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Abstract: Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules.
The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread
leads to translational isomers of very different properties. Although many moieties have been used as
sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely
been envisaged as molecular station. In this article, we report the use of secondary and tertiary amide
moieties as efficient secondary molecular station in pH-sensitive molecular shuttles. Depending on
the N-substitution of the amide station, and on deprotonation or deprotonation-carbamoylation,
the actuation of the molecular machinery differs accordingly to very distinct interactions between the
axle and the DB24C8.
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1. Introduction

Since the first interlocked molecular shuttles were reported in the literature in 1994 [1,2],
several new systems of recognition have been used to control the localization of a macrocycle around
either another macrocycle or a thread in more or less sophisticated interlocked molecules. With
the dibenzo-24-crown-8 macrocycle (DB24C8), the use of ammonium [3], as template to direct the
interlocking process, is probably the most encountered. This template also presents the advantage of
being possibly concealed through deprotonation, so that the interactions between the template and the
macrocycle become annihilated. This possibility is of interest for the construction of multi-stable
molecular shuttles, especially if another thread’s moiety of initial weaker affinity is present in
the thread. In this case, the macrocycle can shuttle along the thread and sit around the second
station. The process can be reversible through protonation. Hence, reporting new stations of
weaker affinity for the macrocycle might be of interest. Several secondary stations for the DB24C8
have been reported in the literature to date. As a non-comprehensive list of them, we can cite
the following positively charged stations: bipyridinium [4–10], 1,2-bis-(pyridinium)ethane [11–21],
triazolium [22–30], pyridinium [31–33], pyridinium amide [34–37], imidazolium [38–41] moieties,
oxidized ferrocene [42], etc. Some neutral molecular stations are also important to be mentioned,
such as urea [43], thiourea [44], carbamate [45–50], isoxazole [51], and benzylic ester [52], that usually
interact either through π-π stacking with the aromatic rings of the crown ether, or through hydrogen
bonding with the oxygen atoms of the crown ether. All of these sites of interactions are weaker stations
than the ammonium moiety. However, they are better site of recognitions than the amine moiety that
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directly derives from deprotonation of the best ammonium station, allowing the pH-sensitive actuation
of the molecular machinery. To the best of our knowledge, although one can find in the literature
some DB24C8-containing [2]rotaxanes that involve amide moieties [3,53–55], only a few studies have
investigated the utilization of a single secondary amide moiety as an efficient secondary molecular
station for the DB24C8 [56,57]. In this paper, we straightforwardly synthesized [2]rotaxane molecular
shuttles that combine a strong ammonium station and either a secondary or a tertiary amide station.
Depending on the class of the amide station, the molecular machinery actuates differently through the
concealing/revealing of the ammonium moiety.

2. Results

2.1. Synthetic Access to Molecular Shuttles

The [2]rotaxane molecular shuttles were obtained from the isolable active ester-containing
[2]rotaxane building-block 1 (Scheme 1) [24]. A very efficient slippage process allowed the formation
of the N-hydroxysuccinimide ester-containing [2]rotaxane 1 in very good yield. Once the rotaxane
building-block 1 isolated, addition of either tert-butylbenzylamine or N-methyl-tert-butylbenzylamine
provided directly the protonated secondary and tertiary amide-containing [2]rotaxanes 2-H+ and
3-H+, respectively.
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Scheme 1. Synthesis of secondary and tertiary amide-containing [2]rotaxane molecular shuttles.

