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Abstract: The advances in biological technologies make it possible to generate data for multiple
conditions simultaneously. Discovering the condition-specific modules in multiple networks has great
merit in understanding the underlying molecular mechanisms of cells. The available algorithms
transform the multiple networks into a single objective optimization problem, which is criticized for its
low accuracy. To address this issue, a multi-objective genetic algorithm for condition-specific modules in
multiple networks (MOGA-CSM) is developed to discover the condition-specific modules. By using the
artificial networks, we demonstrate that the MOGA-CSM outperforms state-of-the-art methods in terms
of accuracy. Furthermore, MOGA-CSM discovers stage-specific modules in breast cancer networks based
on The Cancer Genome Atlas (TCGA) data, and these modules serve as biomarkers to predict stages of
breast cancer. The proposed model and algorithm provide an effective way to analyze multiple networks.

Keywords: multiple networks; specific modules; multi-objective optimization; network analysis

1. Introduction

Recent advances in high-throughput biological technologies enable the generation of genome-
wide profiles of many patients with various conditions, such as clinical stages, cancer subtypes and
time points. Additionally, the network has been proven to be powerful for describing and analyzing
the profile data, for which each vertex represents a gene and each edge corresponds to an interaction
between a pair of genes. For example, in gene co-expression networks [1], the weight on an edge
quantifies the correlation between a pair of genes on the basis of the gene expression profiles. There are
various biological networks, such as gene regulation networks [2], signal transduction networks [3],
protein–protein interaction (PPI) networks [4], disease networks [5] and gene regulation networks [6–8].

The accumulated biological networks provide an opportunity to explore the mechanisms of cells
via mining the graph patterns. Great efforts have been devoted to network analysis, for which the graph
patterns shed light on the structure–function relations in biology. For example, Taylor et al. [9] analyzed
the PPI network and demonstrated that the genes with large degrees (hub genes) play a critical role
in the prognosis of breast cancer. Among these graph patterns, module detection in networks has
been extensively studied because this plays an important role in revealing the mechanisms of cells.
For example, the dense subgraphs in protein interaction networks are very likely to be protein complexes,
which are a cornerstone of many biological processes, and together they form various types of molecular
machinery that perform a vast array of biological functions [10]. Furthermore, Ideker et al. [11] showed
that the pathways through which genes are differentially expressed between two cohorts of cancer
patients serve as biomarkers for predicting cancer metastasis.

Thus, great efforts have been devoted to discovering modules in networks [12–16]. These algorithms
mainly differ in their characterization of the module structure and their strategy of module discovery.
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Although these methods are promising in discovering modules in networks, they solely focus on
identifying a module in a network. In fact, each gene has multiple attributes, indicating that an interaction
cannot fully characterize the relation between a pair of genes. For example, proteins possess multiple
features, such as physical and co-localization features [17]. To this end, the interactome of proteins for
some organisms is up to several distinct network layers accounting for different genetic and physical
interactions, each layer containing thousands of protein–protein relationships [18]. The cancer deleterious
is dynamic, implying that multiple networks are required to model the progression of diseases, for which
each network corresponds to a specific stage.

Fortunately, many algorithms have been developed to extract modules in multiple networks [14–22].
For instance, Ma et al. [20,21] designed the M-Module algorithm to discover common modules within
multiple networks, which can trace the dynamics of pathways associated with cancer progression.
Kelly et al. [16] extracted the conserved modules in multiple networks for various species, which can infer
homologous proteins across species. These results demonstrate that discovering graph patterns within
multiple networks is promising.

Although great efforts have been devoted to common module detection, few attempts have
been made to extract the condition-specific modules in multiple networks, because it is difficult
to characterize the specific modules. To accurately depict the specific modules, we must balance
the specificity and modularity of modules. Currently, the available algorithms handle this issue
by separating the specificity and modularity. Specifically, for each condition, a specific network is
constructed for which the edge weight quantifies the specificity of the corresponding edge across all
the conditions (details are presented in the next section). Then, module search algorithms for the
constructed network, such as WGCNA [23], are employed to obtain the modules. The advantage of this
strategy is simplicity, as any module search algorithm can be directly applied. However, it is difficult
to achieve a good trade-off between the specificity and modularity because these are independent;
this is the major motivation of the present study.

