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Abstract: Cervical cancer is one of the most common gynecological malignant tumors worldwide,
for which chemotherapeutic strategies are limited due to their non-specific cytotoxicity and drug
resistance. The natural product thymoquinone (TQ) has been reported to target a vast number of
signaling pathways in carcinogenesis in different cancers, and hence is regarded as a promising
anticancer molecule. Inhibition of epithelial to mesenchymal transition (EMT) regulators is an
important approach in anticancer research. In this study, TQ was used to treat the cervical
cancer cell lines SiHa and CaSki to investigate its effects on EMT-regulatory proteins and cancer
metastasis. Our results showed that TQ has time-dependent and dose-dependent cytotoxic effects,
and it also inhibits the migration and invasion processes in different cervical cancer cells. At the
molecular level, TQ treatment inhibited the expression of Twist1, Zeb1 expression, and increased
E-Cadherin expression. Luciferase reporter assay showed that TQ decreases the Twist1 and Zeb1
promoter activities respectively, indicating that Twist1 and Zeb1 might be the direct target of TQ.
TQ also increased cellular apoptosis in some extent, but apoptotic genes/proteins we tested were
not significant affected. We conclude that TQ inhibits the migration and invasion of cervical
cancer cells, probably via Twist1/E-Cadherin/EMT or/and Zeb1/E-Cadherin/EMT, among other
signaling pathways.

Keywords: thymoquinone; cervical cancer; metastasis; epithelial to mesenchymal transition; Twist1;
Zeb1; E-Cadherin

1. Introduction

Cervical cancer, also known as invasive cervical carcinoma, is one of the most common gynecologic
malignant tumors worldwide [1–3], representing a serious threat to female health. Annually,
about 530,000 new cases of cervical cancer are documented [4]. The American Cancer Society (ACS)
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estimated that 12,820 women would be diagnosed with invasive cervical cancer, and 4210 women
would die from the disease in 2016 [5]. In the first edition of the National Comprehensive Cancer
Network (NCCN) in 2009, the specific therapeutic methods of cervical cancer in different clinic
stages are prescribed in detail, which have been widely recognized in China [6]. For cervical
cancer patients, during the early stage the surgery method based on radical hysterectomy is the
first-line treatment, and concomitant platinum-based chemoradiotherapy remains a curative treatment
for local advanced cervical cancer, particularly for distant control of the disease [6,7]. However,
the chemotherapeutic strategies are limited by their non-specific cytotoxicity and drug resistance [3,7].
Therefore, investigations to discover new and effective anti-cancer agents have gained special
consideration [3].

Plant-derived natural products have been used for thousands of years in cancer treatment
with very low side effects [3,8]. The seeds of Nigella sativa (black cumin) have a notable place in
traditional medicine, mainly in Arabia, South Asia, South-East Asia, the Mediterranean, China and
some African countries [8]. Black cumin seeds and oils are used for different medicinal purposes due
to their activities against cancer, diabetes, hypertension, bacterial infection, and also they are known
for their immunomodulatory, hepatoprotextive, kidney-protective, gastro-protective, spasmolytic,
bronchodilative, anti-inflammatory and antioxidant activities [9–12]. Studies have revealed that the
major phytochemical compound behind the medicinal properties of black cumin is thymoquinone
(2-methyl-5-isopropyl-1,4-benzoquinone, TQ) [8,9]. TQ has been reported to target a vast number
of signaling pathways in carcinogenesis in different cancers, and is hence regarded as a promising
anticancer molecule [8,9,13]. EMT-inducing transcription factors (EMT-TFs) such as Twist1, Snail1, Slug,
and Zeb1 play an essential role in cancer metastasis, being directly or indirectly involved in cancer cell
metastasis through different signaling cascades [9–17], so regulating EMT-TFs might be an interesting
potential approach in cancer therapeutics. Recent evidences support that TQ targets EMT-TFs to
regulate metastasis in breast cancers [9]. However little is known about this in cervical cancer cells,
so to clarify this further, in the current study, we assessed the cytotoxicity and anti-metastatic activities
by TQ treatment and its possible mechanisms of action through different EMT-TFs in cervical cancer
cell lines like CaSki and SiHa.

2. Results

2.1. Thymoquinone Inhibits Cervical Cancer Cell Growth, Migration, and Invasion

To investigate the effects of TQ on cancer cell growth, migration and invasion, the cellular indexes
were evaluated by real time cell analysis, which showed that TQ at a dose of 5 µM or more can inhibit
growth, migration and invasion in both of CaSki and SiHa cells (Figure 1A).