At the protonated state, the DB24C8 is localized around the best ammonium station whatever
the secondary or tertiary class of the amide. Shuttling of the macrocycle along the thread was then
considered upon concealing the ammonium station. Deprotonation and deprotonation-carbamoylation
of the ammonium were carried out. The deprotonation appeared quite difficult with standard bases
such as tertiary amines, sodium hydroxide or DBU, as we already encountered this problem anteriorly
with encircled ammonium moieties in interlocked [2]rotaxane species when no sufficiently strong
secondary molecular station was present close to the ammonium one [58]. The use of the strong
P1-tBu-tris(dimethyl)phosphazene Schwesinger’s base (1 equiv) [59] nevertheless allowed the complete
deprotonation of the ammonium moiety in situ. Deprotonation-carbamoylation was also achieved
and provided the pure carbamoylated [2]rotaxanes 2-Boc and 3-Boc in very good yields (89% and 93%,
respectively, after chromatography).
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2.2. Characterizations of the Molecular Shuttles

In the secondary amide series, the localization of the DB24C8 at the protonated and deprotonated
states ([2]rotaxanes 2-H+ and 2) was demonstrated thanks to 1H NMR spectroscopy (Figure 1).
The comparison between the 1H NMR spectrum of 2-H+ with that of the uncomplexed thread
2u-H+ highlights the presence and the localization of the DB24C8 around the best ammonium station
(Figure 1a,b). Apart from the obvious appearance of HA–E belonging to the DB24C8, hydrogen atoms
H7 and H9 that are neighboring the ammonium moiety are both shifted downfield in 2-H+ (∆δ = 0.42
and 0.25 ppm, respectively) due to their hydrogen bonding interactions with the oxygen atoms of the
crown ether. At the same time, hydrogen atoms H10–13, H15 and in a much lesser extent H16 are more
or less shifted upfield in 2-H+ (∆δ = −0.22, −0.29, −0.23, −0.28, −0.36 and −0.03 ppm, respectively)
because they experience the shielding region of the aromatic rings of the DB24C8.
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Deprotonation of the ammonium triggered the shuttling of the DB24C8 around the secondary 
amide station (Scheme 1). More precisely, at the deprotonated state of the molecular shuttle, the 
DB24C8 interacts through hydrogen bonds with the amide hydrogen atom H15 and the next hydrogen 
atoms H16 (Figure 1b,c). Indeed, with respect to 2-H+, in 2, the hydrogen atoms H7, H9, and in a lesser 
extent H10 are obviously shifted upfield (Δδ = −0.91, −0.89, and −0.21 ppm, respectively) due to the 
deprotonation of the ammonium. Meanwhile, hydrogen atoms H15 and H16 are importantly shifted 
downfield (Δδ = +0.64 and +0.40 ppm, respectively). Concerning the methylenic hydrogen atoms HE–E’ 
of the DB24C8, they are shielded in 2 (Δδ = −0.19 and −0.32 ppm), because of their localization in the 
shielding region of the aromatic ring of the N-benzylamide extremity of the axle. One might also 

Figure 1. 1H NMR (500 MHz, CD3CN, 298 K) comparison between the spectra of: (a) the protonated
non-interlocked molecular axle 2u-H+; (b) the protonated [2]rotaxane 2-H+; (c) the deprotonated
[2]rotaxane 2; (d) the deprotonated non-interlocked analogue 2u. The numbering and coloring of the
signals correspond to those indicated in Scheme 1. All the 1H NMR spectra have been carried out at a
concentration of 4.9 × 10−2 M.

Deprotonation of the ammonium triggered the shuttling of the DB24C8 around the secondary
amide station (Scheme 1). More precisely, at the deprotonated state of the molecular shuttle,
the DB24C8 interacts through hydrogen bonds with the amide hydrogen atom H15 and the next
hydrogen atoms H16 (Figure 1b,c). Indeed, with respect to 2-H+, in 2, the hydrogen atoms H7, H9, and
in a lesser extent H10 are obviously shifted upfield (∆δ = −0.91, −0.89, and −0.21 ppm, respectively)
due to the deprotonation of the ammonium. Meanwhile, hydrogen atoms H15 and H16 are importantly
shifted downfield (∆δ = +0.64 and +0.40 ppm, respectively). Concerning the methylenic hydrogen
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atoms HE–E’ of the DB24C8, they are shielded in 2 (∆δ = −0.19 and −0.32 ppm), because of their
localization in the shielding region of the aromatic ring of the N-benzylamide extremity of the axle.
One might also compare the localization of these hydrogen atoms HE–E’ in the two co-conformational
states 2-H+ and 2. By comparison with the free DB24C8, HE–E’ of each co-conformational state are
shielded in the rotaxane architectures. However, the fact that the DB24C8 interacts with three centers
(H7–9) neighboring the aromatic “left” end of the axle at the protonated state 2-H+ rather than only
two centers (H15–16) next to the aromatic “right” end of the axle in the deprotonated state 2 induces a
slight lower shielding of the HE–E’ signals in 2-H+.

