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Abstract: The utilization of renewable biomass resources to produce high-value chemicals by
enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion
of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel
magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion.
The cross-linked aggregates could purify and immobilize enzymes in a single operation, and could
then be combined with magnetic nanoparticles (MNPs), which provides easy separation of the
materials. The immobilized cellulase showed a better activity at a wider temperature range and
pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized
cellulase performed successful magnetic separation and retained 74% of its initial activity when
carboxylmethyl cellulose (CMC) was used as the model substrate. Furthermore, the structure and
morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy
(FTIR) and scanning electron microscopy (SEM). Moreover, the immobilized cellulase was shown to
hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four
cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential
for biomass applications.
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1. Introduction

Lignocellulosic biomass, the most abundant and bio-renewable resource on the Earth, has attracted
worldwide attention with the limitation of fossil fuels and environmental concerns [1]. One of the
most important steps for the application of biomass is the hydrolysis of cellulose to glucose, after
which the glucose can be used for the production of ethanol or other chemicals as energy sources [2,3].
However, it remains a challenge due to the complicated and robust structure of lignocellulosic biomass.
Most lignocellulosic biomass mainly contains 35%–50% of cellulose, 20%–35% of hemicellulose, and
10%–25% of lignin [1]. Hemicelluloses are branched polymers, which consist of a range of different
sugars through glycosidic bonds and are embedded in cellulose elementary fibrils. Lignin is a
complicated heterogeneous polymer of phenylpropane units linked by ether and carbon-carbon
bonds [4]. Obviously, these polymers in the biomass have been cited as barriers and impact catalysts’
access to cellulose. Moreover, cellulose is a linear and syndiotactic polymer of β-D-glucose, and its
β-1,4-glycosidic bonds are tightly linked via intra- and intermolecular hydrogen bonds, hindering
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the accessibility of the catalysts to the chains and simultaneously making cellulose insoluble in
conventional solvents. Hence, it is important to develop an effective method to make the catalysts
accessible to cellulose and break the chemical bonds to obtain glucose [5].

Many approaches have been studied to obtain water-soluble sugars by using homogeneous and
heterogeneous catalysts such as liquid acids [6,7], solid acids [8–11], and enzymes [12,13]. Though
the acid catalyzed hydrolysis is efficient for glucose production, there are still several problems to
be solved, such as unavoidable side-reactions, harsh conditions, product purification, equipment
corrosion, waste effluent treatment, and so on. Therefore, it is necessary to seek a greener and more
efficient method for converting cellulose to glucose [1]. Among these methods, hydrolysis catalyzed
by cellulase has shown an attractive application potential, since it has mild reaction conditions, high
yield conversion, and is environmentally friendly [14]. Cellulase is a common collective term for
a mixture of three different enzymes, namely endoglucanases (EC 3.2.1.4), cellobiohydrolases (EC
3.2.1.91), and β-glucosidases (EC 3.2.1.21). These enzymes work synergistically to produce glucose
which is subsequently fermented into ethanol. Nevertheless, there are several challenges facing
commercially viable enzyme catalyzed applications, such as low stability, high enzyme costs, and
barriers to scale up [15]. Enzyme immobilization, the localization of enzymes within a defined matrix
or support, is a well-established technology, which promisingly improves enzyme properties such
as stability, activity, and selectivity. Generally, the immobilization of enzymes on a support may
permit the enzyme molecules to be fully dispersed with no possible aggregation, and the covalent
attachment between the support and the enzyme promotes a rigidification of the enzyme structure,
which preserves enzyme properties under drastic conditions and reduces enzyme inhibitions, thus
increasing the enzyme stability and preserving enzyme activity. If we control the medium, the effector,
or the support in a “rational” way, the enzyme will congeal a structure with better activity or selectivity
via immobilization, therefore improving the economic viability of the process [16,17]. Previous studies
demonstrated that the immobilization of cellulase can improve the stability and reusability in various
degrees [18–26]. For example, the immobilization of cellulase on magnetic nanoparticles (MNPs) by
the adsorption method can retain the structure of enzyme very well, but the weak interaction may
lead to the leakage of the enzyme from the support, which influences the stability and reusability [21].
Compared to adsorption, although the strong interaction involving covalent binding may result in
some loss of activity, it generally provides a more stable attachment, thus preventing the leakage of the
enzyme [22–24].