To overcome this problem, an efficient heuristic algorithm is proposed for the specific modules
in multiple networks (SMMN), which discovers the condition-specific modules by considering
multiple networks without collapsing networks [24]. However, the SMMN algorithm transforms
the problem into a single objective optimization, which cannot fully characterize the condition-specific
modules in multiple networks. However, it has been shown that intelligent algorithms, such as genetic
algorithms (GAs) and particle swarm optimization (PSO), provide an effective strategy to address the
optimization problems. For example, Kowk et al. showed that PSO algorithms are effective and efficient
in image processing [25,26], industry applications [27] and graph clustering [28]. Knowles et al. [29]
demonstrated that the multiobjective optimization is promising in bioinformatics. Inspired by
the intelligent algorithms, we present a multi-objective genetic algorithm for condition-specific
modules (MOGA-CSM) for condition-specific modules in multiple networks. We demonstrate that the
MOGA-CSM outperforms state-of-the-art methods by using artificial and real-world multiple networks.

The rest of the paper is organized as follows: Section 2 proposes the mathematical model and
algorithm. The related materials are presented in Section 3. The experimental results are provided in
Section 4. The conclusion is discussed in Section 5.

2. Methods

In this section, we first discuss the mathematical model for the condition-specific modules and then
describe the MOGA-CSM. It is shown that the traditional algorithms cannot effectively characterize
the specificity of modules within multiple networks [24] (Figure 1a,b). The ultimate goal is to develop
a multi-objective GA for this issue (Figure 1c,d).
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Figure 1. A schematic example of the limitations of the available approaches for condition-specific
modules and the overview of the multi-objective genetic algorithm for condition-specific modules
(MOGA-CSM). (a,b) Limitation of the current algorithms: (a) Two networks under conditions A and B;
(b) The condition A-specific networks, for which the module is surrounded by the red dashed line,
are specifically obtained by the WGCNA algorithm. The connectivity of the condition A-specific
module obtained by the current algorithm in network B is even stronger than that in network A,
which contradicts intuition; (c,d) Overview of the proposed algorithm: (c) the MOGA-CSM transforms
the condition-specific module detection into a multi-objective optimization problem, for which the
specific modules can be obtained by maximizing the connectivity of modules and minimizing the
connectivity of modules in other networks; and (d) the connectivity of specific modules obtained by
MOGA-CSM.

2.1. Multi-Objective Mathematical Model

Let {1, 2, . . . , M} be a finite set of conditions, and let the attached subscript m be the value
of the variable under condition m. The multiple network G is defined as a sequence of networks
G = {G1, G2, . . . , GM}, where Gm is the network at condition m with a vertex set V and an edge set Em.
The adjacency matrix for G is defined asW = (wijm)n×n×M, where n is the number of genes in G (i.e.,
n = |V|) and wijm is the weight on the edge connecting the ith and jth gene in Gm.

Given network Gm = (V, Em), the module detection aims at obtaining a hard partitioning of V,
that is, {C1m, C2m, . . . , Ckm} (denoted by {Cim}k

i=1, such that Cim ∩ Cjm = ∅ if i 6= j and V = ∑i Cim),
where k is the number of modules. Given the partitioning {Cim}k

i=1 of Gm, an n× k index matrix X is
constructed to represent the memberships of genes such that columns correspond to modules and
rows correspond to genes. Element xij = 1 if the ith gene belongs to module Cjm and is 0 otherwise.
The connectivity of module Ctm in network Gι is quantified by the modularity Q [30]. According to [24],
the overall function of the condition-specific modules for the condition m is defined as
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max
X

