
molecules

Article

Detection of Network Motif Based on a Novel Graph
Canonization Algorithm from Transcriptional
Regulation Networks

Jialu Hu 1,2,* and Xuequn Shang 1

1 School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127,
Xi’an 710072, China; shang@nwpu.edu.cn

2 Centre for Multidisciplinary Convergence Computing, School of Computer Science,
Northwestern Polytechnical University, Dong Xiang Road 1, Xi’an 710129, China

* Correspondence: jhu@nwpu.edu.cn; Tel.: +86-29-8843-1519

Received: 4 November 2017; Accepted: 5 December 2017; Published: 10 December 2017

Abstract: Network motifs are patterns of complex networks occurring significantly more frequently
than those in random networks. They have been considered as fundamental building blocks of
complex networks. Therefore, the detection of network motifs in transcriptional regulation networks
is a crucial step in understanding the mechanism of transcriptional regulation and network evolution.
The search for network motifs is similar to solving subgraph searching problems, which has proven to
be NP-complete. To quickly and effectively count subgraphs of a large biological network, we propose
a novel graph canonization algorithm based on resolving sets. This method has been implemented
in a command line interface (CLI) program sgip using the SeqAn library. Comparing to Babai’s
algorithm, this approach has a tighter complexity bound, o(exp(

√
n log2 n + 4 log n)), on strongly

regular graphs. Results on several simulated datasets and transcriptional regulation networks indicate
that sgip outperforms nauty on many graph cases. The source code of sgip is freely accessible in
https://github.com/seqan/seqan/tree/master/apps/sgip and the binary code in http://packages.
seqan.de/sgip/.

Keywords: network motif; algorithms; graph canonization

1. Introduction

With the advent of high-throughput technologies in biology, the task of obtaining genetics
and transcriptional information from specific tissues has become easier and more cost-effective.
For example, the yeast two-hybrid (Y2H) system, Chromatin Immunoprecipitation Sequencing
(ChIP-seq), and co-immunoprecipitation (coIP) coupled to mass spectrometry allow us to screen
molecular interactions of a cell on a large scale. This achievement shed light on the research of
understanding the underlying transcriptional regulation and network evolution. It can help us
in unraveling the encrypted messages encoded in the structure and topology of protein-protein
interaction (PPI) networks. To be analogous with sequence motif, network motif was proposed to
characterize different types of complex networks. Network motifs are patterns of interactions occurring
in a complex network at numbers that are significantly higher than those in randomized networks.
They are considered as basic building blocks which play key roles in processing cellular signals in
transcriptional regulatory networks. Currently, several major network motifs have been found in
transcriptional regulatory networks, which include feed-forward loop (FFL), single input module
(SIM), and dense overlapping regulons (DORs) [1]. The detection of a motif in a PPI network reveals
that motif networks substantially influence the evolution conservation.

Many analysis tools have been developed for detecting network motifs in the last decade,
including FANMOD [2], mfinder [3], MAVisto [4], etc. There are three major subproblems in the

Molecules 2017, 12, 2194; doi:10.3390/molecules22122194 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://github.com/seqan/seqan/tree/master/apps/sgip
http://packages.seqan.de/sgip/
http://packages.seqan.de/sgip/
http://dx.doi.org/10.3390/molecules22122194
http://www.mdpi.com/journal/molecules

Molecules 2017, 12, 2194 2 of 9

detection: (1) generating an ensemble of proper random networks; (2) exhaustively enumerating all
possible subgraphs in a real network and randomly generated networks; (3) grouping these subgraphs
into different categories by the topological structure ; (4) calculating the statistical significance
of each graph pattern. Our work mainly focuses on the third subproblem, which is a classical
graph canonization problem. Graph canonization is a fundamental problem in theoretical and
practical computer science. Its theoretical importance is derived from the relationship with the graph
isomorphism problem (GIP). In practice, graph canonization algorithms have many applications in data
mining [5,6] and pattern recognition [7,8]. Many of these algorithms were also used in chemistry [9–11].
Therefore, we are motivated to close the gap of computational complexity in the graph canonization
problem and develop efficient programs to solve practical problems.

