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Abstract: Interactions between drugs and target proteins provide important information for the
drug discovery. Currently, experiments identified only a small number of drug-target interactions.
Therefore, the development of computational methods for drug-target interaction prediction is
an urgent task of theoretical interest and practical significance. In this paper, we propose a label
propagation method with linear neighborhood information (LPLNI) for predicting unobserved
drug-target interactions. Firstly, we calculate drug-drug linear neighborhood similarity in the
feature spaces, by considering how to reconstruct data points from neighbors. Then, we take
similarities as the manifold of drugs, and assume the manifold unchanged in the interaction space.
At last, we predict unobserved interactions between known drugs and targets by using drug-drug
linear neighborhood similarity and known drug-target interactions. The experiments show that
LPLNI can utilize only known drug-target interactions to make high-accuracy predictions on four
benchmark datasets. Furthermore, we consider incorporating chemical structures into LPLNI
models. Experimental results demonstrate that the model with integrated information (LPLNI-II) can
produce improved performances, better than other state-of-the-art methods. The known drug-target
interactions are an important information source for computational predictions. The usefulness of
the proposed method is demonstrated by cross validation and the case study.
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1. Introduction

The identification of potential drug-target interactions is a crucial task in drug discovery,
which helps to find novel targets for existing drugs or identify targets for new drugs [1].
Wet experiments are reliable ways of determining interactions between drugs and targets, but
they are cost-intensive and time-consuming [2]. In contrast, computational methods provide
economic and efficient alternative to predict possible drug-target interactions with high reliability for
further experiments.

To the best of our knowledge, researchers collect drug-target interaction data, and construct the
public databases. Available drug-target data facilitate the development of drug-target interaction
prediction methods. Traditional computational methods include molecular docking simulation
methods and ligand-based methods. Though docking simulation methods are effective, they cannot
work without three-dimensional (3D) structures of targets [3]. Ligand-based methods perform well
when there are sufficient known ligands for a target protein, but such methods are not suitable for
large-scale data [4].

In addition, several methods have been proposed based on properties of drug and targets.
Kuhn et al. [5] used molecular features and target proteins to predict drug-target relations.
Garcia-Sosa et al. [6,7] introduced logistic regression and naïve Bayesian classifiers for classification of
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compounds into one disease category or organ by studying target-ligand data. Cao et al. [8] found
that genes that have spatial interactions may have similar molecular function and developed a new
gene function prediction method based on gene-gene interacting networks. Xu et al. [9] proposed a
stochastic gradient boosting algorithm to predict effective drug combination. Zeng et al. [10] developed
a novel features fusion method and adopted the random forest classifier for protein-protein interaction
prediction. Wei et al. utilized the random forest classifier [11] and an ensemble classifier called
LibD3C [12] to predict protein-protein interaction.

Recently, a great number of machine learning methods have been introduced for the drug-target
interaction prediction, and machine learning-based methods are roughly divided into four categories:
classification methods, matrix factorization methods, kernel methods and network inference
methods. Classification methods take drug-target interaction pairs and non-interaction pairs
as positive instances or negative instances, and build the classification models for predictions.
For example, Nagamine et al. [13] and Wang et al. [14] constructed support vector machine (SVM)
models; Tabei et al. [15] utilized logistic regression and SVM. Matrix factorization methods use the
matrix factorization technique to reconstruct drug-target interactions. The kernelized Bayesian
matrix factorization with twin kernels (KBMF2K) [16] and multiple similarity collaborative matrix
factorization (MSCMF) [17] have been used for predictions and graph-regularized matrix factorization
(GRMF) [18]. Kernel methods include the pair kernel method (PKM) [19], net Laplacian regularized
least squares (NetLapRLS) [20], and regularized least squares with Kronecker product kernel
(RLS-Kron) [21]. Network inference methods formulate the drug-target interactions as the graph
learning. Bleakley and Yamanishi [22] built bipartite local model (BLM). Mei et al. [23] improved the
BLM by considering new drug candidates through its neighbors’ interaction profiles. Chen et al. [24]
applied a random walk technique to walk on a drug-drug similarity network, a target-target similarity
network and known drug-target interaction networks for predictions. Cheng et al. [25] adopted the
resource allocation method to infer interactions in the drug-target bipartite network. Moreover, there
are different types of machine learning-based methods [26–30].

