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Abstract: Efficient synthesis of phenanthridin-6(5H)-one derivatives 12a–n in a four-component
reaction of aldehyde hydrazone, aromatic aldehydes and malononitrile in Q-Tubes is reported.
The results showed that the methodology has the advantage of being a one-pot synthesis of tricyclic
systems in good yields. Potential routes leading to formation of compounds 12 are discussed.
The structures of the synthesized compounds could be unequivocally established via X-ray crystal
structure determination and spectroscopic methods.
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1. Introduction

The considerable biological and medicinal activities of pyridazines has stimulated considerable
research on efficient syntheses of these derivatives in past years [1–4]. Elnagdi et al. reported synthesis
of 2-amino-1,4-dihydropyridazine, an isoelectronic derivative of 1,4-dihydropyrimidines of established
biological activities [5–8], via 3 + 3 atom combination of arylhydrazones 1a and α,β-unsaturated
nitriles 2 [9] or by reacting a mixture of 1, 4 and 5 in one pot (Scheme 1). Subsequent studies [10,11] on this
novel route revealed however that it is of a limited scope as the reaction products proved to be dependent
on the nature of the reacting aryl hydrazones. Multicomponent reaction of 1a–c with α,β-unsaturated
nitriles 2 in presence of a base has been reported to yield 3, while the reaction of 1f with 2 in basic
medium afforded the new substituted pyrazolo[4′,3′-5,6]pyrimido[2,1-a]phthalazine-9-carbonitriles
ring system 7 [12] (Scheme 1).

Microwave energy has been reported to be effective in the synthesis of small molecules in many
of our previous works [13–16]. However, we noted that microwaves technology is expensive to scale
up [17], in contrast to using “Q-Tube” pressure reactors, which proved to accelerate reactions of
negative activation volume in a more optimal and safer manner, compared to microwaves [18].
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altered the nature of the synthesized products [19,20] (Scheme 2). The human urge to find cures for 
challenging diseases and improve human life leads organic chemists to be in a continuous quest to 
develop novel polyfunctional heterocycles, as well as developing new economical and greener 
technologies. Considering the promising biological activity of new compounds 12 where the ring 
system combines pyridazine and napthyridine rings, both with vast biological activities [21–24], we 
sought to expand this work to prove that the method proposed for the synthesis of these novel 
compounds is a general one by making more examples. Moreover this work has led to the proposal 
of a plausible reaction mechanism that would clarify and lead the way for any further work on such 
new ring systems. 
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2. Results 

The reactions in Q-Tubes (cf. Figure 1) at 150 °C and 20 psi of 2-oxo-2-arylhydrazonals 1a,b with 
aromatic aldehydes 10a–g and malononitrile (9) in dioxane in the presence of piperidine afforded 
compounds 12a–n. The tricyclic systems 12 are formed in 72–85% yield (Scheme 3, Table 1). The 
structure of the reaction products could be established to be pyridazino[5,4,3-de][1,6]naphthyridine 
derivatives 12a–n via spectroscopic methods (available in the supplementary materials) as well as 
X-ray crystal structure determination of products 12a, 12m and 12n (Figures 1–3). 

Scheme 1. The reactivity of aryl hydrazones 1 towards α,β-functionally substituted cinnamonitriles.

Our research group has previously reported extensively on the use of Q-Tubes to synthesize such
compounds but the reaction conditions in these published works had many limitations that altered the
nature of the synthesized products [19,20] (Scheme 2). The human urge to find cures for challenging
diseases and improve human life leads organic chemists to be in a continuous quest to develop
novel polyfunctional heterocycles, as well as developing new economical and greener technologies.
Considering the promising biological activity of new compounds 12 where the ring system combines
pyridazine and napthyridine rings, both with vast biological activities [21–24], we sought to expand
this work to prove that the method proposed for the synthesis of these novel compounds is a general
one by making more examples. Moreover this work has led to the proposal of a plausible reaction
mechanism that would clarify and lead the way for any further work on such new ring systems.
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Scheme 2. Novel synthesis of the tricyclic system 11 by reacting ethyl-3-oxo-2-(2-phenylhydrazono)
pentanoate (8a) with malononitrile (9) and aromatic aldehyde derivatives 10 in a Q-Tube.