For the graph canonization problem, the complexity of the best known algorithms are moderately
exponential exp(n

1
2+o(1)) for general graphs, sub-exponential time nn log n for tournaments [12],

polynomial time for bounded valence graphs [13], and o(exp(2n
1
2 log2 n)) for strongly regular

graphs [14]. An algorithm proposed in [15] can canonically label d-regular graphs in linear average
time cdn. An improved work [16] was done for strongly regular graphs, which can solve the graph

isomorphism problem in time nO(n
1
3 log n). A more recent work [17] stated that the graph isomorphism

for hypergraphs of rank k can be solved in moderately exponential time exp(Õ(k2√n)). In addition
to all these theoretical results, practical algorithms were also developed and applied in various
applications. One of the most notable and widely used tools is the nauty package [18], which employs
a canonical labeling approach to compute automorphism groups. A comprehensive introduction of
Mckay’s algorithm was described in [19]. However, this algorithm also suffered from an exponential
running time on a family of graphs constructed by Miyazaki [20].

Backtracking algorithms are also used to determine whether two general graphs are isomorphic
by adopting a heuristic function in the search tree, such as SD [21], VF [22] and VF2 [23]. A comparison
analysis of the performance of VF2 against VF, nauty, SD, and Ullman [24] was presented in [25].
A new symmetry-detection tool, saucy [26] was developed and tested on large structured graphs
generated by CNF formulas, which can outperform nauty by several orders of magnitude. A more
recent work, bliss [27], relying on the individualization and refinement scheme in the framework of
backtracking, can outperform existing tools in most cases.

Inspired by the concept of the distinguishing set presented in [14], we first introduce the
resolving set on graphs to solve the graph canonization problem based on backtracking approaches.
In this paper, our aim is to design a canonical labeling algorithm that can extend Babai’s algorithm to
general cases and make it possible to use in practice. Furthermore, we attempt to close the remaining
complexity gap of Babai’s algorithm [14] on strongly regular graphs with λ = µ + 1. It is noted that
our aim is to solve the problem in most graph cases, not in the worst case. As far as we know, all the
existing algorithms have exponential running time on some types of particularly designed graphs.

Our contribution in this work lies in the following three aspects: (1) we propose a novel
algorithm, sgip, for solving the third subproblem in the detection of network motifs; (2) compared to
previous algorithms, our approach is characterized by a tighter complexity bound of graph
canonization problem; (3) we implemented this novel algorithm in the distribution of SeqAn
library [28], which is comparable to the notable package nauty in practice.

2. Preliminary and Definitions

2.1. Subproblem of Grouping Subgraphs

Graph canonization is to find a canonical form for a given graph, which is still an open problem
that is neither known to be a polynomial complete nor an NP-complete problem [29]. To group a
set of subgraphs into different categories, it is necessary to find a canonical label for each category.
Given two graphs G = (V1, E1) and H = (V2, E2), graph canonization is to find a canonical labeling
function L : G→ S such that H is isomorphic to G if and only if L(G) = L(H), where G represents a

Molecules 2017, 12, 2194 3 of 9

set of graphs and S indicates a collection of strings. Obviously, the graph canonization problem (GCP)
is at least as hard as the graph isomorphic problem.

2.2. Definitions

The resolving set concept was first introduced in the literature [30] under the term locating set.
It is analogous to the distinguishing set in Babai’s straightforward algorithm. Assuming each node has
a unique position in a given graph, the position can be simply determined by a set of vertices in the
graph. This set of vertices is then referred to as a resolving set of this graph. Let d(u, v) be the distance
(i.e. number of edges in the shortest path) between any two vertices u, v ∈ V(G).