Further we used CCK-8 analysis for a cell viability assay, which showed that TQ exerts cytotoxic
activity on both CaSki and SiHa cells in a dose- and time-dependent manner (Figure 1B). After 12 h of
TQ treatment, there was no clear effect of TQ on SiHa cells, but after 24 h treatment of TQ, we found
significant effects of TQ, and so on after 36 and 48 h (p < 0.05). However, in CaSki cells, after 12 h of TQ
treatment, it showed in dose dependent effects, and so on after 36 and 48 h (p < 0.05). These indicate
that treatment of TQ at a dose of 5 µM or more for 24 h or more shows significant cytotoxic effects on
CaSki or SiHa cells.

2.2. Thymoquinone Induces Apoptosis in Cervical Cancer Cell Lines

To evaluate whether TQ activity is related to programmed cell death, we measured the percentage
of apoptotic cells in TQ-treated CaSki and SiHa cells. Annexin V and PI double staining can
discriminate between apoptotic and necrotic cells. Here, flow cytometric analysis showed that TQ
increases the apoptosis rate in both CaSki and SiHa cells. In contrast, the necrotic cells were reduced
after treatment with TQ. The result shows that an increase in exposure dose leads to the enhancement
of apoptotic cell levels (Figure 2).
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Figure 1. Effects of TQ on cell growth, migration and invasion in CaSki and SiHa cell lines. (A) Cell 
viability assay (CCK8 assay) also showed that treatment of TQ at a dose of 5 µM or more for 24 h or 
more shows significant cytotoxic effects on both CaSki and SiHa cell lines (* p < 0.05) (B). 
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Figure 2. Effects of thymoquinone (TQ) on cellular apoptosis. Flow cytometric analysis shows that 
TQ increases the apoptotic rate in both CaSki (A) and SiHa (B) cells. Western blot for PARP, 
Caspase-3, Caspase-9 without or with different TQ treatment (C). 

2.3. Thymoquinone Regulates EMT Associated Genes/Proteins in Cervical Cancer Cells CaSki and SiHa 

The mRNA and protein levels of expression of EMT associated genes/proteins, namely Twist1, 
Snail1, Slug, Zeb1, E-Cadherin, N-cadherin, MMP-9 and Vimentin, as well as anti-apoptotic and 
pro-apoptotic proteins Bcl-2, Bax, PARP, Caspase-3 and Caspase-9, were investigated in TQ treated 
and non-treated cells. Both of CaSki and SiHa cells were treated with 5 µM and 10 µM of TQ for 24 h, 
and then total RNA was extracted from cells for quantitative RT-PCR (qRT-PCR), while DMSO 
treated cells were used as control. The qPCR analysis showed that TQ treatment inhibits the 
expression of Twist1, Zeb1 expression, and increased E-Cadherin expression in both CaSki and SiHa 
cell lines (Figure 3A). TQ also affected Snail1, Slug, Vimentin and MMP9 in CaSki, but the results 
were not consistent in SiHa. N-Cadherin expression was found unaffected. Bax and Bcl-2 were 

Figure 1. Effects of TQ on cell growth, migration and invasion in CaSki and SiHa cell lines. (A) Cell
viability assay (CCK8 assay) also showed that treatment of TQ at a dose of 5 µM or more for 24 h or
more shows significant cytotoxic effects on both CaSki and SiHa cell lines (* p < 0.05) (B).
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Figure 2. Effects of thymoquinone (TQ) on cellular apoptosis. Flow cytometric analysis shows that TQ
increases the apoptotic rate in both CaSki (A) and SiHa (B) cells. Western blot for PARP, Caspase-3,
Caspase-9 without or with different TQ treatment (C).