2. Results

The reactions in Q-Tubes (cf. Figure 1) at 150 ◦C and 20 psi of 2-oxo-2-arylhydrazonals 1a,b
with aromatic aldehydes 10a–g and malononitrile (9) in dioxane in the presence of piperidine
afforded compounds 12a–n. The tricyclic systems 12 are formed in 72–85% yield (Scheme 3, Table 1).
The structure of the reaction products could be established to be pyridazino[5,4,3-de][1,6]naphthyridine
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derivatives 12a–n via spectroscopic methods (available in the supplementary materials) as well as
X-ray crystal structure determination of products 12a, 12m and 12n (Figures 1–3).Molecules 2017, 22, 2114 3 of 10 
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Entry R Ar Yield % Time (min)

12a H Ph 85 60
12b H 4-ClC6H4 75 60
12c H 2-ClC6H4 80 120
12d H 4-CH3C6H4 77 60
12e H 2-CH3C6H4 73 120
12f H 4-O2NC6H4 82 60
12g H 2-furyl 86 120
12h CH3 Ph 83 60
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dimerization of malononitrile [27]. 
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derivatives. Thus, it is almost certain that the initial step leading to formation of 12 is the 
condensation of malononitrile (9) with acyl carbonyl 18. The product 19 can then either cyclize into 
20 and then 21 (route C) or condense with an aromatic aldehyde to give 22 and then 23 (route D). 
Neither route C or D can completely be ruled out, although we believe that the aromatic aldehyde 
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3. Discussion

Two mechanistic pathways seem possible (Scheme 4): initial dimerization of malononitrile to yield
dimer 13, that then condenses with the acyl carbonyl yielding 14 that cyclizes to form 15 (route A) [19].
This route could readily be eliminated as in our hands malononitrile could not be dimerized under
the reported conditions moreover when it is considered that this dimerization it probably impossible
in the absence of ethoxide or sodium hydroxide which are thought necessary for the dimerization of
malononitrile [27].

Moustafa et al. also reported that the dimer 13 alone reacts with their arylhydrazones 1a,b yielding
pyridazino[5,4,3-de][1,6]naphthyridine derivatives, not condensed with pyridazine derivatives. Thus,
it is almost certain that the initial step leading to formation of 12 is the condensation of malononitrile (9)
with acyl carbonyl 18. The product 19 can then either cyclize into 20 and then 21 (route C) or condense
with an aromatic aldehyde to give 22 and then 23 (route D). Neither route C or D can completely be
ruled out, although we believe that the aromatic aldehyde condenses initially with 19 then subsequent
reactions lead to 22 that then reacts with malononitrile (9) to form 23 which cyclizes to the final
product 12 (Scheme 4).
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derivatives 12a–n.

4. Materials and Methods

4.1. General Information

Q-tube assisted reactions were performed in a Q-tube safe pressure reactor from Q Labtech
(East Lyme, CT 06333, CT, USA, equipped with a cap/sleeve, pressure adapter (120 psi), needle
adapter/needle, borosilicate glass tube, Teflon septum, and catch bottle. All reactions were monitored
by using TLC with 1:1 ethyl acetate-petroleum ether as eluent and were carried out until starting
materials were completely consumed. Melting points are reported uncorrected and were determined
with a Sanyo (Gallenkamp, Osaka, Japan) instrument. Infrared spectra were recorded using KBr
pellets and a FT–IR 6300 instrument (Jasco, Tokyo, Japan) and absorption bands are reported in cm−1.
1H- and 13C-NMR spectra were determined by using a DPX instrument (Bruker, Billerica, MA, USA)
at 400 MHz or 600 MHz for 1H-NMR and 100 MHz for 13C-NMR and either CDCl3 or DMSO-d6
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solutions with TMS as internal standards. Chemical shifts are reported in ppm. Mass spectra and
accurate mass measurements were made using a GCMS DFS spectrometer (Thermo, Bremen, Germany)
with the EI (70 EV) mode. X-ray crystallographic structure determinations were performed by using
Rapid II (Rigaku, Tokyo, Japan) and X8 Prospector (Bruker, Karlsruhe, Germany) single crystal X-ray
diffractometers. All X-ray crystal structure data can be obtained free of charge from the Cambridge
Crystallographic Data Centre [26–28] via www.ccdc.cam.ac.uk. The data and material are available in
the Supplementary material and manuscript. Supplementary material is attached as PDF format and
submitted along with the manuscript.