Drug-drug similarity or target-target similarity are critical components in many drug-target
interaction prediction methods [17,19–24]. How to define the similar drugs (targets) is critical, and the
point is to calculate drug-drug similarity. To the best of our knowledge, there are different ways of
calculating drug-drug similarity based on feature vectors, such as cosine similarity, Gauss similarity
and Jaccard similarity. Cosine similarity consists in measuring the cosine of the angle between
two vectors in an inner product space. Gauss similarity utilizes the Gauss kernel function to measure
the similarity. Jaccard similarity considers the interaction of components and the union.

In this paper, we propose a label propagation method with linear neighborhood information
(LPLNI) for drug-target interaction predictions. Firstly, we calculate drug-drug linear neighborhood
similarity in the feature spaces by considering how to reconstruct data points from neighbors.
Then, we take similarities as the manifold of drugs and assume the manifold unchanged in the
interaction space. At last, we predict unobserved interactions between known drugs and targets
by using drug-drug linear neighborhood similarity and known drug-target interactions. We present a
feature of drugs named the interaction profile from the known drug-target interactions. The LPLNI
model, based on the interaction profiles, perform well in the computational experiments, achieving
AUPR up to 0.9051, 0.9461, 0.9658, and 0.9464 on the enzymes (Es) dataset, the GPCRs dataset, the ion
channels (ICs) dataset, and the nuclear receptors (NRs) dataset, respectively. Further, we incorporate
drug structure information into the LPLNI model by a nonlinear strategy, improving AUPR to 0.9069,
0.9469, 0.9684, and 0.9492 on the Es dataset, the GPCRs dataset, the ICs dataset, and the NRs dataset,
respectively. The experimental results show that our method outperforms other state-of-the-art
methods on these four benchmark datasets.
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2. Results and Discussion

2.1. Evaluation Metrics

In order to evaluate the performances of prediction models, computational experiments were
conducted on four benchmark datasets. Here, we adopted leave-one-out cross validation (LOOCV)
to test model performances. That is, each drug-target pair was left out in turn, and remaining pairs
were used as the training set to build models for predictions. We repeated the procedure until each
drug-target pair is ever tested.

The AUC and AUPR are the most popular evaluation metrics in the previous works. AUC is
the area under the receiver operating characteristic (ROC) curve, which plots the true positive
rate (TPR) versus the false positive rate (FPR). AUPR is the area under the precision-recall curve,
which plots the ratio of true positives among the predicted positives for each recall rate. There are more
negative instances than positive ones, and AUPR punishes the false positives more in evaluation [31].
Therefore, we adopted AUPR as the primary metric and used AUC to evaluate models.

2.2. The Performances of the LPLNI Models

In this section, we evaluate the performances of the LPLNI models. Since we had the interaction
profiles and fingerprints for drugs, we respectively used these features to calculate the linear
neighborhood similarities and then built LPLNI models. Here, we used the Pubchem fingerprint
for analysis.

There are two parameters K and α in LPLNI, in which K is the number of neighbors in the
linear neighborhood similarity (LNS), and α is the probability of absorbing target information from
neighbors. These parameters may influence the results, and we can build LPLNI models using different
parameter values. The number of drug neighbors K should be less than the number of all drugs, and
the four benchmark datasets, i.e., the nuclear receptors (NRs) dataset, the G-protein coupled receptors
(GPCRs) dataset, the ion channels (ICs) dataset, and the enzymes (Es) dataset, contain 54, 223, 210,
and 445 drugs, respectively. Therefore, we considered different neighborhood numbers K 10, 30, and 50
for the NRs dataset, 60, 120, and 180 for the GPCRs and ICs datasets, and 120, 240, and 360 for the
Es dataset. In addition, absorbing probability α should be greater than zero, and smaller than one.
Hence, for parameter α we chose values from 0.1 to 0.9 (with a step size of 0.1).

