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Abstract: Cyclodextrins (CDs) can endow electrospun fibers with outstanding performance
characteristics that rely on their ability to form inclusion complexes. The inclusion complexes can
be blended with electrospinnable polymers or used themselves as main components of electrospun
nanofibers. In general, the presence of CDs promotes drug release in aqueous media, but they
may also play other roles such as protection of the drug against adverse agents during and after
electrospinning, and retention of volatile fragrances or therapeutic agents to be slowly released to
the environment. Moreover, fibers prepared with empty CDs appear particularly suitable for affinity
separation. The interest for CD-containing nanofibers is exponentially increasing as the scope of
applications is widening. The aim of this review is to provide an overview of the state-of-the-art
on CD-containing electrospun mats. The information has been classified into three main sections:
(i) fibers of mixtures of CDs and polymers, including polypseudorotaxanes and post-functionalization;
(ii) fibers of polymer-free CDs; and (iii) fibers of CD-based polymers (namely, polycyclodextrins).
Processing conditions and applications are analyzed, including possibilities of development of
stimuli-responsive fibers.

Keywords: electrospinning; cyclodextrin; polycyclodextrin; nanofiber; polypseudorotaxane; controlled
release; regenerative medicine; filtration membrane; stimulus-responsive fiber; post-processing; fast
dissolving amorphous products

1. Introduction

Over the last decades, electrospinning has been recognized as a cost-effective and simple technique
for producing continuous fiber structures from a wide variety of starting materials [1,2]. It relies on the
application of a strong electric field to a pumped viscous polymer solution to induce its flight toward a
collector whereas the solvent is being evaporated [3,4]. Importantly, the diameter of electrospun fibers,
ranging from micro- to nanometers, provides mats of high surface area to volume ratio compared
with other fiber production techniques. The capability of electrospinning to produce fibrous structures
with high porosity and interconnected pores, as well as the malleability of obtained fibers conforming
structures like sheets or tubes make electrospun fibers to find a broad spectrum of biomedical and
non-biomedical applications [1–7]. The properties of electrospun fibers can easily be tailored to every
particular purpose by tuning the composition (blending a variety of organic and inorganic materials
in aqueous or organic solvents), electrospinning parameters, needle and collector configuration, and
post-processing to endow them with further functionality [2,3,8,9]. Therefore, electrospun systems are
useful in fields such as environmental engineering, defense and security, biotechnology, healthcare,
biomedicine, drug delivery, filtration, nanocatalysis and nanoelectronics [7,10,11]. In the biomedical
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field, fibers of large-specific surface area with composition mimicking the extracellular matrix (ECM)
serve as scaffolds for engineering of vascular, nerve, ligament and bone tissues and for wound
healing [12–16]. Mats showing porous sheet-like structure can absorb wound exudates, protect from
bacterial infections, maintain a moist environment and allow gas permeation [1,10,12]. Furthermore,
the fibers can encapsulate large amounts of growth factors, enzymes and drugs useful for diverse
therapies [1,4,14,16–19]. Alternatively, electrospun systems have been widely used as filtration
membranes for biotechnology and environmental engineering applications. Fiber-based filters are
effective size exclusion membranes for air and wastewater depending on their pore size, which should
be adjusted to the fineness of particles to be filtered [20–22]. Electrospun membranes can be further
functionalized by attachment of ligand molecules for affinity separation [21,23].

A wide range of materials have been successfully employed in electrospinning, from polymers to
composites, semiconductors and ceramics [11]. Electrospinning requires compounds of certain high
molecular weight with chains that can entangle when dispersed in the solvent (concentration above the
critical overlapping value) and thus produce fibers when the electrical field-induced flow causes solvent
evaporation; for this reason, polymers have been extensively electrospun [3,4,24–26]. The polymer
nature and concentration influence viscosity, which is a critical solution parameter correlated with chain
entanglement. According to polymer choice, the concentration should be regulated in order to obtain
sufficient chain entanglement for fiber formation. Solution properties (viscoelasticity, conductivity,
surface tension) are also determined by the solvent [3,4,27]. Variables of the process (applied electric
field, tip-to-collector distance and flow rate of feeding) and the environment (temperature and
humidity) have an impact on fibers formation and their morphology too [4,7,27].

The choice of the polymer is an important point for obtaining fibers that can meet the demands of
each application. Usually, synthetic polymers exhibit reproducible behavior during electrospinning
and provide highly uniform nanofiber mats. Hydrophobic synthetic polymers allow for the preparation
of mats that maintain their structure upon contact with aqueous media, and thus they have been
extensively tested for liquid filtration [3,7,8,23]. Biopolymers or naturally-occurring polymers have
the advantages of being digestible or bioerodible and more biocompatible and less immunogenic
than synthetic polymers. Thus, electrospun systems of proteins, polysaccharides, DNAs and lipids
are attracting a great deal of attention in the food industry, cosmetic, biomedical and pharmaceutical
fields [28]. Nevertheless, biopolymers have drawbacks such as poor mechanical properties and
processing characteristics. Biopolymers act as thickening agents due to the ability of the chains to
interact through weak but redundant multiple interactions that favor entanglement and even gel
formation and, therefore, they confer high viscosity to solutions. Blends of different polymers have
been extensively studied to overcome these limitations and to generate materials with desirable flow,
surface tension and conductivity properties. Additionally, combinations of natural and synthetic
polymers endow the fibers with the mechanical strength and cell affinity of the synthetic and natural
polymers, respectively [3,8].

