Supplementary

		MIC [*] of the tested compounds (1-8) [µg/ml]								
	Bacteria Strains	1	2	3	4	5	6	7	8	Ebselen
K. pneumoniae	NRZ-00103	<u>1.24¹</u>	13.76	.4-2.8	2.88-5.76	46.08	46.08	<u>2.88</u>	5.76	≥143.35
	KP 2151307	<u>0.62-</u>	6.88-	<u>1.4</u>	2.88	23.04-	11.52-	2.88	5.76	71.68-
		<u>1.24</u>	13.76			46.08	23.04			143.36
	KP 1963584	0.62	6.88	<u>1.4</u>	<u>2.88</u>	11.52-	11.52-	<u>1.44-</u>	<u>2.88</u>	71.68
						23.04	23.04	<u>2.88</u>		
Acinetobacter	AC 2151300	0.31-0.62	<u>0.86</u>	0.35-0.7	<u>0.36-0.72</u>	<u>2.88</u>	<u>1.44</u>	<u>0.36-</u> 0.72	<u>1.44</u>	17.92
	AR 1995594	0.62	1 72-	14	0.72	2 88-5 76	2 88	0.72	1 44-	17 92-
	110 1998094	0.02	3.44	<u> 1.1</u>	<u>0.7 L</u>	2.00 0.70	2.00	<u>0.7 2</u>	2.88	35.84
	AB 4184/2/5	<u>0.31</u>	0.86	<u>0.35</u>	<u>0.36</u>	<u>2.88</u>	<u>0.72-</u> <u>1.44</u>	<u>0.36</u>	<u>1.44</u>	17.92
4										
	ATCC 27853	2.48	110.08	5.60-11	5.76-11.52	46.08-	92.16-	11.52-	23.04	71.68
P. aeruginosa						92.16	184.32	23.04		
	PA T18	<u>0.31</u>	<u>1.72</u>	<u>0.7</u>	<u>1.44</u>	11.52	11.52	<u>0.72</u>	1.44- 2.88	17.92
	PA54	0.62-1.24	13.76-	<u>1.4-2.8</u>	5.76	11.52	46.08-	5.76	5.76-	71.68-
			27.52				92.16		11.52	143.36
	PA58	0.62	6.88-	<u>1.4</u>	<u>2.88</u>	11.52-	23.04	<u>2.88</u>	5.76	17.92-
			13.76			23.04				33.84
E. coli	NCTC 13351	1.24-2.48	6.88-	<u>1.4</u>	2.88	11.52-	11.52	2.88	5.76	71.68-
			13.76			23.04				143.36
	EC 2151612	<u>1.24-2.48</u>	6.88	<u>1.4</u>	<u>2.88</u>	11.52- 23.04	11.52	<u>1.4-</u> 2.88	5.76	71.68
	FC 1995591	2 48	6 88-	1 4-2 8	2 88	23.04	11.52	$\frac{2.00}{2.88}$	576	71.68
	LC 1990091	2.10	13.76	1.1 2.0	2.00	20.01	11.02	2.00	0.70	, 1.00
	EC 1227107	1.24-2.48	13.76	2.8	5.76	23.04	11.52-	2.88	5.76-	35.84-
							23.04		11.52	71.68

Table S1. Details of MIC values of the compounds 1-8 and ebselen against Gram-negative bacteria.

* Particularly potent antibacterial activities (MIC < 5 μ g/ml) are underlined.

3.3. Evaluation of ROS formation

To analyze the effect of the selenazolinium salts tested on intracellular oxidative stress production in *S. aureus* DCHFA assay was performed. For this purpose, the impact of the most active compounds which were identified in the previous studies (the compounds **1** and **6**) and ebselen on ROS release was determined in the reference *S. aureus* ATCC 25923 strain and the clinical isolate MRSA HEMSA 5 (**Figure S1-S3**)

Figure S1. Generation of intracellular ROS in the reference *S. aureus* ATCC 25923 strain (a) and the clinical MRSA HEMSA 5 isolate (b) upon exposure to the different concentrations of the compound **1**. 2, 2'-azobis (2-amidinopropane) dihydrochloride (AAPH) was included as a positive control in the assay. The level of oxidative stress was detected by the use of fluorogenic dye 2', 7'-dichlorodihydrofluorescein diacetate (DCHFA) which in the presence of cellular esterases and ROS is converted to highly fluorescent 2', 7'-dichlorofluorescein (DCFA). Values represent means with standard deviation (SD) bars from at least four repeats. Statistical significances were calculated using a one-way ANOVA followed by Bonferroni's multiple comparison test (**Figure S1 a**, **b**: p > 0.05).

Figure S2. Generation of intracellular ROS in the reference *S. aureus* ATCC 25923 strain (a) and the clinical MRSA HEMSA 5 isolate (b) upon exposure to the different concentrations of compound **6**. For further details refer to the **Figure S1**.

Figure S3. Generation of intracellular ROS in the reference *S. aureus* ATCC 25923 strain (a) and the clinical MRSA HEMSA 5 isolate (b) upon exposure to the different concentrations of ebselen. For further details, refer to the **Figure S1**.