The drug-drug similarity is critical for LPLNI. To demonstrate the superiority of linear
neighborhood similarity, we also considered cosine similarity, Jaccard similarity, and Gauss similarity
and applied label propagation to build similarity-based prediction models. The Gauss function
calculates the similarity by Gauss

(
xi, xj

)
= exp

(
−‖xi − xj‖2/σ

)
, which has the bandwidth parameter

σ, and we set σ = ∑i|xi|/nd as in [23], where xi is the feature vector of the i-th drug, and nd is the
number of drugs.

All prediction models are evaluated using LOOCV. The performances of different similarity-based
models are shown in Figure 1. In general, the linear neighborhood similarity can lead to better
performances than can cosine similarity, Gauss similarity, or Jaccard similarity. The possible reason for
the superior performances of the LPLNI models is that the linear neighborhood similarity describes
the linear relationship of data points in the feature space. The linear neighborhood similarity is then
smoothly transferred into the interaction space, and LPLNI utilizes the label propagation to make
predictions based on the same linear relationship of data points in the interaction space.

Moreover, we observed that the LPLNI models based on the interaction profiles have better
performances than the LPLNI models based on the Pubchem fingerprint, which indicates that the
interaction profiles are an information source of utmost importance for prediction.

2.3. The Performances of LPLNI Models with Integrated Information

In machine learning, combining diverse information of drugs can improve the performance of
prediction models [32–37]. In Section 2.2, our study demonstrates that only the use of interaction
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profiles of drugs can lead to high-accuracy prediction models; however, we still attempted to
incorporate structural information of drugs to further improve accuracy.

Since we had nine different fingerprints, we firstly built individual LPLNI models based on
different fingerprint features and evaluated their usefulness. The leave-one-out cross validation
performances of the prediction models are shown in Table 1. Among all fingerprints, Daylight,
Extended and Hybridization fingerprints produce better performances than others on the benchmark
datasets. Although the performances of fingerprints are lower than the interaction profiles, fingerprints
can still provide information for the drug-target interaction predictions. According to their
performances, Daylight fingerprints, Extended fingerprints, and Hybridization fingerprints were
adopted to incorporate into the interaction profile-based models.
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By using the strategy described in Section 3.4, we incorporated the three fingerprints into the
interaction profile-based model and developed the prediction model with integrated information,
named “LPLNI-II.” As shown in Table 1, LPLNI-II can produce better results than individual
feature-based models on the benchmark datasets, improving the AUPR values of 0.9464 to 0.9492
and AUC values of 0.9532 to 0.9919 (on NRs dataset), indicating the usefulness of combing various
information of drugs.
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Table 1. Performances of label propagation method with linear neighborhood information (LPLNI)
models and LPLNI-II models on the four datasets.

Features Methods NRs ICs GPCRs Es

Daylight LPLNI
0.4519 0.3326 0.4254 0.4094
0.7868 0.7605 0.8771 0.8307

EState LPLNI
0.2958 0.2437 0.3096 0.2770
0.6903 0.7098 0.8480 0.8055

Extended LPLNI
0.4452 0.3382 0.4317 0.4153
0.7820 0.7741 0.8783 0.8261

GraphOnly LPLNI
0.3177 0.3226 0.3525 0.3507
0.7478 0.7606 0.8483 0.7939

Hybridization LPLNI
0.4226 0.3462 0.4047 0.4050
0.8001 0.7962 0.8747 0.8224

Klekota-Roth LPLNI
0.4665 0.3030 0.3819 0.3360
0.8103 0.7355 0.8580 0.8179

MACCS LPLNI
0.3764 0.3400 0.3881 0.3804
0.7712 0.7543 0.8621 0.8360

Pubchem LPLNI
0.4470 0.3234 0.4038 0.4039
0.7561 0.7522 0.8822 0.8405

Substructure LPLNI
0.3202 0.3092 0.2942 0.2875
0.7539 0.7662 0.8465 0.8068

Interaction profile LPLNI
0.9464 0.9658 0.9461 0.9051

0.9532 0.9890 0.9683 0.9465

Day&Ext&Hyb&Int LPLNI-II
0.9492 0.9684 0.9469 0.9069
0.9919 0.9947 0.9769 0.9700

The value of each fingerprint represents AUPR values (previous row) and area under the receiver operating
characteristic (ROC) curve (AUC) values (next row). The bold type indicates the top 4 in terms of AUC and AUPR
values. Day&Ext&Hyb&Int: using Daylight, Extended, Hybridization, and the interaction profile as features.