Although not polymers, cyclodextrins (CDs) exhibit appealing features when incorporated into
electrospun fibers. These cyclic oligosaccharides form inclusion complexes with a variety of molecules,
modifying the apparent solubility and stability of the guest molecule and, once incorporated into a
polymer matrix, they can help tuning the release rate [29–33]. CDs and their inclusion complexes appear
as an attractive tool for the design of fibrous materials with advanced performance. As an example,
CDs forming inclusion complexes with volatile substances (e.g., essential oils such as geraniol, menthol
or vanillin) can notably prolong the shelf-life of active food packaging based on electrospun mats [33];
whereas mats containing free CDs allow an efficient removal of hydrophobic organic molecules or
heavy metals from air or solutions by forming of inclusion complexes [34]. Progress in this field is
rapidly evolving with novel ways of incorporating CDs and exploiting their self-assembling properties
into electrospun mats being explored.

The aim of this review is to provide an overview of the state-of-the-art on CD-containing electrospun
mats. The information has been classified into three main sections: (i) fibers of mixtures of CDs and
polymers, including polypseudorotaxanes and post-functionalization; (ii) fibers of polymer-free
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CDs; and (iii) fibers of CD-based polymers (namely, polycyclodextrins). Processing conditions and
applications are analyzed, including possibilities of development of stimuli-responsive fibers.

2. Electrospun Mats of Mixtures of Cyclodextrins and Polymers

Electrospun systems containing CDs have been produced from native CDs or derivatives with a
variety of polymers that provide electrospinnability to the blend and adequate properties to the mat for
every specific application. It should be noted that in addition to the short size of CDs, the fact that some
derivatives bear ionic groups (e.g., sulfobutylether-β-cyclodextrin, SBEβCD) hinders the formation of
continuous fibers due to repulsive forces among the CDs; the presence of a shielding polymer being
mandatory [35]. Conversely, non-ionic CDs have been shown able to improve the electrospinnability
of ionizable polymers, such as chitosan [36].

2.1. Electrospining Methods for Cyclodextrin Incorporation

The basic principle of electrospinning involves the application of a strong electric field to a metallic
capillary tube (needle) where solution is pumped from a reservoir (syringe). The pendant droplet,
held by surface tension forces, is electrified and deformed into a conical shape known as Taylor cone.
When the applied electric force is increased above a threshold value needed to overcome the surface
tension forces, a jet is ejected from the Taylor cone tip toward a grounded collector while the solvent
is evaporated. Entanglements prevent breaking of jet that is subjected to stretching and bending
instabilities. Thereby, solid fibers are deposited in the collector forming a non-woven mat [3,18,21].
A schematic setup of electrospinning is shown in Figure 1.
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and capillaries for preparation coaxial fibers (b).

The electrospinning method may determine the location and accessibility to CD units in
the obtained electrospun fibers, which has important consequences for potential applications.
Most research aims to keep the CD cavities available to form inclusion complexes, although a few
publications have dealt with the use of CDs as crosslinking agents in nanofibers [37]. As an example,
electrospun fibers of an acrylic polymer and β-cyclodextrin (βCD) were post-processed under heating
to induce dehydration of carboxylic groups of the polymer and esterification with hydroxyl groups
of βCD. This post-spinning modification caused the fibers to become water-insoluble, which in turn
facilitated their full development of reproducible pH-responsive swelling behavior [37,38].

2.1.1. Uniaxial Processing

Blends of Cyclodextrins and Polymers

Within different electrospinning methods for mat manufacturing, the uniaxial electrospinning
process is commonly used due to its relative simplicity. Electrospun mats are directly produced via
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electrospinning of solutions of pristine CDs or their derivatives solely or forming inclusion complexes
with active agents, in the presence or absence of a polymer [5,39]. CD-containing fibers have been
mostly electrospun with polymers that supply the required entanglements to facilitate uniform fiber
formation [24,40]. Active ingredient (e.g., drug) distribution through electrospun fibers depends on
its solubility in the processing solution. For example, incompatibility phenomena among the drug,
the polymer and the solvent lead to non-homogeneous distribution of the active agent, which usually
migrates to the fibers surface (flocculation effect), resulting in burst release when the fibers enter into
contact with an aqueous medium [5,17,19,41]. Interestingly, inclusion complex formation facilitates
homogeneous guest molecule distribution through electrospun fiber matrix. Remarkably, poorly
water-soluble active agents in the form of inclusion complexes can remain soluble and stable in aqueous
medium and thus allow for the use of water as solvent. Despite more homogeneous distribution,
reports on mats prepared with inclusion complexes usually show faster release of guest molecules
compared to mats in which the active ingredient is free. Hydrophilic CDs facilitate the wetting of
the mats and the penetration of water into the fibers, favoring fibers erosion/dissolution, whereas
the complex formation increases the concentration of diffusible species within the mats [19,42,43].
All these processes favor active ingredient release. For example, faster release of naproxen from
poly(ε-caprolactone) (PCL) nanofibers was observed when the fibers contained inclusion complexes
compared to those prepared with the free drug [42]. Polyvinyl alcohol (PVA) nanofibers loaded
with curcumin-βCD inclusion complex have been reported to be more uniform and smooth than
those with free curcumin, which was ascribed to the higher solubility of the inclusion complex in
the preparation solvent [43]. Increasing the inclusion complex/PVA ratio, faster drug release was
observed, which can be explained by the role that the concentration gradient plays on diffusion-driven
release [44]. Conversely, release profiles from free curcumin/PVA fibers evidenced faster release
from fibers prepared with low contents in curcumin, which facilitates drug solution in the polymer
matrix and subsequent diffusion [4,19,43]. Similar results were reported for polylactic acid (PLA)
nanofibers containing free gallic acid or gallic acid-hydroxypropyl-β-cyclodextrin (HPβCD) inclusion
complexes when the release was evaluated in water or water/ethanol 90:10 v/v media [45]. Overall,
inclusion complex enables the incorporation of higher contents in hydrophobic drug and accelerates
drug diffusion from fibers once in aqueous medium [46]. For example, polyvinyl pyrrolidone (PVP)
electrospun mats containing betel oil or clove oil forming complexes with HPβCD released 50%
herbal oils in the first minute into contact with saliva and were shown useful for the treatment
of Candida-associated denture stomatitis [47]. Fast dissolution fibers may also find applications as
extemporaneous oral liquid formulations adapted to age requirements of pediatric and geriatric
populations [48], or as sublingual formulations for treatment of acute disorders [49]. In addition to
the improvement in dissolution rate, CDs are known to enhance drug permeation through biological
membranes [50,51]. Simultaneous analysis of dissolution and permeation of aripiprazole from
electrospun fibers of polyethylene glycol (PEG) and SBEβCD, using µFlux apparatus, revealed that
the ultrafast complete dissolution of the drug from the fibers considerably enhances the flux through
biological membranes compared to free drug and physical mixtures [35]. Moreover, permeation
through the membrane attenuated the rate of drug precipitation in the supersaturated medium; drug
molecules transferred to the receptor compartment lowered drug concentration in the dissolution
(donor) compartment resembling the in vivo situation [35].