F(X)

xij ∈ {0, 1}

s.t.
k

∑
j=1

xij = 1

n

∑
i=1

xij ≥ 1

(1)

where F(X) = (F1(X), . . . , Fm(X), . . . , FM(X)) are the multi-objective functions, for which
Fi(X) = Qi({Ctm}k

t=1) for i 6= m, and Fm(X) = 1−Qi({Ctm}k
t=1). Because this is an NP-hard problem,

we employ a heuristic algorithm to obtain the solution for Equation (1).
Differently from [24] using a single objective optimization problem, we present a GA to directly

address the multi-objective optimization problem in Equation (1). We first introduce the Pareto front for
solutions. Given two solutions X[1] and X[2] to the multi-objective optimization problem in Equation (1),
X[1] is dominated by X[2], denoted by X[1] ≺ X[2], if and only if

∀i : Fi(X[1]) ≤ Fi(X[2])∧ ∃i, s.t.Fi(X[1]) < Fi(X[2])

Instead, a nondominated solution is one for which an improvement in one objective requires
a degradation of the other(s). The set of these nondominated solutions is called the Pareto front.

2.2. The MOGA-CSM

GAs are a class of adaptive search methods inspired by natural evolution [31], which evolves
a population of individuals using the operators of crossover and mutation. Each individual represents
a candidate solution to the problem in Equation (1). The fitness value of an individual quantifies how
good it is with respect to the other solutions in the population. The crossover operator generates
an individual by combining two individuals in the population, while the mutation operator randomly
alters the individual. GAs, for example, the nondominated sorting genetic algorithm (NSGA-II), have been
successfully applied to multi-objective optimization problems (MOGA) [32]. Recently, Gu et al. [33]
proposed an innovative semi-active storey isolation system by utilizing the NSGA-II based on the
dynamic crowding distance (DCD), which significantly improved the performance. GAs have been
widely applied to network clustering [34].

Individual representation: The locus-based adjacency representation is adopted [35–37]. In this
graph-based representation, an individual is denoted by P = (g1, . . . , gn), where gi is one of the
neighbors of node i such that (i, gi) is an edge belonging to one of the modules of the graph.
The schematic example of representation for a graph (Figure 2a) is illustrated in Figure 2b, where the
two modules are encoded.

To decode the module within an individual, the disjoint set algorithm [38] is employed,
in which the modules correspond to a set of disjoint dynamic sets, where each set is represented
by a rooted tree. The root is defined as the representative, and the rest node i of the tree points only
to its parent parent(i). The level of node i is defined as the length of the shortest path connecting i to
the root, denoted by level(i). At the beginning, the decode procedure initializes each vertex as a set
(step 1); that is, the parent of i is itself and the level is 0. Then, for each edge (i, gi), it tracks the roots of
the tree(s) of i and gi, denoted by r1 and r2 (step 2). If the node i and gi belong to various trees, that is,
r1 ≤ r2, it merges the two trees as a new tree (step 3). Otherwise, it updates the levels of genes within
the tree (step 4).
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Figure 2. Illustration of procedure of the multi-objective genetic algorithm for condition-specific
modules (MOGA-CSM): (a) A network with seven vertices partitioned into two modules, {1, 2, 3, 4}
and {5, 6, 7}; (b) Procedure of MOGA-CSM: top panel corresponds to a locus-based representation
of the network on the left; middle panel contains the example of uniform crossover; bottom panel
represents the mutation.

Algorithm 1 Decoding Procedure

Input:
P: an individual of the population.

Output:
XP: the module structure of P.

1: For each node i ∈ V, set parent(i) = i and level(i) = 0.
2: For each edge (i, gi), find the roots of i and gi , denoted by r1 and r2, respectively.
3: If r1 = r2, update level(r2) = level(r1) + 1; else goto step 4.
4: If level(r1) > level(r2), update parent(r2) = r1; else update parent(r1) = r2.
5: return Disjoint sets.

Crossover operator: Given two parents in population P[1] = (g[1]1 , . . . , g[1]n ) and

P[2] = (g[2]1 , . . . , g[2]n ), the child S = (g1, . . . , gn) is generated by randomly selecting each component

from one of the parents; that is, gi is either g[1]i or g[2]i . This procedure is fulfilled by a random binary

mask: when mask is 0, gi = g[1]i ; otherwise gi = g[2]i . The advantage of the crossover is to maintain
node connections in the child individual.

Mutation operator: Given an individual P[1] = (g1, . . . , gn), the mutation operator randomly
changes the value of gi. To guarantee the connections, only the neighbors of node i are candidates for
replacing gi.