2.4. Comparison with State-of-the-Art Methods

To the best of our knowledge, a great number of methods were proposed to predict drug-target
interactions. NetLapRLS [20] trained two classifiers based on the chemical and genomic information
with the interaction profiles separately, and then linearly combined the two classifiers to develop
the prediction model. RLS-Kron [21] considered chemical structures, genomic sequences, and the
interaction profiles, then calculated the similarity by the Gaussian function, and utilized the
Regularized Least Squares (RLS) classifier to build prediction models. The model based on the
interaction profiles could produce high-accuracy performances, and the final prediction model was
developed by integrating diverse information with the Kronecker product. These methods and our
method utilize the interaction profiles as the primary information sources to develop prediction models.
To demonstrate the superiority of our method, we adopted NetLapRLS and RLS-Kron for comparison.
All methods were evaluated by leave-one-out cross validation (LOOCV).

Since RLS-Kron and our method can make high-accuracy predictions using only the interaction
profiles, we firstly built prediction models based on the interaction profiles and compared their
performances. As shown in Table 2, the AUPR values of LPLNI are 0.9051, 0.9461, 0.9658 and 0.9464,
higher than RLS-Kron on the enzymes (Es) dataset, the G-protein coupled receptors (GPCRs) dataset,
the ion channels (ICs) dataset, and the nuclear receptors (NRs) dataset, respectively. In addition,
LPLNI produces superior AUC performances on the GPCRs dataset, the ICs dataset, and the NRs
dataset. Therefore, the interaction profile-based LNLPI model produces better results than the
interaction profile-based RLS-Kron model on these benchmark datasets.
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Further, we tested the performances of the LPLNI model with integrated information (LPLNI-II)
by comparing LPLNI-II with RLS-Kron and NetLapRLS. As shown in Table 3, LPLNI-II can outperform
benchmark methods on the GPCRs dataset, ICs dataset, and NRs dataset. Therefore, the LPLNI-II can
integrate different information and make high-accuracy predictions.

Table 2. Performances of LPLNI and RLS-Kron based on the interaction profiles.

Datasets Features Methods AUC AUPR

Es
Interaction

profile
RLS-Kron 0.9830 0.8850

LPLNI 0.9465 0.9051

GPCRs
Interaction

profile
RLS-Kron 0.9470 0.7130

LPLNI 0.9683 0.9461

ICs
Interaction

profile
RLS-Kron 0.9860 0.9270

LPLNI 0.9890 0.9658

NRs
Interaction

profile
RLS-Kron 0.9060 0.6100

LPLNI 0.9532 0.9464

The bold type indicates the highest AUC/AUPR values. The following tables maintain uniform standards.

Table 3. Performances of LPLNI-II and other state-of-the-art methods.

Datasets Features Methods AUC AUPR

Es
chem&gen&int RLS-Kron 0.9780 0.9150
chem&gen&int NetLapRLS 0.9830 N.A.

chem&int LPLNI-II 0.9700 0.9069

GPCRs
chem&gen&int RLS-Kron 0.9540 0.7130
chem&gen&int NetLapRLS 0.9710 N.A.

chem&int LPLNI-II 0.9769 0.9469

ICs
chem&gen&int RLS-Kron 0.9840 0.9430
chem&gen&int NetLapRLS 0.9860 0.N.A.

chem&int LPLNI-II 0.9947 0.9684

NRs
chem&gen&int RLS-Kron 0.9220 0.6840
chem&gen&int NetLapRLS 0.8880 0.N.A.

chem&int LPLNI-II 0.9919 0.9492

N.A.: not available. chem, gen, and int are abbreviations for chemical structure, genomic sequence, and the
interaction profile, respectively.