The properties of the immobilized enzyme are significantly influenced by the selection of the
immobilization method. Among different immobilization methods, cross-linked enzyme aggregates
(CLEAs) have emerged as novel and versatile biocatalysts, which are easily prepared and are effective
with high stability [27,28]. However, CLEAs may be considered too soft for industrial applications
in reactor configuration and are difficult to be separated from the reaction mixture for re-use, hence
hindering their applications [29]. The further immobilization of CLEAs on supports with better
mechanical properties has been proposed as a good solution, such as trapping CLEAs in LentiKats [30],
or trapping them in a membrane [31]. In recent years, the utilization of nanomaterials as supports
for enzyme immobilization has generated great interest in the biochemistry and biomedical fields
due to their extraordinary properties compared to the bulk materials. These robust nanostructured
forms have larger surface area-to-volume ratios and subsequent higher enzyme loading, lower mass
transfer resistance, and good biocatalytic potential. A variety of nanomaterials have been employed
for enzyme immobilization, such as nanoparticles, nanofibres, nanotubes, nanoporous, nanosheets,
and nanocomposites [15,32]. Among these, the study of MNPs has grown rapidly due to their
strong magnetic properties, ease of separation, lower mechanical shearing and process costs, and
improvement of the operational stability of the enzyme, thus making them more competitive for
enzyme immobilization [33,34]. Therefore, a novel magnetic cross-linked aggregates method for
immobilization has been investigated. In recent years, Talekar et al. developed magnetic CLEAs
of α-amylase to enhance the stability and reusability of enzymes [35]. Recently, we also prepared
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surfactant activated magnetic lipase CLEAs and applied them in continuous biodiesel production with
good potential [36].

Herein, for the first time we combine the precipitated cross-linked cellulase aggregates with
magnetic nanoparticles. In the present work, magnetic iron oxide nanoparticles (Fe3O4) were utilized
and modified by 3-aminopropyltriethoxysilane to provide functional groups and prevent the excessive
aggregation of Fe3O4. Then, cellulase was immobilized on the modified particles with glutaraldehyde.
The size and structure of the immobilized enzyme were investigated, and its stability at wider pH
and temperature ranges were measured. Moreover, to the best of our knowledge, only a few studies
of cellulase immobilization have focused on the hydrolysis of lignocellulosic biomass. Recently, the
Phyllostachys heterocycla cv. var. pubescens (the common name bamboo is used hereafter) has shown
potential for industrial exploitation because of its worldwide distribution and fast growth [37,38].
In this work, as a typical lignocellulosic biomass, this bamboo was pretreated and hydrolyzed by
immobilized cellulase.

2. Results and Discussion

2.1. Chemical Characterisation and Analysis

The Fourier transform infrared spectroscopy (FTIR) spectra of Fe3O4, modified Fe3O4,
cellulase-CLEAs, and magnetic-cellulase-CLEAs are given in Figure 1. A stretch in the peak at
569 cm−1 corresponds to the Fe–O vibrations of the magnetite core [39], and the characteristic peak
also appeared in Figure 1c,d, which indicated the structure of Fe3O4 was preserved after chemical
modification. The characteristic peaks at 1649 cm−1 and 1525 cm−1 represent the amide I (C=O
stretching vibrations) and amide II (N–H bending and C–N stretching) of cellulase, respectively
(Figure 1b). The spectra of the magnetic-cellulase-CLEAs showed similar peaks of amide bands, which
indicated that cellulase was successfully attached to the support. The obtained peaks all well matched
those in earlier reports [23,40].
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The surface morphology and size of the Fe3O4 particles, 3-aminopropyl triethoxysilane (APTES)-
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The average diameters of the Fe3O4 particles ranged from 20 to 60 nm, and such nanometer size is 
beneficial for loading more enzyme since they have a larger specific surface area. As shown in Figure 2a, 
the Fe3O4 particles were arranged tightly, and a looser surface structure of APTES-Fe3O4 particles was 
observed after modification (Figure 2b). As shown in Figure 2c, the cellulase-CLEAs were larger than 
the Fe3O4 particles. As for the magnetic-cellulase-CLEAs, the modified Fe3O4 particles were added 
before enzyme precipitation, thus the MNPs could act as cores during the cellulase precipitation, and 
also cross-link with the enzyme. Therefore, as shown in Figure 2d, the magnetic-cellulase-CLEAs had a 
larger specific surface area than that of cellulase-CLEAs, and the volumetric active sites were also increased. 