Definition 1. Given an ordered subset of vertices W = (w1, w2, · · · , ws) of V(G), the s-tuple r(v|W) =

(d(v, w1), d(v, w2), . . . , d(v, ws)) was referred to as the metric representation of v with respect to W. W is
called a resolving set if and only if r(v|W) 6= r(u|W) for distinct v and u.

Definition 2. The smallest resolving set of a graph G is called a minimum resolving set or metric basis of G,
denoted as MRS.

From the definition, we known that a MRS gives a unique metric representation for each vertex in
G. A graph can be seen as an expansion of W in multidimensional space, and all vertices of G have
their own unique coordinate positions in the expansion space. The metric dimension of G, denoted as
µ(G), is the cardinality of the minimum resolving set of G. For instance, Petersen graph shown in
Figure 1 can be determined by MRS (A, D, I), and its metric dimension is µ(G) = 3. Each vertex has
a unique metric representation with respect to metric basis (A, D, I). For example, r(B|W) = (1, 2, 2),
r(E|W) = (1, 1, 2) and r(C|W) = (2, 1, 1).

Figure 1. Metric dimension of the Petersen graph. Checking each node, we find that W = (A, D, I)
is one possible resolving set, and no smaller resolving set exists. Hence, the metric dimension of the
Petersen graph is µ(g) = 3.

Definition 3. A graph G is said to be k-regular if ∀v ∈ V(G), the degree of v is k. A k-regular graph G is
called a strongly regular graph with parameters (n, k, λ, µ) if all the following conditions hold: (1) G is neither
complete nor empty; (2) any two adjacent vertices of G have λ common neighbors; (3) any two nonadjacent
vertices of G have µ common neighbors.

3. Methods

To efficiently distinguish all subgraphs enumerated from biological networks, we propose a novel
canonical labeling function based on minimum resovling sets. By definition, each minimum resolving
set determines an ordered set of graph nodes. Given a graph, we exhaustively search all possible
minimum resolving sets and assign a lexicographical leader as its canonical form.

3.1. Canonical Labeling Function

Let W = (w1, w2, · · · , ws) be a resolving set for an input graph Γ = (VΓ, E). As shown in
the Definition 1, any pair of v, u ∈ VΓ has distinctive metric representation, r(v|W) 6= r(u|W).

Molecules 2017, 12, 2194 4 of 9

Therefore, by defining that r(v|W)≺ r(u|W) if there exists an integer j such that d(u, wj) < d(v, wj) and
d(u, wi) = d(v, wi) for all integer i < j, we can sort all the objects in VΓ by the metric representation
taking W into account. So, each resolving set uniquely determines an adjacent matrix AdjW(Γ).
Then, we give the definition that a canonical label is assigned by the lexicographical leader of all the
adjacent matrix yielded by all possible resolving sets. Mathematically, the canonical labeling function
can be written in

L(Γ) = min
�lex
{AdjW(Γ)|W ∈ Ω}

where Ω indicates the collection of minimum resolving sets for graph Γ. So, in order to compute the
canonical label, an exhaustive search should be performed on a list of all potential resolving sets.
Then, feasible object combinations should be selected and the optimal one should be found,
corresponding to the least lexicographical adjacent matrix. Obviously, the complexity of our algorithm
only depends on µ(Γ). Supposing |W| = k, we can easily draw a conclusion that all k! permutations
of W are resolving sets if W is a resolving set through Definition 1. Therefore, if there are C different
feasible combinations of vertices in all which yield minimum resolving sets, the number of minimum
resolving sets is |Ω| = C · µ(Γ)!. Let Γ be a strongly regular graph which is neither the union of disjoint
complete graph nor the complement of such a graph. Since the distinguishing set is equivalent to
the resolving set for strongly regular graphs, the metric dimension µ(Γ) is bound to b2

√
n log nc − 3

according to Babai’s complexity theory. However, this exhaustive approach also suffers in a large
computation for graphs with high metric dimension, such as complete graphs (µ(Γ) = n− 1) and stars
(µ(Γ) = n− 2). Therefore, it is impractical to use on general cases.