It should be noted that inclusion complex formation itself facilitates the electrospinning of highly
volatile compounds, and also their retention into the fibers during storage or when exposed to
the air [52]. Thereby, electrospun mats containing CDs have been investigated for encapsulation of
flavors, fragrances and essentials oils that exhibit antibacterial, antioxidant or insecticidal properties,
with potential application in active food packaging, cosmetics and medical devices [33,53–55].
Encapsulation in the CD cavities also provides protection against photodegradation [55], oxidation
and thermal instability [56]. These advantages have prompted the use of electrospun mats also as skin
nutrient-loaded facial masks [7,57]. Different formulations based on hydrophilic PVA and methylated
βCD mats with ascorbic acid, retinoic acid, collagen and gold nanoparticles have been successfully
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prepared. Average fiber diameter was smaller in formulations including gold nanoparticles due
to that the increase in charge density led to higher jet elongation [57]. Electrospun fibers can be
wetted just immediately before application on the skin which is an advantage in terms of stability
compared to pre-wetted conventional cotton face masks. Also the electrospun fibers fit better to the
face topography and have a larger surface area in contact with skin, which favors skin permeation of
the loaded compounds.

Several approaches have been tested to prolong drug release in aqueous medium [3,4,12].
Silk fibroin has been investigated to confer sustained release to electrospun fibers containing CD
inclusion complexes of tamoxifen for local breast cancer therapy [58]. The fibers were made insoluble
in water by spraying with ethanol or acetone, which decreased drug release rate. Electrospun fibers of
hydroxypropyl cellulose (HPC) and HPβCD-sulfisoxazole complexes showing fast drug dissolution
were sandwiched between two mats of PCL nanofibers (applying mild pressure for an efficient
wrapping) [59]. The hydrophobic PCL barrier allowed more sustained sulfisoxazole release. Similarly,
electrospun fibers of poly(ethylene oxide) (PEO), γCD and catalase were prepared in between PCL
mats [60]. Compared to γCD/catalase physical mixture encapsulated in the PCL nanofibers, the
sandwiched system showed higher stability but lower activity because of the slowed diffusion
through the immobilizing fibers. Emulsion electrospinning has been shown suitable to provide
sustained release of hydroxycamptothecin from fibers prepared from a water-in-oil emulsion of
HPβCD-hydroxycamptothecin in poly(DL-lactic acid)-poly(ethylene glycol) (PELA) dispersion [61].
Importantly, the encapsulated drug retained unaltered the lactone ring required for the antitumoral
activity. Intratumoral implantation studies evidenced that the drug-loaded fibers notably attenuated
tumor growth once the tumor had already developed. Also, the fibers can exert protective effects
against tumor development when implanted in a tissue before the tumor cells arrive [61] (Figure 2).
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Figure 2. Release profiles of hydroxycamptothecin from poly(DL-lactic acid)-poly(ethylene glycol)
(PELA) electrospun fibers containing (a) 1% or (b) 3% drug and various proportions in hydroxypropyl-
β-cyclodextrin (HPβCD; 0.5% circles; 1.5% triangles; 2.5% squares), in phosphate buffer saline
(PBS) medium at 37 ◦C. Tumor growth inhibition of H22 tumor bearing mice after intratumoral
implantation of saline solution, free hydroxycamptothecin (HCPT) solution, blank PELA fibers and
hydroxycamptothecin-loaded PELA fibers (c), and tumor development after injection of H22 tumor
cells in a tissue pretreated with blank PELA fibers and hydroxycamptothecin-loaded PELA fibers or
non-pretreated (control) (d). Reprinted from [61] with permission from Elsevier.
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Uniaxial electrospun mats are also being investigated for sensing applications because the
large surface area could improve the sensitivity of sensors and biosensors [1,6,21,62]. For example,
multi-functional polyvinylidene fluoride (PVdF) membranes were developed with electroactive and
electrocatalytic properties due to the presence of carbon nanotubes and Au particles [63]. Nanofibers
were prepared from blends of PVdF with multiwalled carbon nanotubes (CNTs) and inclusion
complexes between βCD and 4-aminothiophenol. βCD facilitated the dispersion of CNTs in the
electrospinning blend, while 4-aminothiophenol favored gold nanoparticle nucleation onto the fiber
surface during a post-spinning process. CNTs made the dispersions more conductive and thinner fibers
were obtained. These electrospun mats were shown to be useful for the preparation of electrocatalytical
electrodes. Also the incorporation of silver nanoparticles has received great attention because their
catalytic and antiseptic properties make them applicable for sensing, wound healing and other
biomedical uses [64–66]. Electrospun PVA/HPβCD nanofibers incorporating Ag nanoparticles
were successfully electrospun [65]. PVA acted as reducing and stabilizing agent for obtaining of
nanoparticles and further as polymeric matrix for electrospinning. HPβCD was also incorporated as
additional reducing and stabilizing agent, which prevented nanoparticles aggregation and enhanced
antimicrobial effects. Electrospun fibers containing high amounts of HPβCD notably inhibited the
growth of Escherichia coli and Staphylococcus aureus [65]. Immunosensor chips have been fabricated
by deposition onto gold-coated glass of poly(acrylic acid) (PAA)-βCD fibers that were heated for
inducing the cross-linking of the polymer with βCD, which in turn improved the stability of the chip.
Finally, the fibers were coated with multilayers of PAA and poly(diallyldimethylammonium chloride)
(PDADMAC) and then decorated with monoclonal antibodies. Compared to chips without electrospun
fibers, the prepared chips provided enhanced sensor signal [67].