The accurate localization of the DB24C8 that interacts through hydrogen bonding with only atoms
H15 and H16 in 2 is corroborated by the direct comparison between the 1H NMR spectra of rotaxane
2 and its uncomplexed analogue 2u (Figure 1c,d). The same trend in chemical shift displacements
are observed, i.e., H15–16 are the only deshielded hydrogen atoms in the interlocked architecture 2
(∆δ = +0.46 and +0.39 ppm). It is noteworthy that hydrogen atoms H13, which we imagine they could
have interacted through hydrogen bonds with the oxygen atoms of the DB24C8, if one considered
the acidity of hydrogen atoms next to an amide carbonyl, are on contrary shielded in the rotaxane 2
(∆δ = −0.20 ppm), like H9–12 are too (∆δ = −0.14, −0.21, −0.27, and −0.18 ppm, respectively).

Interestingly, and corroborating the fact that the ammonium moiety was very difficult to
deprotonate [36,60], removal of the P1-tBu-tris(dimethyl)phosphazene from the in situ deprotonated
rotaxane crude 2 unsuccessfully led, through silica or size-exclusion chromatographic column, to the
protonated rotaxane 2-H+. Deprotonation-carbamoylation of rotaxane 2-H+ was therefore achieved
in order to obtain a pure translational co-conformer analogue. Hence, the isolated carbamoylated
rotaxane 2-Boc was easily obtained and isolated in a two-step sequence with an 89% overall yield from
2-H+ (Scheme 1). In the [2]rotaxane 2-Boc, the localization of the DB24C8 along the thread was fully
similar to that observed in 2, highlighting the fact that the presence of the bulky Boc moiety had no
influence on the localization of the macrocycle around the secondary amide station. Figure 2 shows
the comparison of 1H NMR spectra that are necessary to demonstrate the accurate localization of the
macrocycle along the thread. Apart from a difference of chemical shifts for H7 and H9 that is due to
the carbamoylation of the next amine moiety, exactly the same explanations (downfield shifts due to
hydrogen bonds between axle and macrocycle and shielding effect due to aromatic rings of both the
DB24C8 and the axle’s extremities) can be stated for the system 2-H+/2-Boc than those mentioned
above for 2-H+/2.

Tertiary amide motif was then envisaged in order to evaluate its propensity to act as a secondary
molecular station for the DB24C8. To the best of our knowledge, no tertiary amide has been reported
as a molecular station for crown ether to date, although one might benefit from the expected weakest
affinity of the station for the macrocycle. Since the hydrogen atom, which is linked to the nitrogen atom
of a primary or secondary amide, is replaced by a methyl substituent in the tertiary amide-containing
rotaxanes 3 and 3-Boc, we wondered how the DB24C8 would interact with the tertiary amide motif, and
if it still does, which hydrogen atoms would be involved in the template site. Remarkably, changing
from the secondary to the tertiary class of the amide induced a singular behavior of the macrocycle
along the thread, and the localization of the DB24C8 and its interactions with the encircled axle were
quite different after deprotonation or deprotonation-carbamoylation of the ammonium template.
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non-interlocked molecular axle 2u-H+; (b) the protonated [2]rotaxane 2-H+; (c) the carbamoylated
[2]rotaxane 2-Boc; (d) the carbamoylated non-interlocked analogue 2u-Boc. The numbering and
coloring of the signals correspond to those indicated in Scheme 1. All the 1H NMR spectra have been
carried out at a concentration of 4.9 × 10−2 M.