The pseudo-code of MOGA-CSM is presented in Algorithm 2. Given the multiple networks
G = {G1, G2, . . . , GM} and the condition m, MOGA-CSM generates a population of random individuals.
Specifically, given an individual P = (g1, . . . , gi), we randomly select one vertex from the neighbors of
vertex i and assign it gi. After the population is generated, it decodes the individuals of the population
to produce the partitioning and evaluates the objective values. The individuals are ranked according
to the Pareto dominance. The crossover and mutation operators are employed to create the new
population. Finally, the solutions in the Pareto front are returned, where each of them corresponds to a
trade-off among multiple functions. Therefore, a criterion is required to select one solution with respect
to another. We choose the solution with the maximum modularity for Gm on the basis of the fact that
the Pareto front has already selected the nondominated solutions that best satisfy all the functions.
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Algorithm 2 The MOGA-CSM

Input:
G: the involved multiple networks.
m: the specific condition.

Output:
{Ctm}k

t=1: the condition-specific modules.
1: Create a population of random individuals for Gm.
2: Decode each individual P of the population using the decoding procedure.
3: Obtain the rank of each individual according to nondomination rank.
4: Generate new offspring using the crossover and mutation operators.
5: Combine the parents and offspring into a new pool and rank them.
6: Select the individuals with lower rank for the next generation.
7: If the termination criterion is not satisfied, goto step 1; otherwise, goto step 8.
8: return {Ctm}k

t=1 with the maximum modularity.

2.3. Algorithm Analysis

In terms of space complexity, the space for the adjacency matrix of multiple networks is O(n2M).
For each network, the space for the population is O(np), where p is the size of the population. The space
complexity of the indicator matrix for modules is O(nkM), where k is the number of modules. Because
k� n, the total space complexity of the proposed algorithm is O(n2M).

In terms of time complexity, the MOGA-CSM makes use of NSGA-II to rank the non-dominance [34],
which requires time O(tp(log p)h−1), where t is the number of generations, p is the size of the
population, and M is the number of objective functions. Because MOGA-CSM optimizes M networks,
the time complexity is O(tp(log p)M−1). For each generation, the crossover needs O(n) time,
and mutation requires O(1) time. Furthermore, the decoding procedure requires O(n log n) time [38].
Thus, the total time complexity of MOGA-CSM is O(tp(log p)M−1n log n).

3. Materials

3.1. Statistical Significance of Specific Modules

The statistical significance of specific modules was computed on the basis of the null score
distribution of specific modules generated using randomized networks. Each network was completely
randomized 100 times by degree-preserved edge shuffling. To construct the null distribution for
specific module scores, we performed the MOGA-CSM on the randomized networks. Using the null
distribution, the empirical p-value of a specific module was calculated as the probability of the module
having the observed score or greater by chance; p-values were corrected for multiple testing using the
method of Benjamini–Hochberg [39]. An adjusted p-value of 0.05 was considered as significant.

3.2. Features for Support Vector Machine on Specific Modules

Given a module C, we normalize the expression level of each gene across all samples using
the z-score transformation [11], denoted by Expij for the ith gene and jth patient. For each sample j,
the activity score of the kth module is defined as the average gene expression of all genes within the
module, that is,

eC = ∑
i∈C

Expij/
√
|C| (2)

where |C| is the number of genes in C. For each patient sample, a feature vector is constructed by
all modules.

3.3. Artificial Networks

The artificial network is introduced in [30]. In each network, 128 nodes are grouped into 4 clusters
of equal size. Every node has an average degree of 16 and shares kout edges connecting nodes outside
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of the module to which it belongs. As parameter kout increases from 1 to 8, the detection of clusters in
the networks becomes increasingly difficult.

3.4. Breast Cancer Networks

The gene expression data for breast cancer was downloaded from the TCGA Data Portal, where the
clinical stage information for patients is also available. The RPKM (Reads Per Kilobase per Million mapped
reads) values are used. There are 715 samples across four stages (stage I: 119; stage II: 407; stage III: 189).