Regarding separation applications, electrospun membranes require the functionalization
with capturing agents (ligands) for the entrapment of specific molecules (affinity membranes).
Functionalization with CDs allows for an efficient removal of hydrophobic organic molecules or
metal ions from air or liquid solvents through inclusion complex formation [7,21,34,68–71]. Polymer
component has to be carefully chosen for each specific application in order that the electrospun mat
does not collapse or dissolve in contact with the filtered medium. For example, electrospun membranes
of hydrophobic poly(methyl methacrylate) (PMMA) blended with βCD derivatives were developed to
capture phenolphthalein from aqueous medium, preserving membrane integrity for long time [70].
For air filtration, affinity membranes were also produced using polymers of diverse nature or even
polymer-free CD-containing mats [34,72]. Nylon 6,6 nanofibers incorporating βCD could efficiently
capture toluene from vapors [72], while polystyrene mats containing α-, β- or γCD efficiently sorbed
Cu(II) ions [73].

Polypseudorotaxanes

It should be kept in mind that when a polymer is mixed with CDs in a liquid solvent it
is quite likely that the CD units thread along the main chain or side chains of the polymer
forming polypseudorotaxanes [74,75]. The polypseudorotaxanes can assemble forming supramolecular
structures in which crystalline-type interactions among threaded CDs play a relevant role; the
arrangement of the polymer chains in the formed 3D network notably modify the properties of the
system [76,77]. Polypseudorotaxanes can be formed accidentally or in purpose in the electrospinning
solvent and they can remain intact in the fibers or be destroyed during electrospinning. Interactions
between PEG and αCD were the first in being described [78] and widely applied for many
purposes [51,79]. Nevertheless, the crystalline structure of αCD-PEG polypseudotoxane assemblies is
so strong that electrospinning is not possible. To solve this problem these polypseudorotaxanes were
diluted in PEO solutions at various weight ratios. Aqueous dispersions containing the same weight
percentage in PEO and in polypseudorotaxanes (4% w/v each) led to nanofibers of 160 nm with few
beads. Large beads were observed for higher polypseudorotaxane concentration because of deficient
stretching of the assemblies during electrospinning [80]. αCD can also thread along PCL altering the
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crystallization of the polymer, which is not modified by γCD [77,81]. Interestingly the interaction can be
tuned using mixtures of solvents that differ in solubilization capability for αCD and PCL. Free CDs in
non-stoichiometric complexes improve the hydrophilicity of PCL nanofibers [82]. Similarly to the case
of αCD-PEG polypseudotoxane, stoichiometric αCD-PCL polypseudotoxanes can be incorporated into
electrospun mats after dilution in PCL solutions. For example, 10% polypseudorotaxanes in 14% PCL
solution rendered bead-free fibers with remarkably higher tensile strength than PCL solely fibers [83].
It was shown that non-stoichiometric αCD-PCL polypseudotoxanes dispersed in chloroform retain
their structure in the electrospun fibers, but when a chloroform/dimethylformamide mixture is used
αCD abandons the polymer (Figure 3). The former fibers showed improved mechanical properties [84].
Similarly electrospinning of βCD and PCL mixtures in chloroform:dimethylformamide solvent led
to nanocomposites having βCD cavities free and unthreaded by PCL and thus suitable for removing
wound odors [85]. Direct electrospinning of αCD-PCL polypseudotoxanes was also possible using
DMSO/CH2Cl2 (3/2, v/v); the obtained fibers exhibited the reactive hydroxyl groups of CDs at the
surface available for further conjugation with active substances. These electrospun fibers performed
quite well as scaffolds for cell growth and osteogenic differentiation in vitro, showing enhanced
production of collagen [86].
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dispersed in chloroform (CFM) led to fibers that retained the polypseudorotaxane structure, while
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the individualized components. Reprinted with permission from [84]. Copyright (2016) American
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Post-spinning Modifications

Drug release kinetics from electrospun fibers is predominantly regulated by diffusion although
it can also be controlled via degradation/erosion of the matrix [44,87]. Post-spinning modifications
such as chemical or plasma treatments may help to prolong the drug release process [5,88]. In that
way, diffusivity could depend on the concentration gradient across the fibers or an external barrier or
on the degradation/erosion of a coating layer [44].