Figure 1. Fourier transform infrared (FTIR) spectra of (a) Fe3O4; (b) cellulase-cross-linked enzyme
aggregates (CLEAs); (c) 3-aminopropyl triethoxysilane (APTES)-Fe3O4; (d) magnetic-cellulase-CLEAs.

The surface morphology and size of the Fe3O4 particles, 3-aminopropyl triethoxysilane
(APTES)-Fe3O4, and immobilized cellulase were also observed by scanning electron microscopy (SEM)
(Figure 2). The average diameters of the Fe3O4 particles ranged from 20 to 60 nm, and such nanometer
size is beneficial for loading more enzyme since they have a larger specific surface area. As shown in
Figure 2a, the Fe3O4 particles were arranged tightly, and a looser surface structure of APTES-Fe3O4

particles was observed after modification (Figure 2b). As shown in Figure 2c, the cellulase-CLEAs were
larger than the Fe3O4 particles. As for the magnetic-cellulase-CLEAs, the modified Fe3O4 particles were
added before enzyme precipitation, thus the MNPs could act as cores during the cellulase precipitation,
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and also cross-link with the enzyme. Therefore, as shown in Figure 2d, the magnetic-cellulase-CLEAs
had a larger specific surface area than that of cellulase-CLEAs, and the volumetric active sites were
also increased.Molecules 2017, 22, 269 4 of 14 
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Figure 2. Scanning electron microscopy (SEM) images of (a) Fe3O4; (b) APTES-Fe3O4; (c) cellulase-CLEAs;
(d) magnetic-cellulase-CLEAs.

2.2. Optimal Conditions for the Immobilization of Cellulase

The precipitation step predictably has a crucial effect on the activity in CLEAs as it may
precipitate the target enzyme under appropriate conditions, and causes physical aggregation of enzyme
molecules into supramolecular structures, which are subsequently cross linked to lock enzymes in
CLEAs. Generally, salts, water-miscible organic solvents, and non-ionic polymers have been used
as precipitants. Here, five typical protein precipitating agents such as iso-propanol, tert-butanol,
acetonitrile, polyethylene glycol 1000 (PEG1000), and saturated ammonium sulfate were investigated.
As shown in Figure 3, the activity of the magnetic-cellulase-CLEAs without precipitant was defined as
100%, and different types of precipitants affected the activity of the immobilized cellulase to various
degrees. The iso-propanol exhibited the best enzyme activity and improved almost 50% with respect to
the CLEAs without precipitant, following saturated ammonium sulfate and tert-butanol. PEG1000
showed a lower enzyme activity recovery, which may because of the denaturation under aggregation
and the cross-linking step, and it worsened when acetonitrile was used. The results indicated the
significant role of the precipitant in the immobilization step; in consideration of the appropriate
precipitant for the immobilized cellulase, iso-propanol was used in subsequent experiments.

Traditionally, glutaraldehyde is a commonly used cross-linking agent in enzyme immobilization,
and the concentration of the cross linker is one key parameter of CLEAs as it influences the activity,
stability, and particle size of the resulting CLEAs. Here, different concentrations of glutaraldehyde
were investigated to obtain effective cross-linking and recycling. As shown in Figure 4, with the
increase in concentration of glutaraldehyde, the activity of the immobilized cellulase presented a
bell-shaped curve, and the best relative activity of magnetic-cellulase-CLEAs was achieved when the
concentration of glutaraldehyde was 1.0% v/v. At lower cross linker concentrations, insufficient cross
linking occurred, resulting in operationally unstable CLEAs releasing enzyme into the reaction medium.
However, excessive glutaraldehyde could decrease the enzyme activity [41], because glutaraldehyde is
also a protein denaturant which may cause significant change in the protein structure. Additionally,
the flexibility of the enzyme may be limited, and the rigidification of the enzyme prevents the substrate
from reaching the active site, thus increasing the steric hindrance [27]. Therefore, to achieve an efficient
and active immobilized enzyme, an optimum cross linker concentration should be used.
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Figure 4. Effect of the glutaraldehyde concentration on the activity of immobilized cellulose.