4.2. General Procedures for Q-Tube-Assisted Synthesis of 12a–n

2-Oxo-2-arylhydrazonals 1a,b (0.01 mol), aromatic aldehydes 13a–g (0.01 mol) and malononitrile
(9) was 9 before (0.02 mol) in the presence of piperidine (1 mL) and dioxin (20 mL) as solvent were
sequentially added in a 35 mL Q-tube pressure tube, furnished by Q Labtech. A Teflon septum was
placed on top of the tube, and an appropriate cap was used. The mixture was heated in an oil bath at
150 ◦C. After about 60 min, the reaction mixture was monitored by TLC. The mixture was cooled and
poured into ice-water. The solid was collected by filtration and purified by column chromatography
and crystallized from ethanol.

8-Amino-1,5-diphenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12a). Dark yellow crystals,
Yield 85%; m.p. 314–315 ◦C; Anal. Calcd. for C22H14N6 (362.13): C, 72.92; H, 3.89; N, 23.19. Found: C,
72.83; H, 3.79; N, 23.25. EI-HRMS: m/z = 362.1274 (MH+); C22H14N6 requires: m/z = 362.1279 (MH+);
1H-NMR (400 MHz, DMSO-d6): δ = 7.06 (br, 2H, NH2, D2O exchangeable), 7.44–7.66 (m, H, Ph-H, CH),
8.19–8.22 (m, 2H, Ph-H), 8.38 (s, 1H, CH); 13C-NMR (100 MHz, DMSO-d6): δ = 162.0, 161.2, 154.5, 150.9,
141.7, 138.7, 137.8, 133.2, 130.3, 128.8 (2C), 128.7 (2C), 128.1, 127.1 (2C), 126.3 (2C), 116.8, 108.8, 104.6,
73.3. MS: m/z (%) 362.2 (M+, 100), 334 (10), 181 (10), 77 (5).

8-Amino-5-(4-chlorophenyl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12b). Green
crystals, yield 75%; m.p. 340–341 ◦C; Anal. Calcd. for C22H13ClN6 (396.06): C, 66.59; H, 3.30; N, 21.18.
Found: C, 66.70; H, 3.35; N, 21.20. EI-HRMS: m/z = 396.0885 (MH+); C22H13N6

35Cl requires: m/z
396.0890 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 7.10 (br, 2H, NH2, D2O exchangeable), 7.45–7.66
(m, 8H, Ph-H, CH), 8.22–8.24 (m, 2H, Ph-CH), 8.38 (s, 1H, CH); 13C-NMR (100 MHz, DMSO-d6):
δ = 162.1, 160.0, 154.6, 151.0, 141.7, 138.7, 136.7, 133.4, 130.3, 129.1 (2C), 128.9 (2C), 128.2, 126.6 (2C),
124.6 (2C), 118.0, 109.1, 104.6, 56.0. MS: m/z (%) 396.1 (M+, 100), 368 (10), 198 (10), 166 (5), 77 (5).

8-Amino-5-(3-chlorophenyl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12c). Green
crystals, yield 80%; m.p. 314–316 ◦C; Anal. Calcd. for C22H13ClN6 (396.06): C, 66.59; H, 3.30; N,
21.18. Found: C, 66.57; H, 3.33; N, 21.12. EI-HRMS: m/z = 396.0885 (MH+); C22H13N6

35Cl requires:
m/z = 396.0890 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 7.11 (br, 2H, NH2, D2O exchangeable),
7.27 (s, 1H, CH), 7.45–7.67 (m, 9H, Ph-H), 8.45 (s, 1H, CH); 13C-NMR (100 MHz, DMSO-d6): δ = 162.2,
162.0, 154.6, 151.1, 141.7, 138.8, 138.5, 132.4, 131.4, 131.0, 130.6, 129.9 (2C), 128.8, 128.2, 127.4, 126.4 (2C),
116.8, 108.9, 108.8, 73.1. MS: m/z (%) 396.1 (M+, 100), 361 (15), 334 (5), 198 (10), 166 (5), 77 (5).

