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Abstract: Downstream waste from industry and other industrial processes could increase
concentration of heavy metals in water. These pollutants are commonly removed by adsorption
because it is an effective and economical method. Previously, we reported adsorption capacity of
a chitosan/polyurethane/titanium dioxide (TiO2) composite for three ions in a dynamic wastewater
system. There, increasing the chitosan concentration in composite increased the cation removal
as well; however, for ratios higher than 50% of chitosan/TiO2, the manufacturing cost increased
significantly. In this work, we address the manufacturing cost problem by proposing a new
formulation of the composite. Our hypothesis is that inulin could replace chitosan in the composite
formulation, either wholly or in part. In this exploratory research, three blends were prepared with
a polyurethane matrix using inulin or/and chitosan. Adsorption was evaluated using a colorimetric
method and the Langmuir and Freundlich models. Fourier-transform infrared spectroscopy (FTIR)
spectra, scanning electron microscopy (SEM) micrographs, differential scanning calorimetry and
thermogravimetric analysis curves were obtained to characterize blends. Results indicate that blends
are suitable for toxic materials removal (specifically lead II, Pb2+). Material characterization indicates
that polysaccharides were distributed in polyurethane’s external part, thus improving adsorption.
Thermal degradation of materials was found above 200 ◦C. Comparing the blends data, inulin could
replace chitosan in part and thereby improve the cost efficiency and scalability of the production
process of the polyurethane based-adsorbent. Further research with different inulin/chitosan ratios
in the adsorbent and experiments with a dynamic system are justified.

Keywords: heavy metals; lead pollution; wastewater treatment; composite; polysaccharide

1. Introduction

Heavy metals are harmful for living beings due to their long-term environmental persistence, i.e.,
they cannot be decomposed by microorganisms and their toxicity persists in plants, animals and
humans [1,2]. The downstream industry wastes could lead to increased concentration of heavy
metals in water, air and soil. For example, mining, painting, fertilizer, textile, paper, and petroleum
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refining industries discharge metals into water streams [3]. The regulations adopted in several
countries established the maximum levels of heavy metals discharge or emissions [4]; nevertheless,
there is still a high concentration of these pollutants in the environment [3,5]. Several techniques
had been proposed to remove heavy metals like chemical precipitation, membrane filtration,
ion exchange, coagulation-flocculation, adsorption and electrochemical methods and additionally,
modelling techniques have recently been developed which, together with the aforementioned techniques,
can help improve the results obtained up to today [6–11].

In wastewater treatment, the methods most frequently used are ion-exchange, adsorption and
membrane filtration [12]. The development and cost of these methods are important variables if they
are used at industry scale [13–15]. Adsorption is an effective, economic and widely used method;
it has great perspectives to pilot plant scale because its process is flexible in design and operation;
additionally, the adsorbent could be regenerated [12]. Among adsorbents proposed, chitosan is
a common choice; this compound is a linear polysaccharide composed of β-(1,4)-linked D-glucosamine
(deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). The chitosan is obtained from
chitin, a structural element in the exoskeleton of crustaceans, and its adsorption capacity is affected
by the pH of the medium; in consequence, chitosan chemical modifications had been made [14,16,17].
Composites containing chitosan also had been widely studied, and they had proved to be efficient in
heavy metals removal [18–22].

In a previous study, we reported the adsorption capacity of a novel composite of
chitosan/polyurethane/TiO2 for removing Pb (II), Cd (II) and Al (III) ions in a dynamic wastewater
system [18]. In that report, it was shown that a higher concentration of chitosan provides higher
percentages of cation removal, but ratios higher than 50% of chitosan in relation to TiO2 could increase
composite manufacturing costs. In this article, we address manufacturing cost problem by proposing
a new formulation of the composite. Our hypothesis is that a polysaccharide of lower commercial cost
like inulin food grade, could replace the chitosan in the composite formulation, either wholly or in
part. Currently, inulin and its derivatives had been used for effluent treatment as flocculant, but not as
part of a composite or blend for wastewater treatment [23,24].