3.2. Extended Algorithm on General Cases

In order to find a canonical label for these graphs of high dimension, we introduced the concept
of parity nodes, also called twin vertices [31], to prevent redundant computation, because some distinct
resolving sets can deduce to identical adjacent matrix. For simplicity, notations are defined as follows
on general graphs. For the undirected case, N (v) refers to neighborhoods of node v, δ(v) indicates
degree of node v. For the directed case, we denoted with N+(v), N−(v), and N (v), respectively,
as in, out, and total neighborhoods of v; analogously with δ+(v), δ−(v), and δ(v), we denote it as in,
out, and total degree of v.

Definition 4. For undirected graph Γ = (VΓ, E), two vertices u, v ∈ VΓ are called parity nodes, and denoted
as u↔ v, iff it holds

N (u)\v = N (v)\u;

otherwise, they are non-parity nodes, denoted as u = v.

Definition 5. For directed graph Γ = (VΓ, E), two vertices u, v ∈ VΓ are called parity nodes and denoted as
u↔ v iff all of the following conditions are satisfied

δ+(u) = δ+(v)
δ−(u) = δ−(v)

N+(u)\v = N+(v)\u
N−(u)\v = N−(v)\u

otherwise they are non-parity nodes, denoted as u = v.

Parity nodes define an equivalence relation on VΓ. The reflexive property can be easily verified.
From the definition of parity nodes, we can easily figure out the symmetric and transitive properties:
(1) for any two vertices u, v ∈ VΓ, if u ↔ v, then (u, v) ∈ E ⇔ (v, u) ∈ E; (2) for any three vertices
u, v, w ∈ VΓ, if u↔ v and v↔ w then u↔ w. The equivalence relation defined by parity nodes is an
invariant for all types of graphs. So, the node set VΓ can be classified into a set of equivalent sets by parity

Molecules 2017, 12, 2194 5 of 9

nodes. The appearance of parity nodes is a major cause of high metric dimension in general graphs,
since nodes from one equivalent set cannot be distinguished by any other nodes through metric
representation except themselves. For instance, it is clear that all nodes of a complete graph Kq are
in one equivalent set. So, µ(Kq) = q− 1 that makes the search task intractable. To extend the former
algorithm working on general cases, we propose the concept of the improved resolving set that can assign
canonical label for input graphs with a smaller metric dimension than the resolving set.

For a graph Γ = (VΓ, E), suppose VS is a subset of VΓ such that for any equivalent set S in
VΓ it implies |VS ∩ S| = 1, W which is a subset of VS is called advanced resolving set if any two
elements vi, vj ∈ VS, it satisfies r(vi|W) 6= r(vj|W). Those with minimum cardinality are called
minimum advanced resolving sets, and the minimum cardinality is called the advanced metric dimension of
Γ, denoted as ν(Γ).

According to the definition, the improved resolving set only takes one node from each equivalent
set into account. Obviously, the advance metric dimension is smaller than the metric dimension.
Then, it concludes that the improved resolving set determines a unique order for a part of vertices
in VΓ. However, one may ask the question: does it work for the whole graph? In other words,
how does it determine a canonical label for a given graph? This question will be answered in two steps.
Before all that, it is notable that given a graph Γ with n vertices, Pn indicates the set of permutations
and ∀σ ∈ Pn, Adjσ(Γ) represents the adjacent matrix of graph Γ.

For a graph Γ and ∀σ ∈ Pn, if u, v ∈ VΓ and u ↔ v, then by inverting the order of u and v in
σ we obtain a new permutation τ such that Adjσ(Γ) = Adjτ(Γ). Let σx = v, σy = u, A = Adjσ(Γ),
and B = Adjτ(Γ). Then, τx = u and τy = v, and there must exist a permuted matrix P, such that
A = P−1BP. By Definition 5, we know that N+(v)\u = N+(u)\v. This implies that A(x, j) = A(y, j),
j /∈ {x, y}. Similarly, N−(v)\u = N−(u)\v implies that A(j, x) = A(j, y), j /∈ {x, y}. Additionally,
v↔ u implies A(x, y) = A(y, x), and clearly, A(x, x) = A(y, y) = 0, hence it follows A = PAP−1 = B.