In the protonated rotaxane 3-H+, as for 2-H+, the DB24C8 resides around the best ammonium
station, which appears consistent with the fact that a tertiary amide was expected to be a worse
molecular station than the secondary molecular station (Scheme 1, Figure 3). Hence, the same trend of
chemical shift variations was noticed when comparing 3-H+ with its uncomplexed analogue 3u-H+

than that observed through the comparison between the secondary amide-containing rotaxane 2-H+

and its uncomplexed analogue 2u-H+ (Figures 1a,b and 3a,b). Only one difference concerns the higher
complexity of the 1H NMR spectra for the tertiary amide-containing compounds 3-H+, 3, 3-Boc, and
their respective non-interlocked analogues because of the cis-trans isomerism of the amide bond.
Briefly, hydrogen atoms H7 and H9 are shifted downfield in the interlocked architecture (∆δ = +0.43
and +0.27 ppm, respectively), due to their implication in hydrogen-bonding with the oxygen atoms of
the crown ether, while almost all the other hydrogen atoms are more or less shifted upfield because they
experience the shielding effect of the aromatic ring of the DB24C8. Only the hydrogen atoms H18–19

and H22 do not undergo any variation of their chemical shifts, which corroborates the localization of
the DB24C8 at the other side of the encircled axle, i.e., around the ammonium site.
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non-interlocked molecular axle 3u-H+; (b) the protonated [2]rotaxane 3-H+; (c) the deprotonated
[2]rotaxane 3; (d) the deprotonated non-interlocked analogue 3u. The numbering and coloring of the
signals correspond to those indicated in Scheme 1. All the 1H NMR spectra have been carried out at a
concentration of 4.9 × 10−2 M.

Deprotonation of rotaxane 3-H+ using the P1-tBu-tris(dimethyl)phosphazene resulted in no real
change of the main localization of the macrocycle, albeit an obvious weaker interaction between the
interlocked components was noticed. This result implies that the tertiary amide is a weaker molecular
station than the amine moiety. The full deprotonation of rotaxane 3-H+ and the co-conformational
state of the deprotonated rotaxane 3 are highlighted by the 1H NMR comparison between spectra
of 3-H+ and 3 (Figure 3b,c). In particular, hydrogen atoms H7 and H9 are highly shifted upfield in
3 (∆δ = −0.77 and −0.65 ppm, respectively), but not as they should be if they were not interacting
with the DB24C8 anymore (see below the comparison between the 1H NMR spectra of 3 and 3u).
Meanwhile, hydrogen atoms H11–13 are deshielded in 3 (∆δ = +0.19, +0.17, and +0.15 ppm, respectively),
although the deprotonation of the ammonium moiety provides an amine moiety, which is a lesser
electron-withdrawing group. One might therefore suggest that these hydrogen atoms experience a
lower shielding effect of the DB24C8 than in 3-H+, probably due to the weaker interactions between
the amine moiety and the DB24C8 that allow a higher translational degree of freedom of this latter
along the thread. This matches with the fact that hydrogen atoms H15 and H16 (right side of the
axle) are slightly shielded in 3 with respect to 3-H+ (∆δ = −0.09 and −0.06 ppm, respectively), which
might indicate that they undergo a slight shielding from the aromatic rings of the DB24C8. In fact, the
accurate localization of the DB24C8 around the amine in 3 appears slightly different than that observed
around the ammonium in rotaxane 3-H+. The direct comparison between the 1H NMR spectra of
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3 with that of its uncomplexed analogue 3u reveals a site of weak hydrogen bonding interactions
between the two interlocked components at the amine site (Figure 3c,d). Indeed, one can notice the
slight downfield shift of hydrogen atoms H7 and H9 in 3 (∆δ = +0.05 ppm and +0.13 ppm, respectively).
Although the macrocycle resides over the same region of the axle in 3 and 3-H+ (over the amine or
the ammonium region, respectively), the downfield shifts of H7 and H9 observed in 3 (with respect to
3u) are inferior than those observed in the protonated rotaxane 3-H+ (with respect to 3u-H+). This is
attributed to the weaker hydrogen bonds of the neutral amine station for the DB24C8 with respect
to the positively charged ammonium station. More interestingly, the higher downfield shift of H9