8-Amino-1-phenyl-5-p-tolyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12d). Faint green
crystals, yield 77%; m.p. 340–341 ◦C; Anal. Calcd. for C23H16N6 (376.14): C, 73.39; H, 4.28; N,
22.33. Found: C, 73.34; H, 4.30; N, 22.28. EI-HRMS: m/z = 376.1430 (MH+); C23H16N6 requires:
m/z = 376.1436 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 2.39, 2.51 (s, 3H, CH3), 7.05 (br, 2H, NH2,
D2O exchangeable), 7.34–7.65 (m, 8H, Ph-H, CH), 8.09–8.11 (m, 2H, Ph-H), 8.36 (s, 1H, CH); 13C-NMR
(100 MHz, DMSO-d6): δ = 162.2, 161.2, 154.4, 150.9, 141.7, 140.2, 138.8, 135.1, 133.2, 129.4 (2C), 128.8 (2C),
128.1, 127.1 (2C), 126.3 (2C), 116.9, 108.7, 104.2, 73.3, 20.9. MS: m/z (%) 376.2 (M+, 100), 348 (10), 188 (10),
77 (5).

8-Amino-1-phenyl-5-m-tolyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12e). Green crystals,
yield 73%; m.p. 280–281 ◦C; Anal. Calcd. for C23H16N6 (376.14): C, 73.39; H, 4.28; N, 22.33. Found: C,

www.ccdc.cam.ac.uk
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73.38; H, 4.27; N, 22.31. EI-HRMS: m/z = 376.1431 (MH+); C23H16N6 requires: m/z = 376.1436 (MH+);
1H-NMR (400 MHz, DMSO-d6): δ = 2.43,2.51 (s, 3H, CH3), 7.07 (br, 2H, NH2, D2O exchangeable),
7.18 (s, 1H, CH), 7.34–7.66 (m, 9H, Ph-H), 8.40 (s, 1H, CH); 13C-NMR (100 MHz, DMSO-d6): δ = 165.2,
162.0, 154.3, 151.1, 141.7, 139.6, 138.7, 135.8, 133.7, 130.8, 129.3, 128.9, 128.2 (2C), 128.1, 126.3 (2C), 125.9,
116.9, 108.3, 108.2, 73.3, 20.3. MS: m/z (%) 376 (M+, 50), 375 (100), 348 (10), 255 (10), 187 (10), 77 (5).

8-Amino-5-(4-nitrophenyl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12f). Dark
brown crystals, yield 82%; m.p. 397–398 ◦C; Anal. Calcd. for C22H13N7O2 (407.11): C, 64.86; H, 3.22;
N, 24.07. Found: C, 64.75; H, 3.10; N, 24.12. EI-HRMS: m/z = 407.1125 (MH+); C22H13O2N7 requires:
m/z = 407.1131 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 7.18 (br, 2H, NH2, D2O exchangeable),
7.48–7.68 (m, 5H, Ph-H, CH), 7.93, 8.244 (d, 1H, CH-pyridazine), 8.40–8.48 (m, 4H, Ph-H, CH), 9.20,
9.41 (s, 1H, CH). MS: m/z (%) 407.2 (M+, 100), 361 (20), 334 (10), 180 (10), 77 (5).