Inulin is a fructose polymer and could be produced by a host of microorganisms. It is a broadly
found in nature as a storage carbohydrate and is a Generally Recognized as Safe (GRAS) substance.
Commercially, inulin is produced from chicory and where is it moderately dissolved in water,
which enables its addition in aqueous medium without any precipitation [25–27]. Therefore, we prepared
three blends: polyurethane/inulin (PI), polyurethane/chitosan (PC), and polyurethane/chitosan/inulin
(PCI) and we evaluated adsorption.

For eliminating competition and selectivity between cations, we decided to use lead (II) because in
Argüello’s report [12] it had the highest removal percentage in most of the analyses and it is considered
one of the most toxic heavy metals because it could cause damage to the central nervous system and
repercussions on liver, kidney and reproductive system [12,28,29]. In other words, our aim in this
article is to provide an alternative preparation of blends with the same lead removal rates than our
first effort but maintaining a relatively low production cost [18,29].

2. Results and Discussion

2.1. Blend Characterization

The morphology of prepared materials is shown in the SEM micrographs presented in Figure 1;
for PI material (matrix/inulin), an average pore size of 85.70 ± 30.57 µm is seen with well-defined
pores interconnected—allowing metal solution to flow throughout the pores—with an average pore
size of 127.92 ± 65 µm for PC material (matrix/chitosan). In this case pores are bigger than in the PI
material and also are interconnected but with a different pore structure. PCI (matrix/inulin-chitosan)
was observed to have an average pore size of 95.36 ± 35.91 µm and its structure is similar to PI because
the presence of inulin generates more and smaller pores. This could be explained by the interaction
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between the OH groups (from polysaccharides) and carbon dioxide (CO2) forming the polyurethane
reticulation, which is generated faster in the presence of inulin (because of the hydroxyl groups in
the molecule) than with chitosan. Then, more CO2 is present in a shorter time forming bubbles and
growth sites, resulting in more and smaller pores.
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Schematic 1. Reaction scheme for the polyurethane reaction. This schematic is based on reaction 
mechanisms descriptions for blocked mono-component polyurethane reported by Radice, et al. [30]. 

Mechanical properties are important to indicate if the material can withstand against filtration 
stresses; therefore, a test under a modification of ASTM D-2042 norm was conducted. Results are 
shown in Figure 1d, where the minimum weight loss was 10.04% for PC material; but PI and PCI 

Figure 1. Scanning Electron Microscopy SEM images at 50× for blends materials; (a) blend with
inulin; (b) blend with chitosan and (c) blend inulin/chitosan, all samples were synthesized at 353.15 K;
and (d) weight loss on mechanical stirring testaccording ASTM D-2042 norm.

As mentioned earlier, during the mash-forming process there was a reticulation process of
polyurethane due to the presence of OH– groups in the environment; the process starts a chemical
reaction with the malonate-blocked polyisocyanate producing CO2 as a byproduct. This last compound
provides volume for bubble expansion forming rigid open or closed cells (as seen Scheme 1).
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Mechanical properties are important to indicate if the material can withstand against filtration
stresses; therefore, a test under a modification of ASTM D-2042 norm was conducted. Results are shown
in Figure 1d, where the minimum weight loss was 10.04% for PC material; but PI and PCI materials
had similar weight losses of 21.56% and 20.59% respectively. The weight loss is higher in composites
with inulin than in composites with chitosan. This is explained by the electrostatic interaction between
the functional groups of adsorbent components and matrix, if the electrostatic interaction is higher,
the weight loss decreases. The amine group (from chitosan) has a higher electrostatic interaction
than the hydroxyl group (from inulin) with the carbonyl group (polyurethane). The weight loss
recorded in each sample was solid material (fine powder), which precipitated after 52 h and was
recovered by decantation. The test was performed repeated twice and samples weight remained
constant, none material detachment was detected. Weight loss in the first experiment was not due to
washing process, because was more than 10%, but, blends are suitable to use in wastewater treatment
because their weight loss was less than 60% under agitation processes, which is very similar to normal
adsorption conditions.