2.3. Thymoquinone Regulates EMT Associated Genes/Proteins in Cervical Cancer Cells CaSki and SiHa

The mRNA and protein levels of expression of EMT associated genes/proteins, namely Twist1,
Snail1, Slug, Zeb1, E-Cadherin, N-cadherin, MMP-9 and Vimentin, as well as anti-apoptotic and
pro-apoptotic proteins Bcl-2, Bax, PARP, Caspase-3 and Caspase-9, were investigated in TQ treated
and non-treated cells. Both of CaSki and SiHa cells were treated with 5 µM and 10 µM of TQ for
24 h, and then total RNA was extracted from cells for quantitative RT-PCR (qRT-PCR), while DMSO
treated cells were used as control. The qPCR analysis showed that TQ treatment inhibits the expression
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of Twist1, Zeb1 expression, and increased E-Cadherin expression in both CaSki and SiHa cell lines
(Figure 3A). TQ also affected Snail1, Slug, Vimentin and MMP9 in CaSki, but the results were not
consistent in SiHa. N-Cadherin expression was found unaffected. Bax and Bcl-2 were remained
unaffected (Figure 3A). Proteins in PARP, Caspase-3, Caspase-9 in CaSki and SiHa cells were also
nearly unaffected (Figure 2C).
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Figure 3. Effects of thymoquinone (TQ) on genetic expression of apoptosis and EMT associated 
proteins in cervical cancer cells. Real time Q-PCR analysis showed that TQ treatment (5 µM and  
10 µM) for 24 h down-regulated mRNA level expression of Twist1, Zeb1 both in CaSki and SiHa cells. 
TQ treatment up-regulated E-Cadherin expression too in both CaSki and SiHa cells (* p < 0.05).  
TQ also inhibits Snail1, Slug, Vimentin and MMP9 in CaSki, but not in SiHa. N-cadherin, Bax and Bcl-2 
expression remained unchanged (A). Western blot analysis shows that TQ treatment (5 µM and 10 
µM) for treatment inhibits the protein level expression of Twist1, Zeb1 both in CaSki and SiHa cells  
(* p < 0.05) (B).TQ treatment also significantly increased the expression of E-Cadherin in CaSki cells  
(* p < 0.05) (B). 
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cells were used as control. The western blot analysis showed that TQ treatment down-regulates 
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Figure 3. Effects of thymoquinone (TQ) on genetic expression of apoptosis and EMT associated proteins
in cervical cancer cells. Real time Q-PCR analysis showed that TQ treatment (5 µM and 10 µM) for 24 h
down-regulated mRNA level expression of Twist1, Zeb1 both in CaSki and SiHa cells. TQ treatment
up-regulated E-Cadherin expression too in both CaSki and SiHa cells (* p < 0.05). TQ also inhibits Snail1,
Slug, Vimentin and MMP9 in CaSki, but not in SiHa. N-cadherin, Bax and Bcl-2 expression remained
unchanged (A). Western blot analysis shows that TQ treatment (5 µM and 10 µM) for treatment inhibits
the protein level expression of Twist1, Zeb1 both in CaSki and SiHa cells (* p < 0.05) (B).TQ treatment
also significantly increased the expression of E-Cadherin in CaSki cells (* p < 0.05) (B).

For the study of protein level expression for EMT-TFs, CaSki and SiHa cells were treated with
5 µM and 10 µM of TQ for 36 h, and proteins were extracted for western blot analysis, while DMSO
treated cells were used as control. The western blot analysis showed that TQ treatment down-regulates
Twist1, Zeb1 proteins and up-regulated E-Cadherinin in both CaSki and SiHa cell lines (Figure 3B).

2.4. Thymoquinone Directly Targets Twist1 and Zeb1 Gene

To investigate whether TQ directly targets Twist1/Zeb1 genes, a luciferase reporter assay was
performed. The Twist1 and Zeb1 reporter genes were transfected with or without TQ treatment into
SiHa cell line, and after 48 h of transfection, luciferase activity was measured. Results showed that TQ
dose dependently decreases the Twist1 and Zeb1 promoter expression respectively (relative light units
or RLU, Figure 4A), indicating that Twist1 and Zeb1 promoter might be directly affected by TQ.