2.5. Case Study

To test the potential of LNLPI in the drug-target interaction predictions, we built models based on
known interactions of the Es dataset and then made predictions for unknown interactions. We checked
the top 10 interactions predicted by our method and looked for evidences in SuperTarget [38] to
support our discoveries. SuperTarget contains updating interactions from several drug databases,
i.e., DrugBank, KEGG, etc. As shown in Table 4, 4 predictions out of 10 are confirmed, and results
indicate that our method is capable of predicting novel interactions.
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Table 4. The top 10 new predicted interactions on the Es dataset.

Rank Pair Description Confirmed?

1
D00574 Aminoglutethimide (USP/INN)
hsa1589 cytochrome P450, family 21, subfamily A, polypeptide 2

2
D00437 Nifedipine (JP15/USP/INN)

Yeshsa1559 cytochrome P450, family 2, subfamily C, polypeptide 9

3
D00542 Halothane (JP15/USP/INN)

Yeshsa1571 cytochrome P450, family 2, subfamily E, polypeptide 1

4
D00410 Metyrapone (JP15/USP/INN)
hsa1583 cytochrome P450, family 11, subfamily A, polypeptide 1

5
D00139 Methoxsalen (JP15/USP)

Yeshsa1543 cytochrome P450, family 1, subfamily A, polypeptide 1

6
D00437 Nifedipine (JP15/USP/INN)
hsa1585 cytochrome P450, family 11, subfamily B, polypeptide 2

7
D00691 Diprophylline (JAN/INN)
hsa8654 phosphodiesterase 5A, cGMP-specific

8
D00691 Diprophylline (JAN/INN)
hsa5152 phosphodiesterase 9A

9
D00691 Diprophylline (JAN/INN)

Yeshsa5150 phosphodiesterase 7A

10
D00691 Diprophylline (JAN/INN)

hsa50940 Peptidyl-prolyl cis-trans isomerase A

3. Materials and Methods

3.1. Datasets

There are several databases that provide information about drugs and drug-target interactions
and that can be used for predicting unobserved drug-target interactions.

The Pubchem database [39,40] can provide chemical structures. The DrugBank database [41–44]
is a comprehensive bioinformatics resource that includes targets, transporters, and enzymes of drugs.
The KEGG database [45,46] is a collection of protein pathways that are associated with drug targets.
BRENDA [47] is a comprehensive collection of enzyme and metabolic data, and is updated by
extracting information from primary literature. SuperTarget [38] contains more than 2500 target
proteins, which are annotated with about 7300 relations to 1500 drugs.

To study potential drug-target interactions, we used four benchmark datasets of drug-target
interactions, which were compiled by Yamanishi et al. [48]. There are mainly four types of target
proteins: enzymes (Es), ion channels (ICs), G-protein coupled receptors (GPCRs), and nuclear receptors
(NRs). In Yamanishi’s datasets, the drug-target interactions were classified into four subsets, which are
associated with different types of targets. Table 5 lists the details of the four datasets.

Table 5. Statistics of four drug-target interaction datasets.

Datasets nd nt Edt nd nt Sparsity

Es 445 664 2926 6.5753 4.4066 0.0099
GPCRs 223 95 635 2.8475 6.6842 0.0299

ICs 210 204 1476 7.0286 7.2353 0.0345
NRs 54 26 90 1.6667 3.4615 0.0641

nd is the number of drugs, nt is the number of targets, Edt is the number of known interactions, nd is the average
number of targets for each drug, and nt is the average number of drugs for each target. Sparsity is known interactions
divided by all possible interaction pairs.
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3.2. Features

In order to build prediction models, we should represent drugs or targets as feature vectors.
Firstly, we present a feature named “interaction profile” for drugs (targets) from known interactions.
As shown in Figure 2, let {d1, d2, · · · , dm} be a set of given drugs, {t1, t2, · · · , tn} be a set of given
targets, and their interactions can be formalized as an interaction network. The interaction profile of
a drug (target) is a binary vector describing the presence or absence of interaction with every target
(drug) in the network.
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Since we collect drug structures from KEGG DRUG, we also represent drugs as feature vectors
based on their substructures. Structural features of drugs are well known as fingerprints, which are bit
vectors with elements indicating the frequencies or the existence of certain substructures. As listed in
Table 6, there are different drug fingerprints, and we adopt Chemical Development Kit (CDK) [49] to
calculate these fingerprints and then use them as structural feature vectors.