than H7 (+0.13 vs. +0.05) in 3 (with respect to 3u) compared to the higher downfield shift of H7 than
H9 (+0.43 vs. +0.27) in 3-H+ (with respect to 3u-H+) indicates a small change in the preorganization
between the DB24C8 and the axle (the DB24C8 sits more over H9 than H7), which corroborates the
higher shielding of the “right side” of the axle in 3. At the exception of H22, all the other hydrogen
atoms of the encircled thread are experiencing a slight shielding effect of the aromatic rings of the
DB24C8. Besides, the methylenic hydrogens HC–E of the DB24C8 are less split in the deprotonated
rotaxane 3 than in 3-H+. This observation corroborates the weaker hydrogen bonds involving the
oxygen atoms of the DB24C8 and the amine station since strong hydrogen bonds are known to lower
the rotation of σ bonds due to more constrained structure, hence to increase the splitting of the signals
due to the better differentiation of geminal hydrogen atoms [36,37].

Surprisingly, deprotonation-carbamoylation of 3-H+ resulted in a distinct co-conformational state,
with respect to what occurred after the single deprotonation of 3-H+ (Scheme 1, Figure 4). Indeed,
in the [2]rotaxane 3-Boc, the DB24C8 interacts with the methylenic hydrogen atoms H10–13 through
hydrogen bonding (Figure 4c,d). By comparing the 1H NMR spectra of the carbamoylated [2]rotaxane
3-Boc and its uncomplexed thread 3u-Boc, H10–13 are shifted downfield in the rotaxane architecture
(∆δ = +0.15 ppm, +0.27 ppm, +0.21 ppm, and +0.18 ppm, respectively). At the same time, hydrogen
atoms H16 (which participate through H-bond with the oxygen atoms of the DB24C8 in the secondary
amide-containing [2]rotaxane 2) are now shielded in 3-Boc (∆δ = +0.16 ppm), probably because the
oxygen atoms of the DB24C8 cannot interact with these hydrogen atoms due to the steric problem
generated by the amide isomerism. Likewise, hydrogen atoms H15, H7, HBoc and H9 are shielded in
3-Boc (∆δ = −0.23, −0.25, −0.10, and −0.13 ppm, respectively) because they experience the shielding
effect of the aromatic rings of the DB24C8.