For each stage, we construct a gene co-expression network, where the edge weight is defined as the
absolute value of the Pearson correlation of the gene expression profiles of a pair of genes. To remove
indirect correlation due to a third gene, we use the first-order partial Pearson correlation coefficient
(PCIT package [40]). The breast cancer networks contain 6643 genes and about 2.6 million edges.

4. Results

To fully test the performance of the proposed algorithm, we compared MOGA-CSM with the
available algorithms. We note that the current approaches differ greatly on their strategy of how
to extract the modules from the constructed condition-specific networks. Thus, we adopted three
well-known algorithms, including the WGCNA [23], spectral clustering (SPEC) [41] and nonnegative
matrix factorization (NMF) algorithms [42]. The reason that these algorithms were selected was that
they achieve excellent performance in detecting modules in networks.

Two types of networks, both artificial and real biological networks, were employed for
a comparison among various algorithms. The artificial networks were adopted to test the accuracy
of the MOGA-CSM, and the breast cancer networks were used to determine the the applicability
of the proposed algorithm in discovering condition-specific modules in real networks with a strong
background. The parameters for the MOGA-CSM were set as follows: crossoverrate = 0.8 and
mutationrate = 0.2. The reason was that in general, a high crossover rate and low mutation rate are
suggested in GAs. Furthermore, we set elitereproduction = 10% of the population size, and the number
of generations as 500 (how the parameters affect the performance is discussed in the following section).

4.1. Benchmarking Performance of the Artificial Networks

In the artificial networks, we constructed two networks by combining a network with a known
module structure (Materials) and a size-matched random network. Therefore, the modules in the
benchmark network were specific modules, because the random network was not expected to exhibit
a modular structure. To quantify the performance of the algorithms, the modularity Q was used.

Prior to giving the performance of the algorithms, we first investigate the effects of the parameters
for MOGA-CSM on the artificial networks. The results are shown in Figure 3A, where the crossover
rate ranges from 0.1 to 0.8 with a gap 0.1 and the mutation rate ranges from 0.2 to 0.8 with a gap 0.2.
It can be observed that they do not present high variation.

We compare the WGCNA, SPEC, NMF and MOGA-CSM algorithms on the artificial networks
in terms of accuracy, as shown in Figure 3B. From this, we conclude that the performance of the
algorithms decreases dramatically as kout increases from 1 to 8, because the module structure becomes
fuzzy as kout increases. For example, the Q value is 0.7 when kout = 1, and it is 0.22 when kout = 8.
Furthermore, the proposed algorithm has a similar performance to NMF when kout ≤ 4, while it
outperforms NMF if kout > 4. Furthermore, both MOGA-CSM and NMF are superior to the SPEC and
WGCNA algorithms. The SPEC algorithm is inferior to others, indicating that the spectral features are
insufficient to characterize the specific modules.
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Figure 3. Performance of the compared algorithms on artificial multiple networks. (A) Parameter effect:
modularity for different combinations of crossover and mutation rates for the artificial networks;
(B) Performance as a function of the amount of noise in simulated networks, where modularity Q is used
as the performance measure. Shown here are average Q values of 50 runs of each method at each noise
level; (C) Performance as a function of the number of networks in the artificial networks, where Q is used
as the performance measure.

As shown in Section 2, the available methods are sensitive to the number of networks.
Therefore, we investigated whether the proposed algorithm is also sensitive to the number of networks.
We increased the number of random networks from 2 to 10 and tested the performance of various
algorithms, as shown in Figure 3C. From this, we conclude that the performance of NMF, SPEC,
and WGCNA decreases dramatically as the number of networks increases. However, the MOGA-CSM
is not sensitive to the number of networks. The results demonstrate that the proposed algorithm is
more accurate and robust than state-of-the-art approaches in discovering condition-specific modules.

4.2. Benchmarking Performance of the Breast Cancer Networks

On the basis of the clinical stages for breast cancer, we constructed a gene co-expression network
for each stage (Materials). By applying the MOGA-CSM to the breast cancer networks, we obtained
27 (stage I), 5 (stage II) and 9 (stage III) specific modules (Figure 4A).