8-Amino-5-(furan-2-yl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12g). Dark green
crystals, yield 86%; m.p. 345–346 ◦C; Anal. Calcd. for C20H12N6O (352.11): C, 68.18; H, 3.43; N,
23.85. Found: C, 68.21; H, 3.52; N, 23.77. EI-HRMS: m/z = 352.1066 (MH+); C20H12O1N6 requires:
m/z = 352.1072 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 6.74–6.75 (m, 1H, furyl-H), 7.05 (br, 2H,
NH2, D2O exchangeable), 7.24–7.97 (m, 8H, Ph-H, furyl-H, CH), 8.42 (s, 1H, CH); 13C-NMR (100 MHz,
DMSO-d6): δ = 162.0, 154.6, 153.2, 152.7, 150.8, 145.6, 141.7, 138.6, 133.2, 128.8 (2C), 128.2, 126.3 (2C),
116.8, 112.7, 11.8, 108.6, 102.7, 73.0. MS: m/z (%) 352.1 (M+, 100), 324 (5), 176 (10), 77 (5).

8-Amino-4-methyl-1,5-diphenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12h). Yellow
crystals, yield 83%; m.p. 364–365 ◦C; Anal. Calcd. for C23H16N6 (376.14): C, 73.39; H, 4.28; N,
22.33. Found: C, 73.35; H, 4.15; N, 22.41. EI-HRMS: m/z = 376.1431 (MH+); C23H16N6 requires:
m/z = 376.1436 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 2.34, 2.50 (s, 3H, CH3), 6.95 (br, 2H, NH2,
D2O exchangeable), 7.45–7.66 (m, 10H, Ph-H, CH), 8.56 (s, 1H, CH); 13C-NMR (100 MHz, DMSO-d6):
δ = 164.5, 161.6, 152.3, 150.6, 141.8, 140.0, 136.9, 131.0, 129.0 (2C), 128.8 (2C), 128.5, 128.2, 128.0 (2C),
126.3 (2C), 117.1, 114.1, 108.9, 72.6, 13.9. MS: m/z (%) 376.2 (M+, 100), 368 (10), 348 (5), 255 (5), 188 (10),
97 (10), 57 (5).

8-Amino-5-(4-chlorophenyl)-4-methyl-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12j).
Dark yellow crystals, yield 78%; m.p. 345–346 ◦C; Anal. Calcd. for C23H15ClN6 (410.1): C, 67.24; H,
3.68; N, 20.45. Found: C, 67.27; H, 3.56; N, 20.45. EI-HRMS: m/z = 410.1041 (MH+); C23H15N6

35Cl
requires: m/z = 410.1047 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 2.35, 2.50 (s, 3H, CH3), 6.90 (br,
2H, NH2, D2O exchangeable), 7.45–7.66 (m, 9H, Ph-H, CH), 8.58 (s, 1H, CH); 13C-NMR (100 MHz,
DMSO-d6): δ = 163.8, 162.1, 156.4, 151.1, 142.3, 139.4, 137.3, 134.0, 132.5, 131.7, 131.3 (2C), 129.3 (2C),
128.6 (2C), 126.7 (2C), 117.2, 114.8, 109.7, 73.5, 14.3. MS: m/z (%) 410.1 (M+, 100), 374 (10), 346 (5),
255 (5), 205 (5), 187 (10), 173 (5), 97 (5), 77 (5).

8-Amino-4-methyl-1-phenyl-5-p-tolyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12k). Dark
orange crystals, yield 80%; m.p. 370–371 ◦C; Anal. Calcd. for C24H18N6 (390.16): C, 73.83; H, 4.65;
N, 21.52. Found: C, 73.88; H, 4.59; N, 21.60. EI-HRMS: m/z = 390.1587 (MH+); C24H18N6 requires:
m/z = 390.1593 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 2.36 (s, 3H, CH3), 2.41 (s, 3H, CH3), 6.93 (br,
2H, NH2, D2O exchangeable), 7.34-7.67 (m, 9H, Ph-H, CH), 8.56 (s, 1H, CH); 13C-NMR (100 MHz,
DMSO-d6): δ = 163.9, 161.6, 152.4, 150.7, 141.8, 140.2, 137.2, 129.0 (2C), 128.8 (2C), 128.6 (2C), 127.1,
126.3 (2C), 129.1, 124.5, 119.1, 114.8, 109.7, 72.6, 20.8, 14.0. MS: m/z (%) 390.2 (M+, 100), 375 (5), 269 (5),
187 (5), 77 (5).