Figure 2a shows the FTIR spectra of pure components used for manufacturing the materials.
The characteristic absorption bands for polyurethane were located at 3290 cm−1 (N–H symmetric
stretching), 2910 and 2852 cm−1 (CH2 symmetric stretching), 1700 and 1607 cm−1 (C=O polyurethane
group), 1548 and 1227 cm−1 (C–N symmetric stretch & N–H deformation vibration of C–N–H),
1505 and 1409 cm−1 (C–H bending vibration of CH2) and 1073 cm−1 (C–O). Additionally, characteristic
absorption bands of inulin were found at 3267 cm−1 (O–H polymeric stretch), 2928 and 2879 cm−1

(CH2 symmetric vibration), 1625 cm−1 (C=O stretching from carbonyl band indicating possible
acetylation), 1086 cm−1 (C–O stretching of ring ether), 1010 cm−1 (OH bending vibration),
924 cm−1 (CH2 twisting vibration). Finally, absorption bands of chitosan were shown at 3384 cm−1

(O–H stretching vibration), 2863 cm−1 (CH2 symmetric vibration), 1642 cm−1 (C=O stretching in
secondary amide), 1574 cm−1 (N–H bending vibration of NH2 groups), 1372 cm−1 (C–H bending
vibration of CH2), 1124 cm−1 (C–O stretching of ring ether), 1041 and 1024 cm−1 (O–H bending
vibration), 887 cm−1 (CH2 twisting vibration).
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In Figure 2b, five different zones were identified; it could be seen that from zone 2 to 4,
the characteristic absorption peaks of polyurethane could be clearly identified—this is because
the synthesis method is only based on electrostatic interaction between the polysaccharide and
the polyurethane. In region 1, it was identified a change in intensity of absorption peak corresponding
to O–H. The highest peaks are shown in samples containing inulin while the ones with chitosan were
reduced, but in region 5 the O–H peaks overlap with the C–O–C peak indicating, in all samples,
that the polysaccharide is distributed in the most external part of the polyurethane resin which is
extremely favorable for adsorption (suggested because through ATR-FTIR we obtained blends surface
data), also these peaks are similar to the corresponding polysaccharide used. In the case of the PCI
material, inulin is more exposed to the surface than chitosan.

Figure 3 exhibits the curves obtained by the thermogravimetric analyzer; on the right, the thermal
degradation values (TG) are plotted and on the left the derivated data (DTG) are plotted. These data
corresponds to thermal degradation of blends in air at 10 ◦C heating rates. It can be seen that the TG
curve has three weight-loss steps and the DTG curve (Figure 3; on the left) also has three inflections. It is
observed that no significant degradation occurred before 200 ◦C for all blends; between 80 and 150 ◦C
the weight loss was 5%, which could be attributed to moisture within the material. At temperatures
above 200 ◦C, it was observed the beginning of oxidative degradation of the materials; for example
the blend with inulin had a weight loss of 10% around 260 ◦C; and the same weight loss was
around 280 ◦C and 260 ◦C for blends with chitosan and chitosan/inulin respectively (see Tg curves,
Figure 3—right side).Hence, this behavior on the thermal degradation of the blends is due to
the incorporation of inulin in the blends in this way, for the material without inulin its thermal
degradation behavior (weight loss around 280 ◦C) is totally attributable to the chitosan, and the thermal
degradation behavior (weight loss around 260 ◦C) of the two other materials is explained by the thermal
decomposition of the inulin incorporated in each one.
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The polysaccharide decomposition in the blend could cause the weight loss in the first stage.
From the DTG curve, the inulin degradation was completed in a single stage within temperature range
between 180 ◦C and 240 ◦C; similarly, chitosan and chitosan/inulin degradations were completed
between 170 ◦C and 230 ◦C, these results are consistent with data reported previously [31–33].
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Between 420 and 430 ◦C, the materials lose 50% of their initial weight and in the DTG curve maximum
degradation was found at around 310 ◦C.