2.5. Effects of Thymoquinone on Twist1 Promoter Methylation in Cancer Cells

To further investigate the epigenetic mechanism whether promoter methylation affect Twist1
expression, methylation assays for Twist1 promoter on its CpG islands in cervical cancer cells were
performed by the pyro-sequencing. The results shown in Figure 4B for CaSki and Figure 4C for
the SiHa cell line indicate that the proximal promoter methylation of Twist1 gene was found slightly
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increased by TQ treatment (5 µM for 24 h) (quantitative data in Figure 4D). Thus, promoter methylation
of Twist1 gene might be one of the mechanisms of Twist1 down-regulation by TQ. However we did not
test effects of TQ on Zeb1 promoter methylation in cervical cancer cell lines due to the unavailability of
this assay.Molecules 2017, 22, 2105 5 of 11 
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Figure 4. Effects of TQ on Twist1 and Zeb1 promoter activity. (A) Luciferase reporter assay shows 
that TQ decreased the Twist1 and Zeb1 reporter activity in SiHa cells, as the Relative Light Units 
(RLU) was decreased with the increase of TQ dosage. (* p < 0.05). The pyro-sequencing for the 
proximal promoter methylation of Twist1 gene without and with TQ treatment in cell lines CaSki (B) 
and SiHa (C) were performed, and quantitative changes indicate in (D). 
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Figure 4. Effects of TQ on Twist1 and Zeb1 promoter activity. (A) Luciferase reporter assay shows that
TQ decreased the Twist1 and Zeb1 reporter activity in SiHa cells, as the Relative Light Units (RLU) was
decreased with the increase of TQ dosage. (* p < 0.05). The pyro-sequencing for the proximal promoter
methylation of Twist1 gene without and with TQ treatment in cell lines CaSki (B) and SiHa (C) were
performed, and quantitative changes indicate in (D).

3. Discussion

Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis.
The transcription factors, Twist1, Snail1, Slug and Zeb1, play vital roles in initiation of EMT
process [18–22]. Studies revealed that abnormal expression of EMT-TFs are associated with metastatic
process [9,17]. Cervical cancer, which is the second most common gynecological malignant tumor in
females worldwide, has a high morbidity in China, and resistance to chemotherapy is a major obstacle
for effective treatment of cancers, including cervical cancer [23,24]. The acquisition of EMT features
has been proposed as the key contributor of chemoresistance in cancer cells. Hence, it is crucial to
obtain better insights into the mechanisms underlying the induction of EMT and to explore novel
approaches to improve drug sensitivity in cervical cancer patients [25,26].

In the current study, we found that TQ has time-dependent and dose-dependent cytotoxic
effects on cervical cancer cell lines. Moreover TQ dose dependently inhibited the migration and
invasion processes in cervical cancer cells. The anticancer and antimetastatic activities of TQ have
been previously reported in certain cancers by other studies [9–12]. However, the mechanisms of
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the antimetastatic role of TQ are extremely complex and still obscure, and very few studies have
specifically explored the effects of TQ on cervical cancer metastasis. In this study, we found that TQ
at a molecular level, decreases the expression of Twist1 and Zeb1 and increases the expression of
E-Cadherin at both mRNA and protein levels. Our previous study reported that TQ inhibits metastasis
via downregulation of Twist1 and upregulation of E-Cadherin in metastatic breast cancer cell lines [8,9].
Here we report for the first time the effectiveness of TQ in controlling cell growth and metastasis in
cervical cancer cell lines via regulation of Twist1 and E-cadherin expression. Moreover, Zeb1 has also
been found as a new target for TQ potential therapy in cervical cancer cells.

Evidences showed that Twist1 decreases the expression of E-cadhrin [19,27–29], and the lack of
E-cadherin can induce the expression of Twist1, so forms a positive feedback, keep cells in an interstitial
state, so as to induce the EMT. Like in breast cancer cells [9], in SiHa and CaSki cervical cancer cell
lines, we also found by luciferase assay that Twist1 promoter activity and expression were decreased
by TQ. This indicates that Twist1 might be a direct target of TQ. Over the past few years, Zeb1 has
increasingly been considered as an important contributor to the process of malignancies including
endometrial cancer, breast cancer, lung adenocarcinomas as well as cervical cancer. Li et al. [30] found
that the downregulation of Zeb1 expression might reduce the proliferation and motility of cervical
cancer cells. Besides, Zeb family factors (Zeb1 and Zeb2) promote EMT by repressing expression of
E-cadherin [19,23,31,32]. Thus, the results of our study linked to previous studies indicating that TQ
inhibits the migration and invasion of cervical cancer cells probably via Twist1/E-Cadherin/EMT
or/and different Zeb1/E-Cadherin/EMT signaling pathways.