Through the theorem stated above, the advanced resolving set is able to determine a canonical
label for input graphs. All of the permutations within the equivalent set yield the same adjacent
matrix. Hence, our algorithm for assigning a canonical label for a given graph Γ can be done in the
following four steps: (1) determine equivalent sets over VΓ; (2) calculate ν(Γ) on the graph Γ; (3) give
a brute force search over a set of non-equivalent nodes; (4) choose the optimal one which has the
lexicographical leader. This improved algorithm provides a better performance on these graphs with
rich equivalent sets. The advanced resolving set enables our algorithm to work on many types of graphs.

3.3. Complexity Analysis

As stated above, the complexity of the straightforward algorithm and the extended algorithm
primarily depend on metric dimension and advanced metric dimension, respectively. According to
Babai’s theorem [14], the complexity of his algorithm on strongly regular graphs is bounded by
o(exp(2

√
n log2 n)). Here, we proposed a statistical model revealing that a tighter bound of complexity

exists on strongly regular graph with µ = λ + 1.
Supposing ν(Γ) = s for a general graph Γ, it takes time O(n2) to compute equivalent sets, O(n2)

to calculate the distance matrix, and O(sn2) time to test whether it is a resolving set. So, the complexity
of our algorithm is simply bounded by o(ns+3). Since µ(Γ) ≤

√
n− 1 log n + 1 for strongly regular

graphs with µ = λ + 1, we set a new tighter bound o(exp(
√

n− 1 log2 n + 4 log n)) in recognizing this
kind of particularly designed graphs.

4. Results and Discussion

All of our experiments were carried out on a Linux PC with 2.2 GHz CPU, 4 G memory. The algorithm
was implemented in a package named sgip in the distribution of the C++ library SeqAn. The source code
of sgip is freely accessible at https://github.com/seqan/seqan/tree/master/apps/sgip and the binary
code at http://packages.seqan.de/sgip/.

https://github.com/seqan/seqan/tree/master/apps/sgip
http://packages.seqan.de/sgip/

Molecules 2017, 12, 2194 6 of 9

4.1. Tests on Simulated Data

To test the performance, our algorithm and the nauty algorithm were tested on a benchmark
database [32] containing 72,800 couples of simple graphs, of which 18,200 couples are isomorphic graphs
and 54,600 couples have subgraph isomorphism mapping among them. These graphs are in several
different categories, which include randomly connected graphs, regular meshes, bounded valence graphs,
irregular meshes, and irregular bounded valence graphs. In addition, 3400 new couples of isomorphic
random graphs were generated.

To provide a comparison of sgip with nauty, Figure 2 consists of five plots sketching the running
time of two packages over various kinds of graphs. Average running time was estimated by sampling
100 couples of general graphs for each density. Figure 2a,b give an overview of the growing trends of
sgip and nauty with respect to a density series. It is true that the running time of the two tools basically
depends on both the density and size (number of nodes) of given graphs. It is worth noting that sgip
took approximately 20 min to figure it out on graphs with 100 nodes and density of 0.9. We think that
this was caused by some special graphs of highly advanced metric dimension. Overall, all kinds of
tested general graphs could be distinguished in a reasonably short time, including both sparse and
dense graphs, in spite of a slightly longer running time than that of nauty in general usage. However,
there are also many solid pieces of evidences showing that sgip outperforms nauty in some other
cases. For instance, Figure 2c–e depicts plots of running time cost on mesh graphs versus graph size.
It is shown that nauty had a dramatic increase when the size of the mesh graphs got larger, and it
became impractical to use when the size of the 3D mesh graphs exceeded a certain limit (around
300). More seriously, on 4D mesh graphs, it was unable to compute when the size was only above 81.
In contrast, sgip was more than 100 times faster than nauty on 3D mesh graphs. The advantage of sgip
became increasingly conspicuous with the growth of size and dimension on mesh graphs. Apparently,
sgip is rather feasible for use in multi-dimensional mesh graphs.