Typical thermal behavior for rigid polyurethanes reported by other authors [34–37] was observed
around this temperature and up to the last degradation temperature of the blends. As mentioned
in the methods section, the TG analysis was simultaneously obtained with differential scanning
calorimetry; in this way it was possible to corroborate that the stages of weight loss corresponded to
an oxidative degradation because exothermic processes were observed.

2.2. Removal Experiments

First, it was necessary to determine the characteristic maximum absorption, calibration curve and
equilibrium time, which were determined as shown in Figure 4. Here it could be seen that results
followed the Beer–Lambert law and were reliable (r2 = 0.9909) at λ = 249 nm, also were within Pb2+

concentrations between 1 and 10 mg L−1. Additionally, Figure 4 clearly shows that for 720 min (12 h),
the amount of Pb2+ cations removed by 192 mg of dried materials into 10 mL of the Pb2+ solution
remains constant.
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maximum absorbance at pH = 7.8 and 25 ◦C. C = ion Lead concentration; C0 = Pb2+ initial concentration,
10 mg/L; C/C0 = Pb2+ fractional removal; t = contact time between material and lead solution.

Therefore, all further removal experiments were conducted for 12 h as absorption time,
with 192 mg of dried blends into 10 mL of the Pb2+ solution at initial concentration of 10 mg/L;
with approximately initial pH = 8.0.

Figure 5 shows the adsorption capacity (q) versus time and variable initial concentration of Pb2+.
In all cases the conditions are those described in the previous section, unless otherwise indicated.

The capacity of Pb2+ uptake by all materials at different contact time is shown on Figure 5a. For all
samples, lead is completely adsorbed at 12 h, but lead uptake increased rapidly in the first 3 h with
inulin adsorbents due to a larger amount of the OH group present in it. This is an effective factor in
a batch process. Lead has high tendency to form oxygen and nitrogen groups according to the hard and
soft acids and bases theory, in that sense it is possible to explain the lead adsorption by complexation
between oxygen atoms (vacant active) from matrix/inulin with lead ions) [37–39]. The vacant active
sites at the beginning of the adsorption process increase lead uptake, then with more contact time,
the rate of lead uptake decreases because of active sites occupation. As a consequence, the active sites
of inulin were occupied in less time than the active sites of chitosan (as seen Scheme 2).
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On Figure 5b, results varying adsorbate dosage (lead cations) are shown; here, the amount of Pb2+

adsorption increased with an increase in the adsorbate dosage from 1 to 10 mg/L for all adsorbents.
This is because with high adsorbate concentrations, the number of cations increases in the system;
hence, more metal ions are available for reacting with active sites, increasing adsorption. It was
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expected a slower increment at the end of experiments because blends pores were close to saturation
values, making the ions transportation more difficult.

2.3. Kinetic Models

The constant rate parameters (k1 and k2) could be calculated from the linear plots of log(qe − qt)
against t and t/qt against t; and their values are shown in Table 1. Also, the initial adsorption rate
constant k2i (mg·g−1 min−1) could be determined using the relationship k2i = k2qe2 according to
the pseudosecond-order kinetic adsorption [40–42].

In the pseudofirst-order kinetic model, the linear correlation coefficient (R2 = 0.9463) indicates that
this model applies for PC material and qe value (qe,cal) from it, is consistent with the experimental results.
On the other hand, the pseudosecond-order kinetic model has been calculated and experimental qe

values for PI and PCI blends are consistent, with a correlation coefficient above 0.999. These results
indicate that PC blend adsorption is controlled by mass transfer and PI and PCI processes are controlled
by chemical reactions.

Table 1. Kinetic calculations results for pseudo-first; second-order models; Langmuir and Freundlichmodels
by materials.