In addition, flow cytometric analysis showed that TQ increases the apoptotic rate in cells. But the
expression of PARP, Caspase-3, Caspase-9, Bax and Bcl-2 in CaSki and SiHa cells were nearly unaffected
by TQ, indicating that TQ effects on CaSki/SiHa apoptosis might involve other mechanisms. TQ have
been previously reported by other studies, to induce apoptosis via a number of mechanisms of actions,
such as modulating p53 pathway, NF-κB pathway, ROS generation etc. [9,33–35]. Even if literatures
support the hypothesis for a role of DNA methylation in the control of Twist1 expression, the differences
treated with TQ are really too low in cervical cancer. Regulation of EMT and EMT-TFs should be
involved by different pathways [36,37], as well as other epigenetic mechanisms.

It has been recently reported that many long non-coding RNAs (lncRNAs) are pivotal regulators
in the oncogenesis and progression of cervical cancer [38]. For example, Ji et al. [39] reported that
the HOTAIR, a lncRNA, is able to sponge miR17-5p and Battistelli et al. [40] demonstrated that this
lncRNA is involved in the repression of E-cadherin expression in EMT, a typical signature observed in
cancer cells, as reported by us in this study. With this regard, lncRNAs could be regulated after TQ
treatment, which has been demonstrated in our previously study that co-delivery of TQ and miR-34a,
a small non-coding RNA molecule, is able to enhance to inactivate EMT signaling by directly targeting
Twist1 and Zeb1 [13]. Thus, it could be hypothesized that TQ treatment could be responsible of the
reversal of EMT also through their down regulation. Future study should be performed to validate
above hypothesis.

4. Materials and Methods

4.1. Cell Culture and Thymoquinone Treatment

Human cervical cancer cell lines CaSki and SiHa were cultured in RPMI1640
media (Thermo Fisher Scientific, Waltham, MA, USA) with 10% fetal bovine serum (FBS)
(Pan Biotech, Bavaria, Germany). TQ was purchased from Sigma-Aldrich (St. Louis, MO, USA) and
suspended in dimethyl sulfoxide (DMSO). Different concentrations of TQ were used to treat cancer
cell lines, while DMSO was used as control.
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4.2. Cell Viability Assay

Cell viability was examined by CCK-8 assay (Beyotime, Jiangsu, China). Briefly, in a 96-well cell
culture plate, 5 × 104 cells (in 100 µL media) were cultured per well and after incubation overnight
they were treated by various concentrations of TQ (1, 5, 10, 20 and 40 µM) for 12 h, 24 h, 36 h and
48 h, respectively. At the end of incubation periods, 10 µL of CCK-8 reagent was added to each well,
and kept in room temperature for 1 h. Then absorbance (optical density) was recorded at 450 nm in
a microplate spectrophotometer (Multiskan™ GO, Thermo Scientific, Ratastie, Finland). The color
intensity (OD values) represented the percentage of live cells in a given value.

4.3. Cell Growth, Migration and Invasion Assays

A real time cell analyzer (xCELLigence RTCA DP, Roche, Penzberg, Germany) was used for the
real time analysis of cell migration, invasion and growth index [14,15]. 100 µL of cell suspensions
(5 × 104 cells/mL) were seeded on each of the 16 well E-plate for cell growth index. CMI plates
were used for the analysis of cell migration and invasion, where the lower chamber wells were
filled with chemotaxis inducer (10% serum supplemented media), and 100 µL of cell suspensions
(5 × 104 cells/mL) in serum free medium were added into the wells of upper chamber. For cell
invasion assay, the membrane of the CMI plate was pre-coated with Matrigel (354277, BD Biosciences,
Sparks, MD, USA) with 1:40 dilution in 1× PBS before cells were seeded. After a certain period of
cell growth (usually 4 h, indicated in the figures), TQ of different concentrations (1–10 µM) were
added into the wells. The process of cell migration and invasion was monitored every 30 min till the
experimental endpoint.