For separation purposes, post-spinning modifications are necessary to guarantee the durability of
CD-containing fibers and the maintenance of the filtration efficiency [68]. Owing to the solubility of
CDs in aqueous media, leaching of CD molecules takes place during filtration in aqueous media [89].
Cross-linking strategies to obtain water-insoluble CD-based materials have been widely developed
to produce networks for environmental applications [90], and these strategies or related ones can be
applied to CD-containing electrospun mats to endow them with improved physical and chemical
stability. As an example, sericin/βCD/PVA fibers were prepared incorporating also citric acid as
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crosslinking agent to the blend solution [91]. Incubation of the mats at high temperature triggered
the cross-linking process that resulted in water-insoluble nanofibers able to sorb methylene blue
from aqueous solutions. Desorption in ethanol and recycling studies showed that the removal
efficiency of the mats was maintained after five cycles. Similarly, PVP/βCD fibers cross-linked
with glutaraldehyde were shown useful for dye removal from aqueous medium [92]. Importantly,
cross-linked nanofibers have been evaluated as imprinted materials for specific recognition of target
substances. For example, βCD performed as functional ligand for the capture of naringin that was used
as a template. To prepare the imprinted nanofibers the complexes were added to polyvinyl butyral and
hexamethylene diisocyanate (used as a cross-linker). The nanofibers that also included an inorganic
pore forming agent showed improved binding properties and higher specificity than the non-imprinted
nanofibers [93]. In the biomedical field, fibers of PVA and CDs (αCD or HPβCD) internally cross-linked
with divinyl sulfone to immobilize the CDs, and then post-crosslinked with glutaraldehyde to make
the fibers water insoluble, were proved to be useful for the sorption of N-acyl-L-homoserine lactone
(AHL) (Figure 4). Thus, the fibers may decrease the concentration of this Quorum Sensing signal
altering the communication among bacteria (e.g., Serratia marcescens), inhibiting biofilm formation and
thus attenuating the virulence [94], as observed for other CD-functionalized systems [95].
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Figure 4. (a) Inhibition of Quorum Sensing-dependent prodigiosin production by CD-immobilized
electrospun fiber mats; (b) Inclusion complex between CD and N-acyl-L-homoserine lactone (AHL);
(c) Image of non-woven fiber mat electrospun from polyvinyl alcohol (PVA) solution. Reproduced
from [94] with permission of The Materials Research Society of Japan.

Surface functionalization with CDs of preformed fibers is an attractive approach to prepare
mats with highly accessible CD cavities on the surface. In blend electrospinning, CD molecules are
embedded into the fibers, which can limit their functionality especially for trapping purposes. Surface
immobilization allows increasing the amount of CD molecules that could interact with surrounding
media [96,97]. Covalent bonding should avoid the leaching process, even when CD-functionalized
mats are exposed over an extended period to pollutants-containing water [88]. Mixtures of PLA with
amino polyhedral oligomeric silsesquioxanes (POSS-NH2) as functional group have been electrospun
followed by grafting reaction with βCD via monotosylation [98]. Click chemistry has been applied
for the immobilization of azide-βCDs onto propargyl-terminated cellulose acetate fibers, showing
enhanced affinity for phenantrene [99]. Although covalent immobilization of CDs provides more
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efficient functionalization for long term; weaker adsorption of CDs onto the fibers has been also
investigated [97,100]. For example, polystyrene fibers containing polydopamine can bind βCD through
hydrogen bonding. Such functionalized material showed improved ability to remove contaminants
from alkaline solutions [96]. Alternatively, the coating of preformed nanofibers via in situ cross-linking
of cyclodextrins has been investigated. Polyester nanofibers were soaked in α-, β- or γCD solutions
(10%) also containing citric acid (10%) and sodium hypophosphite (1.2%) for 3 h at 50 ◦C. Then, the
nanofibers were oven-dried at high temperature (105–180 ◦C) [100]. The water-insoluble coating caused
a decrease in surface area and porosity of the mats, but increased the effective capture of phenantrene
from water. Nevertheless, there exist also some studies were the advantages of the binding of CDs to
the fibers surface are not so clear. For comparative purposes regarding ability to capture formaldehyde,
polyacrylonitrile fibers were prepared either with βCD entrapped in the fibers or with a coating of
βCD cross-linked with citric acid [101]. Compared to fibers prepared without βCD, incorporation of
βCD in either form caused an increase in fiber diameter and a decrease in surface area of mats, which
was more remarkable in the case of the coating. Coated fibers adsorbed less formaldehyde and more
slowly than βCD-embedded fibers, which has been ascribed to the role that free hydroxyl groups in
βCD may play in the interaction with the guest molecules and also to the less rigid conformation of
the non-coated fibers [101].