1000

100

1

10

10,000

0.02

0.1

0.06
0.08

0.04

0.6

0.5

0.4

0.3

0.2

0.9

0.8

0.7

(a)sgip on randomly connected graphs.

0.1	

1	

10	

100	

0.02	 0.04	 0.06	 0.08	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

100	

200	

300	

(b)nauty on randomly connected graphs.

10

1

0.1

0.01

0.001

0.0001

(c) run-time comparison on 2D mesh.

10,000

1,000

1,000

100

1

10

(d) run-time comparison on 3D mesh.

Figure 2. Cont.

Molecules 2017, 12, 2194 7 of 9

10,000

1000

1296

100

1

10

0.1

(e) run-time comparison on 4D mesh.

Figure 2. Performance comparison of sgip and nauty on different types of graph. Each experiment
was tested on 100 couples of isomorphic graphs. (a,b) Horizontal axis represents the density of tested
graphs (density is the ratio of the number of existing directed edges and n(n − 1)), vertical axis
represents the running time of the responding tool. (c,d,e) Horizontal axis represents the number of
vertices of the tested graphs, and the vertical axis is run-time on mesh graphs.

4.2. Tests on Transcriptional Regulation Networks

To apply our algorithm in the detection of network motifs from transcriptional regulation networks,
we employed the ESU algorithm to search for all possible subgraphs in PPI networks. In the following step,
the program sgip was adapted to solve the subproblem of grouping subgraphs into different categories.
Our approach was performed on transcriptional regulation networks of Saccharomyces cerevisiae
and Escherichia coli. One thousand random graphs were generated for each species by randomly
switching any two interactions of the real network 10 ∗ |E| times, which can guarantee the same degree
distribution with the real network. Finally, p-value was used to measure the statistical significance
of each pattern. As shown in Table 1, we found three types of network motif which frequently occur
in real biological networks. These patterns are feed-forward loop, single input module, and pairs
of operons controlled by the same two transcriptional factors. All of their p-value scores were less
than 1× 10−13.These results indicate the practicability of our algorithm in the detection of network
motifs in transcriptional regulation networks.

Table 1. Statistically significant patterns appearing in transcriptional regulation networks. Pattern A
refers to a coherent feed-forward loop whose connections are x→y→z and x→z. Pattern B refers to
these subgraphs with single input module (>10 nodes). Pattern C refers to pairs of operons controlled
by the same two transcription factors.

Patterns Appearances in Real Network Appearances in Randomized Network p-Value

Yeast E. coli Yeast E. coli Yeast E. coli

A 65 34 10.2 ± 5 4.5 ± 2 0 0
B 122 79 33.5 ± 12 30 ± 6 8.2× 10−14 1.1× 10−16

C 396 203 108 ± 29 55 ± 10 0 0

5. Conclusions

In this paper, we proposed a novel graph canonization algorithm sgip based on resolving sets to
count all possible subgraphs of a large transcriptional regulation network. It has been proven that there
exists a tighter bound of metric dimension on strongly regular graphs with µ = λ + 1. The algorithm
was implemented in the distribution of C++ library SeqAn. To test the performance, both nauty
and sgip were performed on the same benchmark datasets with identical computational resources.
The result shows that sgip is efficient and practical to use in most general cases and outperformed
nauty in some particular designed graph structures. Applied in transcriptional regulation networks,
our approach successfully found three typical network motifs which were significantly more frequent
than those in randomized networks. This proves the efficiency of sgip in the detection of network

Molecules 2017, 12, 2194 8 of 9

motifs from large biological networks. Graph canonization problems are widely used in many other
scientific and engineering fields, such as pattern recognition, chemical structure, etc. Hopefully,
the practicability of our algorithm can benefit more researchers in their work and studies.