To achieve effective immobilization, the effect of the cellulase-to-nanoparticle ratio was also
studied. As can be seen from Figure 5, the activity of the immobilized enzyme, as well as the protein
binding ratio, decreased as the amount of cellulase used increased, which was similar to the previous
studies [42]. Excessive protein may form compact aggregates [43], which could lead to a loss of
flexibility and could hinder active sites from attaching to substrates. The optimal weight ratio of
cellulase and nanoparticles was 0.2 with a protein binding ratio reaching 88%, and the cellulase
immobilized on the supports was 176 mg/g.
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2.3. Effect of pH and Temperature for the Immobilized Cellulase

The effect of pH on the activity of free and immobilized cellulase was performed in the pH range of
3–8 at 50 ◦C. As shown in Figure 6, the free and immobilized cellulase both achieved maximum activity
at pH 5.0. When the pH condition was above 5.0, the immobilized cellulase showed a significantly
higher activity retention compared to the free cellulase. As the ionic groups within the cellulase
molecule produced a strong electrostatic repulsion under relatively alkaline media, the immobilization
of cellulase in magnetic CLEAs could prevent the destruction and degeneration of the enzyme active
center due to the effect of tight covalent bonding. A similar observation has been reported with
cellulase immobilized on magnetic chitosan nanoparticles [23]. However, another study found there
was a shift in optimum pH values with immobilized β-glucosidase on Eri silk fibrion particles via an
adsorption method; this change may due to the charged groups’ interactions between the enzyme and
carrier [44].
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The influence of temperature on the activity of cellulase was studied from 30 to 80 ◦C at pH 5.0
(Figure 7). Obviously, the activities of both free and immobilized cellulase were affected by temperature.
Additionally, a shift appeared when the free cellulase reached the maximum activity at 50 ◦C, whereas
the immobilized cellulase reached the maximum activity at 60 ◦C. It demonstrated that the immobilized
cellulase showed good temperature stability compared to that of the free cellulase at higher temperature.
This result was consistent with previous studies, where the temperature for the highest alpha amylase
activity was established at 45 ◦C for the free enzyme and shifted to 60 ◦C for magnetic CLEAs [35].
That may be attributed to the immobilization scaffold, which prevented stretching of the enzyme
molecule at higher temperatures. However, the immobilized cellulase performed with lower activity
below 60 ◦C, which indicated that the diffusion of the viscous substrate in magnetic-cellulase-CLEAs
was hindered at lower temperatures.
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2.4. Carboxylmethyl Cellulose Reusability

One of the advantages of magnetic nanoparticles is their convenience in handling, ease of
separation of the enzyme, and reuse, hence enabling its cost-effectiveness [45]. After three and
six consecutive reuses, the immobilized cellulase retained 87% and 74% of its initial activity, showing
good reusability (Figure 8). Earlier studies of cellulase immobilization on magnetoreponsive graphene
nano-supports retained about 55% of the original activity after four cycles [46]. In another study, the
immobilized cellulase, which was covalently bound to the MNPs, maintained about 40% relative
activity after six cycles [42]. This gradual decrease in enzyme activity could be due to several
factors, such as the leakage of the enzyme from the support, protein denaturation, and product
inhibition [24,47]. With its reusability and ease of recovery, the immobilized cellulase would be of
great use in industrial applications.
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2.5. Hydrolysis of Biomass