The homeostasis has been proven to be a critical complex for breast cancer diagnosis and
therapy [43]. Remarkably, the MOGA-CSM obtained a stage I-specific module that was significantly
enriched by homeostasis (p-value = 1.6 × 10−2, corrected by BH test), as shown in the top panel of
Figure 4C. There were six genes (ANTXR2, FHL1, AVPR2, PLEKHM3, PKD2, and CNRIP1), for which
genes PKD2, FHL1 and AVPR2 had the function homeostasis. To check whether the module was stage
I-specific, we calculated the connectivity of the modules in all three networks, as shown in the bottom
panel of Figure 4C. The density of the module in the stage I network was 0.4, while the density in the
stage II and III networks was 0.13. These results met our expectation, because the connectivity was
strong in the stage I network and weak in others.

Then, we checked the functions of the genes within the stage-specific modules, as shown
in Figure 4B. We found that the genes within stage I-specific modules were more likely to be
enriched by the signaling pathways (red bars), such as the tumor necrosis factor-mediated signaling
pathway (p-value = 2.7 × 10−2, corrected by BH test), the receptor guanylyl cyclase signaling pathway
(p-value = 4.5 × 10−2, corrected by BH test), and the endothelial growth factor receptor signaling
pathway (p-value = 4.7 × 10−2, corrected by BH test). These signaling pathways are critical for breast
cancer [44].

To check the specificity of the modules obtained by MOGA-CSM, we compared the distribution
of densities of modules for each network. The results are shown in Figure 4D, where it is indicated
that the connectivity of the specific modules can capture the specificity, because the modules are
well connected in the corresponding network and weak in others. For example, the density of stage
I-specific modules is more significant than that of modules in networks at stage II and III (stage I vs.
stage II: p-value = 4.6 × 10−6; stage I vs. stage III: p-value = 3.1 × 10−5, Student’s t-test).
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Figure 4. Performance of the compared algorithms on the TCGA breast cancer networks. (A) Piechart
for the number of stage-specific modules obtained by the multi-objective genetic algorithm for
condition-specific modules (MOGA-CSM); (B) the barplot for the functions of genes within specific
modules, where the red color indicates the genes within stage I-specific modules and green indicates
the genes within stage II- and III-specific modules; (C) a schematic example of a stage I-specific module
obtained by the MOGA-CSM, where the top panel is the topological structure of the module and
the bottom panel contains the density of the module in each network; (D) distribution of density of
stage-specific modules in each network; (E) comparison of various algorithms in terms of distribution
of density of specific modules obtained by algorithms in each network.

Finally, we compared the WGCNA, SPEC, NMF and MOGA-CSM algorithms in terms of
discovering the condition-specific modules by applying them to the breast cancer networks.
We compared the distribution of densities of the modules obtained for each algorithm, which are
shown in Figure 4E. From these, it is easy to conclude that the MOGA-CSM is significantly better than
the others, as the density of the modules obtained by MOGA-CSM was much higher than that of others.
For instance, in the stage I network, the means of the density of the modules were 0.22 (MOGA-CSM),
0.17 (NMF), 0.19 (SPEC), and 0.12 (WGCNA) (MOGA-CSM vs. NMF: p-value = 6.8× 10−4; MOGA-CSM
vs. SPEC: p-value = 3.2 × 10−4; MOGA-CSM vs. WGCNA: p-value = 5.5 × 10−6, Student’s t-test).
These results imply that the proposed algorithm is more accurate than state-of-the-art approaches for
the specific module detection in biological networks.