Acknowledgments: This project has been funded by the National Natural Science Foundation of China (Grant No.
61332014 and 61702420); the China Postdoctoral Science Foundation (Grant No. 2017M613203); the Natural
Science Foundation of Shaanxi Province (Grant No. 2017JQ6037); the Fundamental Research Funds for the Central
Universities (Grant No. 3102015QD013).

Author Contributions: Jialu Hu and Xuequn Shang conceived and designed the experiments; Jialu Hu performed
the experiments; Jialu Hu analyzed the data; Jialu Hu contributed analysis tools; Jialu Hu and Xuequn Shang
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Shen-Orr, S.S.; Milo, R.; Mangan, S.; Alon, U. Network motifs in the transcriptional regulation network of
Escherichia coli. Nat. Genet. 2002, 31, 64–68.

2. Wernicke, S.; Rasche, F. FANMOD: A tool for fast network motif detection. Bioinformatics 2006, 22, 1152–1153.
3. Kashtan, N.; Itzkovitz, S.; Milo, R.; Alon, U. Efficient sampling algorithm for estimating subgraph

concentrations and detecting network motifs. Bioinformatics 2004, 20, 1746–1758.
4. Schreiber, F.; Schwöbbermeyer, H. MAVisto: A tool for the exploration of network motifs. Bioinformatics

2005, 21, 3572–3574.
5. Washio, T.; Motoda, H. State of the art of graph-based data mining. ACM SIGKDD Explor. Newsl. 2003,

5, 59–68.
6. Rückert, U.; Kramer, S. Frequent free tree discovery in graph data. In Proceedings of the 2004 ACM

Symposium on Applied Computing, Nicosia, Cyprus, 14–17 March 2004; Association for Computing
Machinery (ACM): New York, NY, USA, 2004; pp. 564–570.

7. Conte, D.; Foggia, P.; Sansone, C.; Vento, M. Thirty years of graph matching in pattern recognition. Int. J.
Pattern Recognit. Artif. Intell. 2004, 18, 265–298.

8. Von der Malsburg, C. Pattern recognition by labeled graph matching. Neural Netw. 1988, 1, 141–148.
9. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and

encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36, doi:10.1021/ci00057a005.
10. McNaught, A. The IUPAC International Chemical Identifier: InChl—A New Standard for Molecular Informatics.

In Chemistry International; International Union of Pure and Applied Chemistry (IUPAC): Durham, NC, USA,
2006; Volume 28.

11. Hähnke, V.; Rupp, M.; Krier, M.; Rippmann, F.; Schneider, G. Pharmacophore alignment search tool:
Influence of canonical atom labeling on similarity searching. J. Comput. Chem. 2010, 31, 2810–2826.

12. Babai, L.; Luks, E. Canonical labeling of graphs. In Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, Boston, MA, USA, 25–27 April 1983; pp. 171–183.

13. Luks, E. Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci.
1982, 25, 42–65.

14. Babai, L. On the complexity of canonical labeling of strongly regular graphs. SIAM J. Comput. 1980, 9, 212.
15. Kucera, L. Canonical labeling of regular graphs in linear average time. In Proceedings of the 28th

Annual Symposium on Foundations of Computer Science, Los Angeles, CA, USA, 12–14 October 1987;
IEEE Computer Society: Washington, DC, USA, 1987; pp. 271–279.

16. Spielman, D.A. Faster isomorphism testing of strongly regular graphs. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory Of Computing, Philadelphia, PA, USA, 22–24 May 1996; Association
for Computing Machinery (ACM): New York, NY, USA, 1996; pp. 576–584.

17. Babai, L.; Codenotti, P. Isomorhism of Hypergraphs of Low Rank in Moderately Exponential Time.
In Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science,
Philadelphia, PA, USA, 25–28 October 2008; IEEE Computer Society: Washington, DC, USA, 2008;
pp. 667–676.