4.4. RNA Extraction, RT-PCR and qPCR Analysis

After TQ treatment for 24 h, cellular total-RNA was extracted by using RNAsimple
Total RNA kit (Cat No: DP419, TIANGEN, Beijing, China), following the manufacturer’s
guideline. RNA concentration was measured by using ND-2000 UV/Vis spectrophotometer
(NanoDrop, Wilmington, DC, USA) and final concentration was set as a 150 ng/µL for cDNA synthesis
(reverse transcriptase/RT-PCR). In a 20 µL of RT reaction system, 4 µL of 5× RT buffer, 2 µL of dNTPs,
1 µL of random primer, 1 µL of Rev. Ace (enzyme, purchased from TOYOBO, New York, NY, USA
and BIOBRK, Chengdu, China), 0.5 µL of super RI, 0.5 µL of RT-enhancer, 4.5 µL of RNase free
water and 6.5 µL of RNA (150 ng/µL) were mixed. The reaction was completed in a thermocyler
(Mastercycler Gradient, Eppendorf, Germany) with the following steps: 10 min at 30 ◦C, 30 min at
42 ◦C, 5 min at 99 ◦C, 5 min at 4 ◦C, followed by final holding at 16 ◦C. The synthesized cDNAs were
then diluted by adding 80 µL ddH2O, and used as templates for quantitative PCR (qPCR) for the
measurement of expression levels of Bcl-2, Bax (anti-apoptotic and pro-apoptotic proteins) and Twist1,
Snail1, Slug, Zeb1, Vimentin, E-Cadherin, N-Cadherin and MMP9 (major metastasis associated EMT-TF
proteins) [16,17]. The sequence-specific fluorescence-labeled probes and primers for Taqman qPCR
were matched by the Universal Probe Library Center (Roche) [8,14]. The primer sequences for the
investigated RNA of precursor genes are presented in Table 1.
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Table 1. Primer sequences for qPCR used for mRNA isolated from human cervical cancer cells.

Genes 5′-3′ Sequences

Q18S-48L: GCAATTATTCCCCATGAACG
Q18S-48R: GGGACTTAATCAACGCAAGC
Twist1-6L: GGCATCACTATGGACTTTCTCTATT
Twist1-6R: GGCCAGTTTGATCCCAGTATT
Snail1-11L: GCTGCAGGACTCTAATCCAGA
Snail1-11R: ATCTCCGGAGGTGGGATG
Slug-26L: TGCACCCTCGGATACCTG
Slug-26R: ACATTTGGATCACAGAGGCATA
Zeb1-31L: TGACTATCAAAAGGAAGTCAATGG
Zeb1-31R: GTGCAGGAGGGACCTCTTTA

E-Cadherin-84L: TGGAGGAATTCTTGCTTTGC
E-Cadherin-84R: CGCTCTCCTCCGAAGAAAC
Vimentin-56L: TGGTCTAACGGTTTCCCCTA
Vimentin-56R: GACCTCGGAGCGAGAGTG

MMP9-6L: GAACCAATCTCACCGACAGG
MMP9-6R: GCCACCCGAGTGTAACCATA
BCL2-2L: GTGGTTGGCTTACACATGGA
BCL2-2R: CACCAGGGCCAAACTGAG
BAX-55L: CAAGACCAGGGTGGTTGG
BAX-55R: CACTCCCGCCACAAAGAT

18S RNA was used as internal control. In a 10 µL of the reaction system, 5 µL of 2× PCR-master
mix, 0.02 µL of probe, 1 µL of primers, 2 µL of H2O and 2 µL of cDNA were mixed, and reaction was
completed in a StepOne plus Thermocycler (Applied Biosystem, Foster City, CA, USA) with a 40 cycle
of amplification. Relative levels of mRNA expressions for each gene were obtained by normalization
to 18 S RNA, and were calculated and expressed as 2−∆∆CT.

4.5. Protein Extraction and Western Blot Analysis

After TQ treatment for 36 h, cellular proteins were extracted by using EBC lysis buffer [14].
Proteins were then separated on vertical polyacrylamide gel electrophoresis, and transferred to
nitrocellulose membrane. The membrane was kept in 5% milk (in 1 × TBST) at 4 ◦C for 1 h, and then
incubated with primary antibody solution at 4 ◦C for 12 h with gentle shaking. The membrane was then
washed thrice with TBST, and incubated with secondary antibody tagged with horseradish peroxidase
for 2–4 h at room temperature with gentle shaking. The membrane was again washed thrice with TBST,
and protein bands were visualized after the chemiluminiscence reaction by using a digital imaging
system (Universal Hood II, Bio-Rad Lab, Segrate, Italy) [8,14]. The primary antibodies used in this
study were anti-Twist1 (Abcam), anti-Zeb1 (Cell Signaling Technology, Danvers, MA, USA), anti-PARP
(#9532, Cell Signaling Technology), anti-Caspase-3 (#9665, Cell Signaling Technology), anti-Caspase-9
(#9508, Cell Signaling Technology), anti-E-cadherin (Cell Signaling Technology), anti-beta actin
(Beyotime Biotechnology, Jiangsu, China), anti-HSP70 (Cell Signaling Technology). Corresponding to
primary antibodies, anti-mouse (Bioworld Technology, Dublin, OH, USA) and anti-rabbit antibodies
(Beyotime Biotechnology, Jiangsu, China) were used as secondary antibody. The comparative level of
protein expression was measured by analyzing the visualized protein bands using the ImageJ software
(National Institutes of Health, Rockville, MD, USA).