2.1.2. Coaxial Processing

Core-shell structures can be prepared applying coaxial electrospinning, which is similar to uniaxial
processing except for the nozzle configuration [17,102]. The setup (Figure 1b) involves the use of inner
and outer capillary tubes concentrically placed and fed with two different solutions [3,5,25]. Core-shell
structures are mainly applied as sustained drug release systems in biomedical field. Active agents
hosted into core region are protected by a shell that prevents or reduces the initial burst phenomenon
and regulates drug release pattern [3,5]. Drug release depends on the thickness and integrity of core
and shell layers. Nevertheless, it should be taken into account that miscibility of solvents used during
electrospinning can cause a redistribution of substances from the core to the shell layer, leading to
release profiles similar to those recorded for uniaxial electrospun fibers [3,17,44]. Despite possibilities
that coaxial technique can open for sustained release, very little work has been done using CDs. As an
example, electrospun fibers have been prepared with a core of PCL and a shell of polypseudorotaxanes
of four-branches PCL and αCD. The polypseudorotaxanes adopted a nanoplatelet arrangement, which
was maintained after electrospinning. The core-shell structure ensured that the hydroxyl groups of
αCD were available on the fibers surface for subsequent immobilization of active substances [103].

3. Electrospun Mats of Polymer-Free Cyclodextrins

Preparation of fibers from compounds of low molecular weight is a challenge due to lack
of chain entanglements compared to polymers; nevertheless, several works have reported on the
obtaining of fibers based on phospholipids [104] and gemini surfactant [105]. Owing to the intriguing
self-assembling features of CDs, strong efforts to prepare fibers using CDs as the only structural
component have been made. CDs did not entangle but relevant intermolecular interactions can
be established [106,107]. Natural CDs form nano- and micrometric aggregates via intermolecular
hydrogen bonding; the aggregates size grows with increasing of CD concentration [108,109]. Readers
interested in self-assembling of CDs are referred to excellent reviews elsewhere [109]. In some cases,
the presence of guest molecules even promotes the aggregation process. This unique feature of CDs
allows for obtaining electrospun fibers from highly concentrated CD-containing solutions [110,111].
Examples of electrospun nanofibers produced from CDs solely or forming inclusion complexes are
summarized in Table 1, with indication of solvent used and concentration required for obtaining
bead-free nanofibers [110–120].
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Table 1. Composition of bead-free electrospun mats obtained from CDs or CD-inclusion complexes (IC) and their applications.

CD or IC Concentration (% w/v) Solvents (v/v) Application Reference

αCD 160
10% NaOH [110]

βCD 150

βCD 60 DMF/1-ethyl-3-methylimidazolium acetate (3:7 or 4:6) [111]

γCD 140 DMSO/Water (50:50) Entrapment volatile organic compounds
(aniline, toluene) [112]

αCD 12.5
1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) [113]βCD 12.5

γCD 7.5

MβCD
140; 160 Water

[114]

140; 160 DMF
160 DMAc

HPβCD
160 Water
120 DMF
120 DMAc

HPγCD
160 Water
125 DMF
125 DMAc

HPβCD
160 Water

Entrapment of volatile organic
compounds (aniline, benzene) [34]

120 DMF

HPγCD
160 Water
125 DMF

HPβCD 61.4 DMF [115]

(HPβCD; HPγCD; MβCD)-Geraniol-IC 200 Water Prolonged releasing systems with
antioxidant and antibacterial activity [116]

(HPβCD; HPγCD)-Triclosan-IC 160 Water Wound dressings with
antibacterial activity [117]

HPβCD-Vanillin-IC
160 Water

Food or pharmaceutical products [118]

120 DMF, DMAc

HPγCD-Vanillin-IC
160 Water
125 DMF, DMAc

MβCD-Vanillin-IC
160 Water
160 DMF, DMAc

HPβCD-4-aminoazobenzene-IC 130 Water Drug delivery, sensors [119]

HPβCD-diclofenac 45 Ethanol Fast dissolving solid complexes [120]

DMAc, dimethylacetamide; DMF, dimethylformamide; DMSO, dimethylsulfoxide; HPβCD, hydroxypropyl-β-cyclodextrin; HPγCD, hydroxypropyl-γ-cyclodextrin; MβCD,
methyl-β-cyclodextrin.
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Association among CD molecules occurs through intermolecular hydrogen bonding which limits
the interaction with water and causes a decrease in solubility [108,109]. Nevertheless, electrospinning
of αCD [110], βCD [110,111] and γCD [112] has been carried out quite similarly to polymeric
systems through a careful selection of the solvent nature and the CD concentration that provide
solutions of adequate viscosity and conductivity for obtaining bead-free nanofibers. At low CD
concentrations, destabilization of electrified jet occurs due to insufficient aggregation, producing
bead structures (Figure 5a,b). As CD concentration increases, the aggregates grow in number and
size. Thereby, sufficient intermolecular hydrogen bonding and adequate conductivity prevent jet
breakage, and bead-free nanofibers can be produced (Figure 5c,d). Rheological properties of native CD
solutions shift from Newtonian behavior to viscoelastic solid behavior as the number of aggregates
increases [110,111,115]. Interestingly, optimal concentration to obtain bead-free fibers was slightly
lower for βCD (150%) than for αCD (160%) when 10% NaOH aq. was used as solvent [110].
The addition of urea caused the de-aggregation of the CDs and a notable decrease in the viscosity of
the solution, which in turn led to beaded fibers or just beads (Figure 5e).
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Solvent used affects aggregates formation, viscosity, surface tension and conductivity. Therefore,
required CD concentration and electrospinning parameters for fiber formation fluctuate hugely in
function of the solvent. For example, fibers can be obtained from βCD solution at 60 wt.% concentration
in an ionic liquid/N,N-dimethylformamide (DMF) mixture [111], whereas 150 wt.%βCD was necessary
in 10 wt.% NaOH aqueous solution [110]. Increase of DMF ratio in the system decreased viscosity and
allowed more elongation of the jet at the same repulsive forces; thus, thinner fibers were obtained.
In general, low surface tension solutions are preferable for electrospinning because high surface
tension promotes jet instability, but low surface tension does not facilitate fiber formation from low
molecular weight solutions [7,18]. The use of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as solvent
allowed for producing bead-free fibers of native CDs at much lower concentration; namely, 12.5 wt.%
αCD and βCD, and 7.5 wt.% γCD [113]. HFIP improves solubility of CDs and readily evaporates
during electrospinning, facilitating the formation of crystalline assemblies of CDs.