Molecules 2017, 12, 2194 9 of 9

18. McKay, B. Practical Graph Isomorphism. J. Symb. Comput. 1981, 60, 94–112.
19. Hartke, S.G.; Radcliffe, A.J. Communicating Mathematics: A Conference in Honor of Joseph A. Gallian’s 65th

Birthday, July 16–19, 2007, University of Minnesota, Duluth, Minnesota; Chapter Mckay’s Canonical Graph
Labeling Algorithm; American Mathematical Society: Providence, RI, USA, 2009; p. 99.

20. Miyazaki, T. Groups and computation II: Workshop on groups and computation. In Groups and Computation II
Workshop on Groups and Computation June 710 1995; Chapter the Complexity Of McKay’S Canonical Labeling
Algorithm; American Mathematical Society: Providence, RI, USA, 1997; p. 239.

21. Schmidt, D.C.; Druffel, L.E. A Fast Backtracking Algorithm to Test Directed Graphs for Isomorphism Using
Distance Matrices. J. ACM 1976, 23, 433–445.

22. Cordella, L.; Foggia, P.; Sansone, C.; Vento, M. Performance evaluation of the VF graph matching algorithm.
In Proceedings of the International Conference on Image Analysis and Processing, Venice, Italy,
27–29 September 1999; pp. 1172–1177.

23. Cordella, L.; Foggia, P.; Sansone, C.; Vento, M. An improved algorithm for matching large graphs.
In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-Based Representations in Pattern Recognition,
Ischia, Italy, 23–25 May 2001; pp. 149–159.

24. Ullmann, J.R. An Algorithm for Subgraph Isomorphism. J. ACM 1976, 23, 31–42.
25. Foggia, P.; Sansone, C.; Vento, M. A Performance Comparison of Five Algorithms for Graph Isomorphism.

In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-Based Representations in Pattern Recognition,
Ischia, Italy, 23–25 May 2001; pp. 188–199.

26. Darga, P.T.; Liffiton, M.H.; Sakallah, K.A.; Markov, I.L. Exploiting structure in symmetry detection for CNF.
In Proceedings of the 41st Annual Design Automation Conference, San Diego, CA, USA, 7–11 June 2004;
Association for Computing Machinery (ACM): New York, NY, USA, 2004; pp. 530–534.

27. Junttila, T.; Kaski, P. Engineering an efficient canonical labeling tool for large and sparse graphs.
In Proceedings of the 9th Workshop on Algorithm Engineering and Experiments and the 4th Workshop on
Analytic Algorithms and Combinatorics, New Orleans, LA, USA, 6 January 2007; pp. 135–149.

28. Döring, A.; Weese, D.; Rausch, T.; Reinert, K. SeqAn An efficient, generic C++ library for sequence analysis.
BMC Bioinform. 2008, 9, 11.

29. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness;
W.H. Freeman & Co.: New York, NY, USA, 1979.

30. Slater, P.J. Leaves of trees. In Proceedings of the Sixth Southeastern Conference on Combinatorics,
Graph Theory, and Computing, Boca Raton, FL, USA, 17–20 February 1975; pp. 549–559.

31. Carmen, H.; Mercé, M.; Pelayo, I.M.; Carlos, S.; Wood, D.R. Extremal Graph Theory for Metric Dimension
and Diameter. Electron. J. Comb. 2010, 17, R30.

32. Foggia, P.; Sansone, C.; Vento, M. A database of graphs for isomorphism and sub-graph isomorphism
benchmarking. In Proceedings of the 3rd IAPR-TC15 International Workshop on Graph-based Representations,
Ischia, Italy, 23–25 May 2001; pp. 176–187.

Sample Availability: Samples of the compounds are available from the authors.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary and Definitions
	Subproblem of Grouping Subgraphs
	Definitions

	Methods
	Canonical Labeling Function
	Extended Algorithm on General Cases
	Complexity Analysis

	Results and Discussion
	Tests on Simulated Data
	Tests on Transcriptional Regulation Networks

	Conclusions
	References