It is of particular interest to notice that the expected more acidic hydrogen atoms (i.e., H13) are not
the most affected by the hydrogen bonds occurring with the oxygen atoms of the DB24C8. Instead, the
next hydrogen atoms H11 and H12 are. One might suggest that both the cis-trans isomerism of the next
tertiary amide and the rotation of the N-C16 σ bond, which occur quickly at room temperature [61],
allow for the presence of isomers in which steric repulsions prevent the DB24C8 from interacting
optimally with the most acidic hydrogens H13 (Figure 5b). The DB24C8 is therefore sterically forced
to interact with the neighboring less acidic but less hampered hydrogen atoms. More interestingly,
the broadening of the 1H NMR signals in 3, which are relative to the hydrogen atoms involved in
hydrogen bonding interactions with the crown ether, suggests a continuous motion of the macrocycle
along the H10–13 template site of the axle. In this co-conformational state, it seems that the DB24C8
tends to interact with the more acidic hydrogen atoms H13, while hindrance due to the rotations of
the next amide and N-C16 bonds hampers this interaction. The ROESY 1H NMR spectrum of 3-Boc
presented in Figure 5a supports this hypothesis, this latter being illustrated in Figure 5b by the cartoon
representations of the different conformers. It is particularly important to note the ROE correlation
between the aromatic hydrogen atoms H18–cis and the most acidic hydrogen atoms H13–cis. Highlighted
by the cartoon representation of conformer A (Figure 5b), this close localization of the stopper with
the template site should highly disfavor the expected hydrogen bonding interactions between the
oxygen atoms of the DB24C8 and H13 due to steric repulsion. Noteworthy, no correlation exists
between the same hydrogen atoms of the trans isomer (i.e., H13–trans and H18–trans), agreeing the cartoon
representations of the trans isomers C and D. The existence of conformer A is also demonstrated
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by the correlation between hydrogen atoms H12–cis and H16–cis, while no correlation are noticed
between H12–trans and H16–trans (see Supplementary Materials). The presence of conformers A-B are
also confirmed by the absence of any correlation between the methylene hydrogen atoms H15–cis
and HC–E belonging to the DB24C8 (see Supplementary Materials). This observation supports the
fact that the tert-butylbenzyl stopper might prevent the DB24C8 from interacting with the close
and more acidic hydrogen atoms H13 in the cis isomers A and B. It is completely the opposite for
H15–trans, which strongly correlate with all the hydrogen atoms HA–E of the DB24C8 (see Supplementary
Materials). Finally, correlations between H10–12 with the methylene hydrogen atoms of the DB24C8
HC–E (see Supplementary Materials) are consistent with the hydrogen-bonding interactions already
stated with the help of the 1D 1H NMR spectra comparisons.
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3. Conclusions

In conclusion, we have reported four new DB24C8-based molecular shuttles that contain
either a secondary or a tertiary amide station. In the secondary amide series, deprotonation or
deprotonation-carbamoylation of the best ammonium station led to a stable co-conformational state in
which the DB24C8 interacts through hydrogen bonding with both the hydrogen atom linked to the
nitrogen of the amide and the benzylic methylene hydrogens. The tertiary amide moiety proved to be
a weaker station than the secondary one, although it could act as a secondary station in the case of a
deprotonation-carbamoylation of the ammonium. In the case of a sole deprotonation, no shuttling of
the DB24C8 around the tertiary amide motif occurred: the DB24C8 stayed around the amine moiety
where it interacts through hydrogen bonds, albeit in a different manner than when it resides around
the ammonium station. Actually, the DB24C8 prefers to interact with the benzylic methylene hydrogen
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atoms neighboring the ammonium rather than with the alkyl methylene group next to the ammonium,
while it is the contrary after revealing the amine station. Eventually, deprotonation-carbamoylation
resulted in a different behavior of the molecular shuttle in the tertiary amide series. In this case, the
concealing of both the ammonium and amine station triggers the shuttling of the DB24C8 towards
the amide site, although in a distinct manner than in the secondary amide series. Indeed, the tertiary
amide moiety allows for a cis-trans isomerism at room temperature that hampers the axle at this site,
preventing the DB24C8 from interacting through hydrogen bonds with the hydrogen atoms implied
in the secondary amide series. In this case, the DB24C8 sits over the hydrogen atoms borne by the
carbons in positions α, β, γ and δ of the carboxamide, where it interacts through hydrogen bonding
interactions. More interestingly, due to steric hindrance generated by bonds rotations, the DB24C8
is not localized solely around the expected more acidic hydrogen atoms. It rather seems to adopt a
continuous motion over 4 methylene groups. In summary, the DB24C8 can interact through hydrogen
bonds with the following stations, albeit with the respective decreasing of affinity: (1) ammonium,
(2) N-benzylic secondary amide, (3) amine, and (4) N-benzylic tertiary amide. New efficient molecular
stations of very weak affinity for the macrocycle might be of interest for the conception of multi-stable
molecular shuttles with fast shuttling.

Supplementary Materials: Supplementary Materials are available online.
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