Kinetic Models
Material

PI PC PCI

Pseudofirst-order model

qe,exp (mg·g−1) 0.2463 0.1915 0.5523
qe,cal (mg·g−1) 0.1611 0.1772 0.3482

k1 (min−1) 0.00957 0.00180 0.00579
R2 0.8913 0.9463 0.8757

Pseudosecond-order model

qe,cal (mg·g−1) 0.2603 0.2552 0.5938
K2 (g·mg−1·min−1) 0.10400 0.00906 0.02914
K2i (mgg−1·min−1) 0.00705 0.00059 0.01027

R2 0.9996 0.6545 0.9992

Langmuir model
qm (mg·g−1) 0.2669 0..4437 0.7402
b (L·mg−1) 1.7412 0.1393 0.1768

R2 0.9999 0.9821 0.9665

Freundlich model
K (mg·g−1) 0.1682 0.0589 0.1505

n 0.2177 0.7141 0.4882
R2 0.9385 0.9939 0.8441

Additionally, the Langmuir and Freundlich parameters obtained from the plots of Ce/qe against
Ce and log (qe) against log (Ce) were listed in Table 1. From here, it could be seen that the correlation
coefficients (R2) of the Langmuir isotherm model for PI is really close to 1 and the maximum adsorption
capacity is in accordance with the experimental value. This means that for this specific sample,
the model is suitable for evaluating the adsorption isotherm. From the Freundlich isotherm model for
PC the coefficient is closer to 1—a value that is suitable for this specific sample. The PCI sample is better
described by Langmuir model, the value of qm is not far from the experimental value; this indicates
that for this sample and PI, there is a monolayer coverage of Pb2+ on the surface of the blends.
For the Freundlich isotherm model, it can be seen that the PC sample is not entirely heterogeneous
(values of n are not close to 0) and the n value below to 1 indicates the preference for a chemical process
of adsorption.

The regeneration of sorbents is one of the crucial aspects in water treatments and toxic substances
removal, as it is closely related to the economy of treatment technology.

Figure 6 shows that the adsorption capacity ratio of Pb2+ from the initial solution (10 mg/L)
decreases with increasing the adsorption–desorption cycles, whereas the values are 37.50% (PI),
28.91% (PC) and 59.86% (PCI) for the first adsorption cycle (1A number cycle) and 27.29% (PI),
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18.41% (PC) and 29.64% (PCI).Also, there is a recovery ratio of Pb2+ from the initial solution
reached 74.04% (PI), 85.28% (PC) and 89.38% (PCI) for the first desorption cycle (2D cycle number),
and 72.70% (PI), 82.29% (PC) and 81.44% (PCI) for the third desorption (4D cycle number).
These indicate that the blend containing chitosan has a better recovery capacity for Pb2+ compared
to inulin, suggesting a higher preference for this specific ion to be attached to inulin. It was also
noted that all the blends maintain almost the same recovery ratio with increasing cycles with a slightly
loss that indicates that the metals adsorbed since the first cycle remain constant in the material and
this is proved in the adsorption capacity that decreases and almost maintained a similar value resect
recovery. Also, is seen that chitosan controls the recovery ratio in the blend PCI and inulin controls
the adsorption ratio seeing and synergic effect of both of the polysaccharides.Molecules 2017, 22, 2093 9 of 15 
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3. Materials and Methods

3.1. Chemical Compounds

Chitosan (low molecular weight, 0.75–0.85 of deacetylation) (PubChem CID:21896651), lead (II)
nitrate (>99%) (PubChem CID:24924), nitric acid (70%) (PubChem CID:944), citric acid (99%) (PubChem
CID:311), NaOH (>99.9%) (PubChem CID:14798), and 1,2-Diaminocyclohexane-N,N,N,N-tetraacetic
acid monohydrate (DACT) (PubChem CID:2723844) (for complexometry, >98%).

All chemical compounds were provided from Sigma Aldrich Co. Mexico; the monocomponent
polyurethane polymer (E21) was provided from Bayern Material Science, Germany; inulin
polysaccharide (food grade) was purchased from commercial source as prebiotic from e-nature, Mexico.
All experiments were carried out using deionized water (dH2O) and materials were used as received.