4.3. Stage-Specific Modules Serve as Biomarkers to Predict Breast Cancer Stages

Taylor et al. [9] showed that the hub genes are predictive for breast cancer diagnosis.
Ideker et al. [11] demonstrated that the modules can serve as biomarkers to predict metastasis of breast
cancer. Thus, we hypothesized that the stage-specific modules could also be used to predict the stages
of breast cancer.
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For a baseline comparison, we compared the classification accuracy by using the following feature
sets: stage-specific modules generated by SPEC, NMF, WGCNA and MOGA-CSM. We trained the
support vector machine (SVM) classifier to perform multi-class classification. The SVM employs the
accuracy (percentage of patients that are corrected classified) to measure performance. The results of
TCGA breast cancer data by using five-fold cross-validation are presented in Figure 5A. The stage-
specific modules obtained by SMMN were more discriminative than the others. Specifically,
the MOGA-CSM had a significantly higher accuracy than WGCNA (73.3% vs. 69.9%). The WGCNA
algorithm had a similar performance to NMF, and they outperformed the other methods. These results
demonstrate that the stage-specific modules obtained by MOGA-CSM capture the specificity of
pathways for breast cancer progression.
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Figure 5. Subtype-specific methylation modules improve the accuracy of breast cancer stage
classification using 50 independent five-fold cross-validations. (A) Classification accuracy of breast
cancer stages using different feature sets, including the stage-specific modules obtained by various
algorithms. Accuracy is defined as the number of patient samples correctly classified. The Y-axis is the
accuracy and the error bar is for the standard deviation; (B) External validation by training on TCGA
data and testing on external data.

To further validate the performance of various algorithms, we evaluated the performance of the
SVM classifiers by using external data (GSE5874). We trained the SVM classifier on the TCGA data and
tested on an external microarray dataset. The consistent results indicated that the performance was not
due to the hidden confounding factors in the TCGA dataset (Figure 5A). The accuracy of MOGA-CSM
was 48.4%, while the accuracy was 44.3%, 42.3%, 37.1%, and 34.3% for NMF, WGCNA, SPEC and
differentially expressed genes (DG), respectively. The results show that the proposed algorithm is
better than the available approaches in terms of discovering specific modules in multiple networks.

4.4. Benchmarking Performance of Cancer Co-Methylation Networks

To fully explore the performance of the proposed algorithms, we compared these algorithms by
using the cancer subtype long non-coding RNA co-methylation networks [45]. There are four subtypes
of breast cancer, Luminal A, Luminal B, Her2 and Basal-like. For each subtype, there is a corresponding
long non-coding RNA gene co-methylation network.

The results are shown in Figure 6, where the distributions of the graph density of the obtained
subtype-specific modules are presented. From these panels, it is easy to assert that the proposed
method significantly outperforms the others, because the modules are more specific in terms of density
for almost all the subtypes. Therefore, we assert that the proposed method is promising in discovering
the condition-specific modules.
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Figure 6. Performance of the compared algorithms on the multiple subtype co-methylation networks
for long noncoding RNA networks. Distribution of density of subtype-specific modules in each subtype:
(A) Luminal A; (B) Luminal B; (C) Her2 and (D) Basal-like.

5. Discussion and Conclusions

Recent technology has enabled the possibility of generating multiple genomic profiling of
biological samples for different stages or time points. However, the systematic integrative analysis
of multiple-stage (or time-point) data associated with disease progression or cell differentiation for
discovering biological relevant patterns is currently lacking. The accumulated multiple networks
provide an opportunity to explore the underlying mechanisms of diseases. Although great efforts
have been devoted to multiple networks analysis, few attempts have been made to extract the specific
modules in multiple networks.

The available algorithms first construct a specific network by compressing the multiple networks.
Then, they discover modules in the constructed networks. The strategy is criticized for its low accuracy,
because of the separation of specificity and modularity. To overcome this problem, we characterize the
specific modules on the basis of the topology of multiple networks rather than the constructed network,
which provides a better characterization of modules. Then, a multi-objective optimization model is
developed for specific module detection in multiple networks. Finally, a multi-objective optimization
algorithm is designed to obtain specific modules. The results demonstrate that the proposed algorithm
is better than the current approaches. We wish to point out several unique insights: (i) the integrative
analysis of multiple networks without collapsing them is promising, which is overlooked by the
available methods; and (ii) the biologically inspired computational approaches, such as GAs, provide
an efficient tool to extract the graph patterns in multiple networks.

For further research, we see ample opportunities to improve on the basic concept of the
MOGA-CSM. First, although this study uses breast cancer as a proof-of-principle, it is flexible to
any diseases, as it is a generalized framework for any cohort of patients with various conditions.
Second, data integration might further expand the applicability of the proposed model and algorithm.
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