Varying concentrations of pretreated bamboo were mixed with the same activity of free and
immobilized cellulase. As shown in Figure 9, the conversion yield of the hydrolysis reaction was found
to reduce with an increasing biomass concentration. The highest hydrolysis yield was achieved at a
low biomass concentration, where it reached 44% with the free enzyme and 21% with the immobilized
enzyme. However, at higher biomass concentrations, the hydrolysis yield decreased. The change
in hydrolysis yield may be due to the substrate accessibility, and to the interference of lignin and
hemicellulose with the increase of the biomass. Utilizing the same biomass (Phyllostachys pubescens), a
study focused on the pretreatment of bamboo chips achieved the maximum enzymatic hydrolysis yield
(70.6%) at 72 h [4], and another report achieved 37% for 48 h after optimum pretreatment [48], which
demonstrated the bamboo is hard to hydrolyze due to its rigid structure even after pretreatment. The
hydrolysis yield of the immobilized enzyme was a little lower than that of the free enzyme, which may
due to the limitations of CLEAs, which could form a compact super-molecular immobilized product,
therefore, increasing diffusion limitations and leading to a low activity of the immobilized enzyme
especially when the substrates were macromolecules [49].
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2.6. Biomass Hydrolysis Reusability

Reusability is of key importance during the practical application of biocatalysts. Magnetic
immobilization offers convenience in handling, ease of separation, and fast reuse of the enzyme, thus
enabling its cost-effective use in repeated batches or continuous operations. Figure 10 shows that the
hydrolysis activity of immobilized cellulase for two and four cycles was determined to be 63% and
38%, respectively. Although there was a decrease in activity, the results showed the applicability of
the magnetic cellulase CLEAs in the hydrolysis of the lignocellulosic biomass. In our earlier research,
magnetic cross-linked enzyme aggregates of Thermomyces lanuginosus lipase (TLL) were developed,
and the immobilized lipase retained 70% of its initial activity after 10 cycles of biotransformation. As
for Tween 80-activated TLL-magnetic-CLEAs, they showed no evident decrease of the catalytic activity
during the same runs [36]. To achieve more profitable applications, efforts to reach more optimum
reaction conditions should be considered, such as pH, temperature, and surfactant choice.
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3. Materials and Methods

3.1. Materials

3.1.1. Enzymes and Chemicals

Cellulase (EC 3.2.1.4; ≥1 U/mg) from Trichoderma reesei, 3,5-dinitrosalicylic acid (DNS) were
purchased from Sigma (St. Louis, MO, USA). 3-Aminopropyl triethoxysilane and glutaraldehyde
(25%, v/v) were obtained from Aladdin (Shanghai, China). All other chemicals used were of analytic
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grade and were available from commercial sources. The water used throughout this work was double
distilled water.

3.1.2. Cellulosic Biomass

The Phyllostachys heterocycla cv. var. pubescens (Anji county of Zhejiang Provice, China) was
kindly provided by Prof. Hu (College of Chemistry, Sichuan University, Chengdu, China). The
biomass samples were ground to 80 mesh, washed with distilled water three times, and dried at
110 ◦C in an oven overnight before use. The main components of the dried bamboo were 25.4 wt
% lignin, 17.9 wt % hemicellulose, and 46.5 wt % cellulose [37]. As mentioned above, the complex
structure of biomass leads to a large challenge for the application of fuels and chemicals. Therefore,
an appropriate pretreatment should be employed to remove the lignin and hemicellulose from the
substrate, making the structure looser, in order to increase the accessibility of the cellulase to cellulose.
The biomass pretreatment was performed by a novel method by He et al. [50]. The bamboo was put
in a 200 mL stainless steel autoclave equipped with a magnetic stirring device and a temperature
controller. Bamboo powder (3.0 g) and a designated amount of oxalic acid were arranged in the reactor
with 100 mL ethanol/H2O (v/v, 1:1). Then the nitrogen gas was bubbled into the autoclave for three
minutes in order to replace the interior air by N2, and the initial pressure was kept at 2.0 MPa. After
that, the reactor was heated to 140 ◦C and kept for 1 h. When the reaction was finished, the reactor
was cooled down naturally to room temperature. Then the reactor was depressurized, the mixture was
poured out and filtrated, washed with reaction solvent and deionized water three times, and was then
dried overnight at 100 ◦C. Finally, the pretreated bamboo was stored under a seal at room temperature
after drying, and the dry weight fraction of cellulose in the pretreated biomass was 77.9% [51].