Table 6. Descriptions of nine fingerprints.

Fingerprints Descriptions

Daylight Daylight fingerprints based on hashing molecular subgraphs
EState This fingerprinter generates 79 bit fingerprints using the E-State fragments

Extended These fingerprints extends the CDK with additional bits describing ring features
Graph Only Specialized version of the CDK Fingerprinter that does not take bond orders into account

Hybridization This fingerprinter takes into account SP2 hybridization states
Klekota-Roth This fingerprinter presence of 4860 substructures

MACCS This fingerprinter generates 166 bit MACCS keys.
Pubchem These fingerprints are of the structural key type, of length 881

Substructure The fingerprint currently supports 307 substructures

3.3. The Label Propagation Method with Linear Neighborhood Information

In this section, we introduce the label propagation method with linear neighborhood
information (LPLNI), which has two steps: calculation of linear neighborhood similarity and label
propagation-based prediction.

Let us introduce several notations. Given nd drugs and nt targets, their interactions are organized
as an interaction matrix Y = (Y1, Y2, · · · , Ynt) ∈ Rnd×nt , where Yi is the interaction profile of the i-th
target. 1 = yij ∈ Y if the i-th drug interacts with the j-th target, else, yij = 0. Each drug can be
represented by a p-dimension feature vector xi (for example, the interaction profile), i = 1, 2, · · · , nd.

3.3.1. Linear Neighborhood Similarity

Roweis et al. [50] revealed that a data point and its neighbors are close to a locally linear patch of
the manifold, and Wang et al. [51] discovered that each point can be optimally reconstructed by its
neighbors. Based on these studies [50,51], we calculated the drug-drug similarity by considering how
to reconstruct the data point through its neighbors, as per our previous work [52].
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Here, we represent drugs as feature vectors xi, i = 1, 2, · · · , nd and take them as data points in the
feature space. We reconstruct each data point xi by linear combination of its neighbors and formulate
the optimization problem as follows:

min
ωi
εi = ‖xi − ∑

ij :xij
∈N(xi)

ωi,ij xij‖
2 = ∑

ij ,ik :Xij
,Xik
∈N(Xi)

ωi,ij G
i
ij ,ik ωi,ik = ωT

i Giωi (1)

s.t. ∑
ij :xij

∈N(xi)

ωi,ij = 1, ωi,ij ≥ 0, j = 1, · · · , K

where ‖·‖ is the Euclidean norm, and N(xi) represents the set of K (0 < K < nd) nearest neighbors

(by Euclidean distance) of xi. ωi =
(
ωi,i1 · · · , ωi,iK

)T and Gi
ij ,ik

=
(

xi − xij

)T(
xi − xik

)
is the entry

of the Gram matrix Gi ∈ RK×K. ωi,ij represents the weights of xij for reconstructing xi and can be
considered as the similarity between xi and xij . Clearly, ωi,j = 0 if xj /∈ N(xi).

We notice that the matrix Gi is likely to be singular if the K neighbors are close to each other. In this
case, it is hard to obtain the unique solution of the optimization problem. In order to avoid the singular
matrix and enhance generalization capability, we introduce regularization for the reconstructive
weights and present the optimization problem:

min
ωi

ωT
i Giωi + λi‖ωi‖2 (2)

s.t. eTωi = 1, ωi ≥ 0

where λi is the regularization parameter and column vector e = (1, 1, · · · , 1)T .
The parameter λi controls the relative value between reconstruction error ωT

i Giωi and the
regularization term ‖ωi‖2. Since spectral norm is compatible and Gram matrix Gi is symmetric
and positive semidefinite, we have