8-Amino-4-methyl-1-phenyl-5-m-tolyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12l). Yellow
crystals, yield 72%; m.p. 284–285 ◦C; Anal. Calcd. for C24H18N6 (390.16): C, 73.83; H, 4.65; N, 21.52.
Found: C, 73.81; H, 4.68; N, 21.55. EI-HRMS: m/z = 390.1587 (MH+); C24H18N6 requires: m/z = 390.1592
(MH+); IR: 3489, 3336 (NH2), 2200 (CN); 1H-NMR (400 MHz, DMSO-d6): δ = 2.08 (s, 3H, CH3), 2.11
(s, 3H, CH3), 6.96 (br, 2H, NH2, D2O exchangeable), 7.19–7.66 (m, 9H, Ph-H, CH), 8.53 (s, 1H, CH);
13C-NMR (100 MHz, DMSO-d6): δ = 165.5, 161.5, 152.4, 150.7, 141.8, 139.8, 136.9, 134.8, 130.6, 130.0,
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128.9 (2C), 128.2 (2C), 126.3 (2C), 125.6 (2C), 117.1, 114.7, 109.0, 72.6, 19.0, 13.0. MS: m/z (%) 390.2 (M+,
50), 375 (100), 346 (5), 255 (5), 195 (5), 187 (15), 173 (10), 129 (5), 77 (5).

8-Amino-4-methyl-5-(4-nitrophenyl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12m).
Dark yellow crystals, yield 82%; m.p. 368–369 ◦C; Anal. Calcd. for C23H15N7O2 (421.13): C, 65.55;
H, 3.59; N, 23.27. Found: C, 65.59; H, 3.63; N, 23.31. EI-HRMS: m/z = 421.1282 (MH+); C23H15O2N7

requires: m/z = 421.1287 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 2.37, 2.53 (s, 3H, CH3), 6.82 (br,
2H, NH2, D2O exchangeable), 7.47–8.38 (m, 9H, Ph-H, CH), 8.58, 8.58 (s, 1H, CH); 13C-NMR (100 MHz,
DMSO-d6): δ = 14.56, 49.5, 105, 124.12 (2C) , 127.10 (2C), 129.08, 129.70 (2C), 131.31 (4C), 135.61, 137.67,
142.69, 162.56, 163.25; MS: m/z (%) 421.2 (M+, 100), 390 (15), 374 (25), 348 (10), 255 (5), 187 (10), 77 (5).

8-Amino-5-(furan-2-yl)-4-methyl-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12n).
Dark green crystals, yield 86%; m.p. 368–369 ◦C; Anal. Calcd. for C21H14N6O (366.12): C, 68.84; H,
3.85; N, 22.94. Found: C, 68.89; H, 3.78; N, 22.88. EI-HRMS: m/z = 366.1223 (MH+); C21H14O1N6

requires: m/z = 366.1229 (MH+); 1H-NMR (400 MHz, DMSO-d6): δ = 2.50 (s, 3H, CH3), 6.72–6.73 (m,
1H, furyl-H), 6.91 (br, 2H, NH2, D2O exchangeable), 7.19–7.97 (m, 7H, Ph-H, furyl-H), 8.52 (s, 1H, CH);
13C-NMR (100 MHz, DMSO-d6): δ = 161.6, 153.0, 152.4, 152.2, 150.4, 145.1, 141.8, 136.8, 131.8, 128.9 (2C),
128.2, 126.3 (2C), 117.0, 114.3, 113.2, 112.0, 108.8, 72.3, 13.2. MS: m/z (%) 366.1 (M+, 100), 337 (5), 311 (5),
183 (5), 77 (10).

5. Conclusions

Synthesis of 2-amino-1,4-dihydropyridazines by reacting arylhydrazonals, active methylene
nitriles and aromatic aldehydes has been found of very limited scope. We show here that under pressure
the sequence of this multicomponent reaction changes as the initial step with the least activation
volume predominates, and in this way a novel route to pyridazino[5,4,3-de][1,6]naphthyridines could
be developed. Our observations open the route for discovering new multicomponent reactions under
pressure, thus it is recommended to expand this technique.

Supplementary Materials: Supplementary Materials are available online.
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