3.2. Preparation of Modified Magnetic Fe3O4 Nanoparticles

Magnetic particles were prepared by the conventional co-precipitation method [35]. In brief,
0.74 g (3.7 mmol) FeCl2·4H2O and 1.22 g (7.5 mmol) FeCl3 were dissolved in 25 mL deionized water
under nitrogen with vigorous stirring. Then, 7 mL 30% NaOH was added dropwise, until a black
precipitate at room temperature was obtained. The obtained magnetite precipitates were washed
several times with deionized water until a pH value of 7 was obtained, and were then dried at 100 ◦C
for 2 h. The magnetic nanoparticles were dissolved in 2.5 mL methanol with 25 µL deionized water
and 100 µL APTES, and the mixture was sonicated for 30 min. After that, 1.5 mL glycerol was added,
and the solution was refluxed at 90 ◦C for 6 h with maximum mechanical agitation. Then, the particles
were separated from the mixture by the permanent magnet and were washed several times with
methanol and deionized water. Finally, the nanoparticles were lyophilized and stored under a seal at
room temperature.

3.3. Preparation of CLEAs and Magnetic CLEAs of Cellulase

The CLEAs of cellulase were prepared by a conventional method by Šulek et al. [52]. The
precipitant (4.5 mL) was added into 0.5 mL of cellulase solution (2 mg/mL, 0.1 M acetate buffer
solution, pH 5.0). After keeping the mixture stirring for 30 min at 4 ◦C, glutaraldehyde was added
slowly to the final concentration of 2.0% v/v and stirred for 3 h at 30 ◦C. After that, the suspension was
diluted with acetate buffer and centrifuged at 10,000 rpm for 5 min. The precipitate was washed three
times by acetate buffer and deionized water, lyophilized, and finally stored at 4 ◦C.

For the preparation of magnetic CLEAs of cellulase, 5 mg amino functionalized magnetite
nanoparticles were mixed with 0.5 mL of free cellulase solution (2 mg/mL, 0.1 M acetate buffer
solution, pH 5.0) and were shaken for 30 min under 30 ◦C. Then, 4.5 mL precipitant was added into
the mixture with stirring at 4 ◦C for 30 min. After precipitation of cellulase, gluaraldehyde was added
slowly to the suspension and stirred at 30 ◦C for 3 h. The suspension was then diluted with acetate
buffer and washed three times by acetate buffer and deionized water, lyophilized, and was finally
stored at 4 ◦C.
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3.4. Protein Binding Ratio and Enzyme Activity Measurements

The protein estimation of the binding efficiency after immobilization was performed according
to the Bradford protein assay method [53]. The protein binding ratio was calculated from the
following equation:

Protein binding ratio (%) = (amount of protein binded)/(amount of protein added) × 100%, (1)

The cellulase activity was determined by measuring the amount of released glucose during the
hydrolysis of sodium carboxylmethyl cellulose (CMC). Cellulase solution (1 mL) and 1 mL of 1% CMC
solution (dissolved in 0.1 M acetate buffer, pH 5.0) were incubated at 50 ◦C for 0.5 h. The glucose
produced was measured to calculate the activity by DNS assay [54]. One unit (U) of cellulase activity
is defined as the amount of cellulase producing 1 µmol glucose per minute. The specific activity of the
free or immobilized cellulase is defined as the amount of glucose produced (in µmol) per milligram of
protein used over time. All experiments were repeated at least three times.

3.5. Characterization

3.5.1. Fourier Transform Infrared Spectroscopy

The FTIR spectra were recorded on samples in KBr pellets using a Shimadzu FTIR-4200
spectrometer in the frequency range (4000–400 cm−1). The samples were mixed with 1% (w/w)
KBr, and the analysis was performed at 10 scans per second with a resolution of 4 cm−1.

3.5.2. Scanning Electron Microscope

The morphology and size of the particles were viewed in a scanning electron microscope
(JSM 7500F, JEOL, Tokyo, Japan). The samples were freeze-dried and coated with gold before analysis.
The resolution of the SEM was 1.0 nm and the acceleration voltage was 15.0 kV.

3.5.3. UV-Vis

A TU-1901 model UV-Vis double beam spectrophotometer (Beijing Purkinje General Instrument
Co., Ltd., Beijing, China) was used to obtain the absorbance of the protein and glucose at 595 nm and
540 nm, respectively.