4.6. Luciferase Reporter Assay

Luciferase reporter assay was performed by using Twist1 promoter reporter gene which has
been reported previously [8,15]. pGL3-hZeb1-Luc promoter/reporter plasmid was constructed as
follows: NM_001174093; name = ZEB1; Entrez_ID = 6935; Genome = hg38; chr10+: 31317829-31319199;
TSS = 31319172; Upstream = 1343, Downstream = 27; Length = 1371; then clone it into the vector by
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enzymes Kpnl/Xhol. The plasmid is confirmed to be constructed as expectation by enzyme digestion
and Sanger sequencing [14,41].

Then, 60%-confluent SiHa cells in 12-well plates were used to transfect with 100 ng of the
pGL3-hTwist1-Luc promoter/reporter or pGL3-hZeb1-Luc promoter/reporter plasmid without
or with indicated different concentration of TQ (0, 1, 2, 4, 8, 16 µM). TQ was also treated in
control cells (transfected with pGL3-Basic-Luc promoter/reporter plasmid) and the activity of
promoter expression of Twist1 and Zeb1 was measured respectively by using luciferase assay system
(Promega, Madison, WI, USA). The relative luciferase activity, expressed as ‘Relative Light Units’
(RLU) was determined by using 3010 Luminometer (BD Monolight, Franklin Lakes, NJ, USA) after
two days of transfection.

4.7. Measurement of Cellular Apoptosis

Detection of apoptosis by Annexin V binding Apoptosis detection was performed using the
FITC Annexin V Apoptosis Detection Kit (BD Pharmingen, Sparks, MD, USA). CaSki and SiHa cells
(106 cells/mL) were plated and incubated overnight, prior to being treated with different concentration
of TQ (0, 5, 10 µM). The cells were harvested, washed with PBS, re-suspended in 1 × Annexin V
binding and stained with 5 µL annexin V and 5 µL PI for 10 min at room temperature in the dark.
The distribution of cell populations in different quadrants was detected using BD FACSCF Calibur
Cell Analyzer.

4.8. Twist1 Gene Methylation Assay

CaSki and SiHa cells were treated with TQ (5 µM) for 24 h, and DNA was extracted by using
TIANamp genomic DNA kit (TianGen, Beijing, China).The PCR products from bisulfite-treated
genomic DNA samples were analyzed with pyrosequencing technology, in order to quantify
the site-specific methylation. The Qiagen bisulfite kit was used for the treatment of genomic
DNA and the primers used for the amplification of Twist1 gene promoter by PCR were as
follows: F: 5′-GGGAGAGATGAGATATTATTTATTGTGT-3′; R: 5′-CTCCTCCCAAACCATTCAA-3′.
The sequencing was performed using sequencing primer (5′-AGGAGGGGAAGGAAA-3′),
which described previously [8]. Each site is analyzed as a C/T-polymorphism and the percentage of
methylation is displayed in a small colored box just above each CpG site, where a 100% denotes a fully
methylated C, a 0% denotes an unmethylated C, and intermediate C/T percentages denote partial
methylation in the genomic DNA.

4.9. Statistical Analysis

Data was analyzed by one-way ANOVA and then post-hoc comparisons by using the
SPSS v. 20 software (IBM, New York, NY, USA), and MS-Excel 2010 (Microsoft, Washington, DC, USA).
Results are usually presented as mean ± SD. p < 0.05 was considered as significant differences.

5. Conclusions

Our findings suggest that TQ markedly inhibited the proliferation of cervical cancer cells in a
time-dependent and dose-dependent manner and suppressed the migration and invasion of cancer
cells. Targeting EMT-TFs like Twist1 and Zeb1 might be the possible mechanism of action of TQ in
controlling metastasis in cervical cancer. This study indicates that TQ is as a possible chemotherapeutic
agent against cervical cancer, however for the further development and establishment of TQ as a
clinical drug, clinical investigations are necessary.
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