Derivatives of native CDs are more soluble but less prone to self-aggregate because of the
replacement of hydrogen atoms in hydroxyl groups [108,121]. Nevertheless, electrospun mats
containing methyl-β-cyclodextrin (MβCD) [114], HPβCD [34,114,115] and HPγCD [34,114] have



Molecules 2017, 22, 230 12 of 21

been successfully produced using a variety of solvents. In a comparative study, electrospinning
of these three CD derivatives was evaluated using water, DMF and dimethylacetamide (DMAc) as
solvents [115]. The electrospinning procedure was similar to those implemented for native CDs or
polymeric systems, and fiber diameter was influenced by the nature of both the solvent and the CD
derivative used. In all cases, aggregates size was larger in DMAc, followed by DMF and water; and
hence viscosity required for fiber formation was reached at lower concentration in DMAc, which also
provided the thicker fibers. Nevertheless, only DMF allowed for obtaining bead-free fibers with the
three derivatives. Polymer-free CD-containing mats usually exhibit fast dissolution rate upon contact
with an aqueous medium, and certain applications may require post-spinning modifications in order
to that the fibrous structure can be preserved.

Removal of pollutants from air may be a promising application for fibers prepared with native
or derivative CDs solely [34,112]. Combination of large specific surface area of nanofibers (compared
to the respective CD powders) and ability to capture volatile organic compounds forming inclusion
complexes makes these mats to be very effective for air filtration (Figure 6). Entrapment of aniline
and benzene by electrospun HPβCD and HPγCD mats produced from aqueous or DMF solutions
has been investigated [34]. HPγCD mats captured lower amount of organic molecules than HPβCD
mats because HPγCD has bigger cavity size and less stable interactions can be established with the
volatile compounds.
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Figure 6. HPβCD solution (a) was electrospun to obtain polymer free-fibers (b). The obtained mats
(c) were cut as pieces of 100 mg and exposed to vanillin and benzene vapors inside a desiccator (30 cm
diameter × 30 cm height) for 12 h. Reproduced from [34] with permission from Elsevier.

From a practical point of view, electrospinning of inclusion complexes has recently been pointed
out as an alternative to freeze-drying for the preparation of amorphous solid complexes that can
be rapidly reconstituted in aqueous medium before injection [120]. For this purpose, inclusion
complexes of HPβCD with diclofenac sodium were electrospun by means of either uniaxial or
blowing-assisted electrospinning. Electroblowing is based on the coaxial nozzle configuration but
blowing air stream through the outer capillary tube. Using this later technique, clogging of needle
produced by rapid solvent evaporation is avoided and more uniform fibers are obtained [62,120].
The effective drug amorphization during the electrospinning process and the large surface area of the
fibers promoted faster dissolution rate of electrospun and electroblown systems. Reconstitution in
water of complexes produced by freeze-drying was slower due to recrystallization during the freezing
step. Thus, nanofibers can be suitably reconstitutable solids for drug delivery applications.
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Electrospinning of polymer-free inclusion complexes allows higher loadings of active agents than
those observed for polymeric matrices. However, incorporation of higher amount of drug may disturb
the electrospinning process due to changes in solution properties such as conductivity [7]. Electrospun
mats from HPβCD, HPγCD and MβCD forming inclusion complexes with vanillin (Table 1) achieved
vanillin loadings between 9 and 12% (w/w) [118]. Previously, PVA nanofibers including inclusion
complexes of native CDs with vanillin attained a maximum content in vanillin of 5% (w/w with respect
to polymer) [33]. Fiber diameter was thinner for electrospun mats containing inclusion complexes
compared to those without active agent due to higher conductivity of solutions [114,118]. Similar
results have been reported for geraniol [116], triclosan [117], and 4-aminoazobenzene [119] forming
complexes with CD derivatives. Interestingly, the fibers formed from HPβCD and 4-aminoazobenzene
showed UV-responsiveness due to that the trans-cis isomerization of the azobenzene group causes
a change in the conformation of the guest molecule that determines whether it can be encapsulated
in the CD cavity or not (Figure 7) [119]. 4-Aminoazobenzene forms inclusion complexes in the trans
state (relaxed conformation) whereas the cis isomer (formed after UV irradiation) is too bulky. When
the UV radiation was applied during electrospinning of HPβCD/4-aminoazobenzene 1:0.7 mol/mol
complexes, the decomplexation process caused an increase in the diameter of the fibers. When the
UV radiation was applied after mats formation, the fibers notably modified their topography [119].
More complex photo-responsive behaviour was observed for fibers prepared with βCD coupled with
an spiropyran derivative and optionally containing poly(methacrylic acid) to modulate the rate of
isomerization [122]. The fibers showed reversible photo-responsive behavior under cycles of visible
light-UV radiation.
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4. Electrospun Mats of Cyclodextrin-based Polymers