ωT
i Giωi = ‖

(
Gi

) 1
2
ωi‖2 ≤ ‖

(
Gi

) 1
2 ‖2‖ωi‖2 = ρ

(
Gi

)
‖ωi‖2 (3)

where ρ
(
Gi) is spectral radius of Gi. Here, we can estimate value range of ωT

i Giωi and ‖ωi‖2.
Therefore, we can roughly set

λi = ερ
(

Gi
)

(4)

in the practical use, and ε is a small number satisfying ε� 1. We set ε to 0.01 for simplicity.
We can use the standard quadratic programing to solve Equation (2), and its solutions is named

the “linear neighborhood similarity” (LNS). We calculate the weights for data points, and concentrate
them row by row, and form the similarity matrix W ∈ Rnd×nd . The entire procedure of calculating LNS
is summarized in Figure 3.
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3.3.2. Label Propagation

Based on the drug-drug similarity, we formulate a directed graph, which uses drugs as nodes and
similarities W(i, j) = ωij as weights. It is worth mentioning that usually ωij 6= ωji.

In the graph, the known interactions of drugs with given targets are taken as the initial label
information of nodes, and the label information is then updated. In the update, a node absorbs label
information for its neighbors with the probability α ∈ (0, 1) and retains the initially label information
with the probability 1− α. The update process for the i-th label of nodes at the k-th iteration is written as

F(k)
i = αWF(k−1)

i + (1− α)Yi (5)

where Yi is the i-th column vector of the interaction matrix Y (i.e., the i-th initial labels for all nodes).
Further, we can formulate the update for all target labels in matrix form:

F(k) = αWF(k−1) + (1− α)Y (6)

where F(k) ∈ Rnd×nt represents that label matrix in the kth iteration, and F(0) = Y. We will analyze the
convergence of this iterative process Equation (6) in Theorem 1.

Theorem 1. The iterative process, Equation (6), will converge to a solution F, that is

F = (1− α)(I − αW)−1Y (7)

where I ∈ Rnd×nd is the identity matrix.

Proof of Theorem 1. Note that F(0) = Y, the iterative process Equation (6) can be rewritten as follows

F(k) = αWF(k−1) + (1− α)Y = (αW)2F(k−2) + (1− α)(I + αW)Y = · · ·

= (αW)kY + (1− α)
k−1
∑

i=0
(αW)iY.

Since the spectral radius of W or ρ(W) ≤ 1 and 0 < α < 1, then

lim
k→∞

(αW)k = 0, lim
k→∞

∑k−1
i=0 (αW)i = (I − αW)−1.

Therefore,
F = lim

k→∞
F(k) = (1− α)(I − αW)−1Y.

F ∈∝nd×nt is the final label matrix, presenting the predicted scores for drug-target pairs.

3.4. LPLNI with Integrated Information

In this paper, we consider the interaction profile feature of drugs and targets and consider
different fingerprint features of drugs. Therefore, we can calculate different similarities based on
different features and then build different prediction models. Generally, combining diverse models
can enhance predictive performances [53–56].

Here, we consider a nonlinear strategy to integrate different prediction models. Given n models,
they will produce n predicted scores for a drug-target pair, denoted as F =

{
F1, F2, · · · , Fn}, and the

integrated score is given by the following binomial logistic regression model in the conditional
probability form:

P
(
Yij = 1

∣∣F) = exp
(

∑k αkFk
ij + b

)
1 + exp

(
∑k αkFk

ij + b
) (8)
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where αk ∈∝, k = 1, 2, · · · , n, and b ∈ R. The parameters are estimated by maximum likelihood
estimation based on known interactions and their predicted scores.

In the prediction stage, the predicted scores from the n models are aggregated by Equation (8) to
produce the final predictions.

We abbreviate the LPLNI model with integrated information as “LPLNI-II”.

4. Conclusions

In this paper, we propose a drug-target interaction prediction method with linear neighborhood
information, and the method can utilize known interactions to make high-accuracy predictions.
Further, we incorporated structural information into the prediction models to improve performances.
Computational experiments show that our method outperforms other state-of-the-art methods on the
benchmark datasets. The potential of the method is also validated in the case study. In conclusion,
the proposed method is a promising tool for drug-target interaction prediction.
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