3.5.4. High Performance Liquid Chromatography

The hydrolysis products of biomass were analyzed by a Waters e2695 HPLC, with an aminex
HPX-87 column (Bio-Rad, Hercules, CA, USA) and shodex 101 Refractive Index Detector (RID, Shodex,
Tokyo, Japan). H2SO4 (0.005 M) was used as an eluent at a flow rate of 0.6 mL·min−1, the temperature
of column oven was 50 ◦C, and the detector was 35 ◦C. The products were quantified by the external
standard method.

3.6. Optimization for Magnetic Cellulase CLEAs Preparation

Acetonitrile, iso-propanol, tert-butanol, PEG1000 (100% w/v) and a saturated ammonium sulfate
solution were used to precipitate cellulase. The preparation of magnetic cellulase CLEAs was also
performed without any precipitant for reference.

To obtain the optimal concentration of the cross-linker, varying final concentrations of
glutaraldehyde in the range of 0.2%–4.0% v/v were used. Subsequently, varied concentrations of
cellulase were added with the constant MNPs during cross-linking, and the ideal weight ratios from
1:10 to 1:1 (w/w) of free cellulase and nanoparticles were then determined in order to obtain the
maximum activity.
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3.7. Optimal Conditions for Cellulase Activity

The effect of pH on the activity was evaluated by using buffers of varied pH (3–8). In the pH
range of 3–5 a 0.1 M citrate buffer was used, and in the pH range of 6–8 a 0.1 M phosphate buffer was
used in the CMC assay. For the optimal temperature of the free cellulase and immobilized cellulase,
the activity was determined at different temperatures (30–80 ◦C) in 0.1 M acetate buffer.

3.8. CMC Reusability Study

To analyze the reusability of the immobilized enzyme, the immobilized cellulase was recycled in
the CMC hydrolysis reaction 6 times. The immobilized cellulase was separated by a permanent magnet
after each cycle, the activity was assayed immediately, and the particles were washed 3 times with
acetate buffer (0.1 M, pH 5.0) and deionized water. Then the immobilized cellulase was resuspended
again to begin another reaction cycle. The initial activity was defined as 100% and the activity of the
recycle runs were expressed as relative activity.

3.9. Hydrolysis of Biomass

Different amounts of pretreated bamboo were dispersed in 2 mL of citrate buffer (0.1 M, pH 5.0),
and the free cellulase and immobilized cellulase were added which had the same activities (0.24 U), and
the hydrolysis reaction was carried out at 50 ◦C for 48 h with constant stirring. The glucose produced
was estimated by HPLC. The hydrolysis percentage of cellulose was calculated as the hydrolysis yield
using the following formula:

Hydrolysis Yield (%) = ([glucose])/(1.11 × f × [biomass]) × 100%, (2)

where [glucose] is the concentration (g·L−1) of glucose obtained after hydrolysis, 1.11 is the weight
factor conversion of cellulose to glucose, f is the dry weight fraction of cellulose in the biomass (g·g−1),
and [biomass] is the concentration (g·L−1) of the pretreated biomass [55].

3.10. Biomass Hydrolysis Reusability

To analyze the reusability in applications, the immobilized cellulase was recycled in the biomass
hydrolysis reaction 4 times. The hydrolysis reaction was carried out at 50 ◦C for 24 h with constant
stirring. After the completion of each cycle, the immobilized cellulase was separated by a permanent
magnet, and washed 3 times with acetate buffer (0.1 M, pH 5.0) and deionized water. Subsequently,
the immobilized cellulase was resuspended in fresh reaction mixture to begin another cycle of the
hydrolysis reaction. The initial activity was defined as 100% and the activity of the recycle runs was
expressed as relative activity.

4. Conclusions

In this paper, novel magnetic cross-linked cellulase aggregates have been developed and applied
for biomass bioconversion. Enzyme immobilization using the CLEA technique combined purification
and immobilization into a single unit operation, and the use of magnetic particles provided a good
reuse potential and ease of operation. The optimal conditions of immobilization were investigated,
and the immobilized cellulase showed a better activity at wider temperature and pH values than that
of the free cellulase. The immobilized cellulase also had good CMC reusability which could be easily
recycled by magnetic separation with 74% of its initial activity retained after six cycles. The magnetic
cellulase CLEAs showed a capacity for the hydrolysis of bamboo, which had an immense potential for
the efficient conversion of lignocellulosic biomass.
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