Poly(cyclodextrins) prepared through cross-linking of native or derivative CDs or polymerization
of CD monomers have been also explored as components of electrospun nanofibers. Both uniaxial
and coaxial fibers were prepared from a cyclodextrin-epichlorhydrin polymer (polyCD) and
poly(methacrylic acid) (PMAA) to investigate the ability to sustain the release of propranolol [123].
The fibers were cured at 170 ◦C for 48 h to trigger crosslinking formation between the two polymers,
which caused the mats to become insoluble in water. Uniaxial fibers prepared with PMAA/polyCD
(80:20 w/w) and (60:40 w/w) released 30% and 35% loaded drug in 8 h, while PMAA solely fibers
released 100% dose in 15 min. Coaxial fibers having a core of polyCD-propranolol complexes and a
shell of PMAA showed even more sustained release, although the entire dose may be not released [123].
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In a different approach, uniaxial fibers of polyCD-fluconazole inclusion complexes mixed with PCL
or PVP were provided with a hydrophobic coating of poly(hexamethyldisiloxane) (polyHMDSO)
for modulating fibers dissolution and drug release rate [124]. The coating was applied under mild
conditions plasma polymerization. Differently to non-coated mats that rapidly released the whole
amount of drug, polyHMDSO-coated fibers extended drug release for 24 hours. HMDSO-coated
fluconazole-loaded fibers efficiently inhibited in vitro the growth of Candida albicans [124].

Anionic HPβCD-citric acid polymer has been mixed with chitosan to form polyelectrolyte
complexes that can render insoluble nanofibers with antibacterial activity [125]. Triclosan first formed
inclusion complexes with the polyHPβCD and then the complexes in solution were mixed with
chitosan. As controls chitosan fibers containing triclosan or common HPβCD:triclosan complexes were
prepared. The obtained fibers were cured at 90◦C for 4 h to make them less water-soluble. Fibers
prepared with the chitosan-polyHPβCD polyelectrolyte complexes swelled less both at pH 5.5 and 7.4
and released the drug more slowly than the controls. Importantly, the polyelectrolyte complexes fibers
showed superior antimicrobial activity against S. aureus and E. coli for prolonged periods of time [125].

5. Conclusions and Future Outlook

Electrospun mats can be endowed with a variety of useful functions by means of the incorporation
of CDs. These small oligosaccharides can fully develop their ability to form inclusion complexes either
embedded into the nanofiber matrix or once grafted onto the fibers surface. In most cases, incorporation
of CDs aims to modulate drug release by forming inclusion complexes with a target drug, usually
accelerating the dissolution process in water or delaying the release of volatile compounds to the air.
Interestingly, novel applications are being envisioned for polymer nanofibers containing free CDs in
which the CDs can play a variety of roles, ranging from simple cross-linking agents in mats including
stimuli-responsive polymers, to ligands for specific recognition for affinity separations, or to building
blocks that can facilitate the construction of mat-by-mat assemblies that may result in ad hoc scaffolds
or self-healing materials [126]. Two main advances in the field can be pointed out. The first one refers
to the feasibility of using CDs (or their inclusion complexes) as the only component of electrospun
fibers, which is opening novel ways of formulation of fast dissolving amorphous solids for several
administration routes. A better knowledge about the self-aggregation mechanisms of CDs into the
common solvents used for electrospinning as well as the repercussions of such aggregation on critical
properties such as viscoelasticity and conductivity should pave the way for a formulator-friendly
design of the electrospun conditions (avoiding toxic solvents and harsh pH or temperature conditions).
The second advance refers to the possibilities that CD polymers may offer if a good combination of
chain entanglement and complex formation is attained. Differently to the case of polypseudorotaxanes
that only allow using the hydroxyl groups of CDs to immobilize target substances, CD polymers can
make use also of the cavities acting as multipurpose tools. In this regards, design of CD polymers
that can be electrospinnable by themselves should be still improved. Overall, electrospun nanofibers
appear as an excellent format for the fully exploitation of the amazing multifaceted tasks that CDs
can develop.

Acknowledgments: This work was supported by MINECO (SAF2014-52632-R), FEDER, and Xunta de Galicia
(ED431C 2016/008; 2016 GRC GI-1645).

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

AHL N-acyl-L-homoserine lactone
CD cyclodextrin
CFM chloroform
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CNTs multiwalled carbon nanotubes
DMAc dimethylacetamide
DMF dimethylformamide
DMSO dimethylsulfoxide
ECM extracellular matrix
HCPT hydroxycamptothecin
HMDSO hexamethyldisiloxane
HFIP 1,1,1,3,3,3-hexafluoro-2-propanol
HPC hydroxypropyl cellulose
HPβCD hydroxypropyl-β-cyclodextrin
HPγCD hydroxypropyl-γ-cyclodextrin
MβCD methyl-β-cyclodextrin
PAA poly(acrylic acid)
PBS phosphate buffer saline
PCL poly(ε-caprolactone)
PDADMAC poly(diallyldimethylammonium chloride)
PEG polyethylene glycol
PELA poly(DL-lactic acid)-poly(ethylene glycol)
PEO poly(ethylene oxide)
PLA polylactic acid
PMAA poly(methacrylic acid)
PMMA poly(methyl methacrylate)
POSS-NH2 amino polyhedral oligomeric silsesquioxanes
PVA polyvinyl alcohol
PVdF polyvinylidene fluoride
PVP polyvinyl pyrrolidone
SBEβCD sulfobutylether-β-cyclodextrin
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