in a TBE buffer containing 7M urea. A constant voltage of 230 V was applied at a temperature of $25^{\circ} \mathrm{C}$. Gels were stained with a SYBR gold solution and gels were analysed using an Autochemi Imaging system.

MALDI analysis

Prior to MALDI analysis, the crosslinked product was purified using reverse phase HPLC (RPHPLC). Purification was performed on an Agilent 1200b System equipped with a Waters X-bridge $130 \AA$ Oligonucleotide C 18 column $(2.5 \mu \mathrm{M}, 4.6 \mathrm{~mm} \times 50 \mathrm{~mm})$ at either a column temperature of 50 ${ }^{\circ} \mathrm{C}$. Acetonitrile and 0.1 M TEAA buffer with 5% acetonitrile were used as mobile phase and were applied through a gradient of $0-18 \% \mathrm{MeCN}$ in 20 minutes. The isolated crosslinked samples was dissolved in $5 \mu \mathrm{~L}$ milliQ. Sample and matrix (2,5-dihydroxybenzoic acid; 15 mg in $100 \mu \mathrm{~L}$ milliQ and $50 \mu \mathrm{~L} \mathrm{MeCN}$ with 1% TFA) were spotted in a $1: 1$ ratio onto the MALDI plate. The PNA-DNA crosslinked samples were analyzed by MALDI-TOF on an ABI Voyager DE-STR system equipped with a high performance nitrogen laser (337 nm). PNA-DNA crosslinked samples were analyzed in linear, positive mode.

Figure S16. MALDI analysis of the cross-link product of ON 2 and PNA 4. The labeled peak is attributed to the DNA-PNA cross-linked duplex (Expected mass: 6591 Da).

Figure S17. HPLC trace of the ICL experiment (top panel) and MALDI analysis (bottom panel) of the cross-link product of ON 1 and PNA 2 (peak at 11.00-11.50 min). The labeled peak is attributed to the DNA-PNA cross-linked duplex (Expected mass: 6477 Da). Peak at 8.5 min correspond to unreacted ON 1.

Mechanism of Interstrand Crosslink formation

b)

a)
b)

PNA 4-6

d)

Figure S18. Schematic representation of interstrand crosslink formation between PNAs bearing \mathbf{F} building block (PNA 1-3) and ON 2 (upper panel) and PNAs bearing f building block (PNA 4-6) and ON 1 (lower panel). a) Activation of the furan unit; b) reaction of the keto-enal with the exocyclic amine; c) ring closure reaction; d) re-aromatization reaction, through dehydration.