3.2. Blends Manufacturing Process

Three blends were prepared (as seen in Table 2) using polyurethane as the polymer matrix or
polymeric structure of them; polyurethane with chitosan (PC, mass relationship 1:1); polyurethane
with inulin (PI, mass relationship 1:1), and polyurethane with a chitosan-inulin blend (PCI, mass
relationship 2:1:1). The chitosan, inulin and their blend were mixed and dispersed in the polyurethane
until it was saturated; then, the mix was molded into rods of 4 mm diameter (as seen Scheme 3).
Relative humidity was monitored using a 4040 traceable humidity monitor (Control Company) and
it was maintained in 48% for all the experiments. As temperature affects the pore size composition
of polyurethane [12,43], all blends were subjected to a thermal treatment at 80 ◦C to obtain a large
number of small pores [18].
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Table 2. Components ratios for each blend prepared.

Sample Inulin (g) Chitosan (g) Polyurethane (g)

PC 0 3 3
PI 3 0 3

PCI 1.5 1.5 3Molecules 2017, 22, 2093 10 of 15 
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3.3. Characterization and Methods

The surface morphology was obtained using a scanning electron microscope (SEM) Jeol
JSM-6060LV operated at 20 kV in secondary electron mode with different magnifications; samples were
covered with a gold film prior to observation. The pore sizes distribution data was obtained by analysis
of SEM images using ImageJ software (open source).

Mechanical properties were analyzed with mechanical stirring in sealed glasses (full with water);
this was performed with a modification of ASTM D-2042 norm. Blends samples were stored in water
for one day, and then they were stirred at 6000 rpm in two 15 min periods with 5 min rest in between.
Afterwards, samples were removed from water, dried and weighed (to determine weight lost).

The FTIR spectroscopy characterization of blends was obtained by a Spectrum Two FTIR
Spectrophotometer (Perkin Elmer). Dried samples with minimal moisture content were measured
using ATR technique and spectra were collected from a wavenumber range of 400 to 4000 cm−1.
A Thermogravimetric Analyzer (TG) with differential scanning calorimetric (DSC) capability
(TGA/DSC-1) from Mettler-Toledo Inc. were used to perform simultaneous thermal analysis while
heating the samples from 20 to 850 ◦C at the rate of 10 ◦C·min−1 in the air.

3.4. Removal Test

The determination of Pb2+ ions removed was performed by the UV spectrophotometric method
developed by [44–46] using an UV-Vis spectrophotometer VWR-1600PC. In the concentration
range between 10 mg·L−1 and 1 mg·L−1, where calibration curves obtained showed linearity,
the Beer–Lambert law was obeyed. According it; an initial Pb2+ solution was prepared by dissolving
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nitric acid and lead (II) nitrate in 500 mL of dH2O for a 100 mg·L−1 concentration; then, 10 mL of this
solution were diluted up to 100 mL for an initial concentration (C0) of 10 mg·L−1; under this condition,
the initial pH was 7.8.

Subsequently, in fifteen different vials; 10 mL of this solution were put into with 192 mg of
dried blends in each one; later at scheduled times the blends were removed, pH was adjusted to 8 by
dropping a concentrated solution of NaOH to avoid Pb2+ ions precipitation and an equimolar amount
of (DACT) was added to proceed to make the measurements at UV spectrophotometer. Under these
conditions, all removal tests were first conducted at room temperature (297.15 K) and then at different
temperatures from 293.15 to 353.15 K in 20 degree increments. The fractional removal and adsorption
capacity of the blend samples for the lead ion at given time t or equilibrium were calculated by
the following equations respectively:

r =
C
C0

(1)

q =
V ∗ (C0 − C)

m
(2)

where r is the retention rate of Pb2+ considering total concentration as 1, q is the adsorption of Pb2+

(mg/g) at a given time or equilibrium (qt or qe), V is the volume of Pb2+ solution used (mL), C0 and C
are the initial and final concentrations (mg·L−1) and m is the mass of the blend used (mg). In all cases,
three parallel measurements were performed to obtain a maximum standard deviation of 10%.

Finally for the regeneration study; Pb(II)-adsorbed on the blends was eluted with 0.1 M HCl
solution, under magnetic stirring for 24 h, then the blends were regenerated using an 0.1 M NaOH
solution and washed with dH2O to remove adsorbed alkali and finally dried at 70 ◦C in order to
be reused. The concentration of Pb(II) desorbed into the solution was analyzed using the same UV
spectrophotometric method described before using the complex DACT-Pb2+.

3.5. Theoretical Considerations

A pseudo first- and second-order kinetic model equations are used to evaluate experimental data
from batch Pb2+ removal [47]. The pseudo first-order kinetic model was suggested by Lagergren for
adsorption of solid/liquid systems and it has been widely used to describe metal adsorption kinetics
and could be expressed by the following linear expression spectrophotometric method developed
by [48]:

log(qe − qt) = log(qe)−
k1t

2.303
(3)

The pseudo second-order model was suggested by Ho and McKay [48–50]:

t
qt

=
1

k2q2
e
+

t
qe

(4)

where qe and qt (mg·g−1) are the adsorption capacities of the blends for Pb2+ removal at equilibrium
and time t, respectively. k1 (min−1) is the constant rate of the pseudo first-order adsorption and k2

(g·mg−1·min−1) is the constant rate of the pseudo second-order adsorption kinetic [47–51].
The isotherm data is used to describe the interaction of adsorbent molecules with surface of blend,

the correlation of equilibrium and accurately representation of results using either a theoretical or
empirical equation is essential in evaluating adsorption by interpretation, prediction and mechanism
for the specific application design. In order to do this, the Langmuir and Freundlich isotherm models
had been used.

Langmuir Model: A straightforward non-linear isotherm model, it is based on the assumption
of a structurally homogeneous adsorbent, where adsorption sites are identically and energetically
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equivalents, with no interactions between the adsorbed molecules. At low surface coverage,
the isotherm model reduces to a linear relationship which can be expressed in its linear form as:

Ce

qe
=

1
qmaxb

+
Ce

qmax
(5)

where qe is the amount of Pb2+ adsorbed at equilibrium (mg·g−1), Ce is the liquid-phase Pb2+

concentration at equilibrium (mg·L−1), qmax is the maximum adsorption capacity or saturation capacity
of the adsorbent (mg·g−1), and b is the Langmuir adsorption constant (L·mg−1) [47–50].

Freundlich Model: An empirical equation and a widely used nonlinear adsorption equilibrium
model, this model is used for adsorption on heterogeneous surfaces with a uniform energy distribution,
and reversible adsorption and is not restricted to the formation of the monolayer. In other words,
the adsorbent capacity could be improved increasing the concentration of the adsorbate in the medium.
The equation is usually presented in the following logarithmic form:

log(qe) = n log(Ce) + log K (6)

where K (mg·g−1) is the Freundlich constant related to adsorption capacity and n is the heterogeneity
factor related to adsorption intensity; both empirical constants depend on several environmental factors.
The value of n is from 0 to 1 and indicates the non-linearity degree within solution concentration
and the adsorption, if the n value is below 1, the adsorption is a chemical process and if it is above 1
adsorption is a physical process. The more heterogeneous the surface, the closer to 0 is the value of
n [48–52].

4. Conclusions

Three blends were prepared for the lead (II) adsorption—PI, PC and PCI—in order to investigate
the possibility to replace chitosan for inulin in a composite formulation for wastewater treatment.
Their weight losses indicate that all blends prepared could be used for that treatment. Results indicate
that the initial concentration of lead (II) cation influences directly the adsorption capacity. The kinetic
experimental data were fitted by pseudo first- and second-order models. These results indicate that
inulin improved chitosan adsorption capacity, but it did not show good results alone with the polymeric
matrix. In conclusion, inulin could replace chitosan in part in the composite formulation to reduce
manufacturing costs; also, the PCI (polyurethane/chitosan/inulin) blend is promising for testing other
toxic elements removal. Further research must study the adsorption performance of this composite in
dynamic conditions.
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