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Abstract: Patatin represents a group of homologous primary storage proteins (with molecular weights
ranging from 40 kDa to 45 kDa) found in Solanum tuberosum L. This group comprises 40% of the
total soluble proteins in potato tubers. Here, patatin (40 kDa) was extracted from potato fruit
juice using ammonium sulfate precipitation (ASP) and exposed to high hydrostatic pressure (HHP)
treatment (250, 350, 450, and 550 MPa). We investigated the effect of HHP treatment on the structure,
composition, heat profile, and antioxidant potential, observing prominent changes in HHP-induced
patatin secondary structure as compared with native patatin (NP). Additionally, significant (p < 0.05)
increases in β-sheet content along with decreases in α-helix content were observed following HHP
treatment. Thermal changes observed by differential scanning calorimetry (DSC) also showed a
similar trend following HHP treatment; however, the enthalpy of patatin was also negatively affected
by pressurization, and free sulfhydryl content and surface hydrophobicity significantly increased
with pressurization up to 450 MPa, although both interactions progressively decreased at 550 MPa.
The observed physicochemical changes suggested conformational modifications in patatin induced by
HHP treatment. Moreover, our results indicated marked enhancement of antioxidant potential, as well
as iron chelation activities, in HHP-treated patatin as compared with NP. These results suggested
that HHP treatment offers an effective and green process for inducing structural modifications and
improving patatin functionality.

Keywords: potato patatin; high hydrostatic pressure; antioxidant activities; iron chelation potential;
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1. Introduction

Potato (Solanum tuberosum L.) is the most important non-grain food crop in the world and is
central to global food security. The potato is a member of the Solanaceae family, which includes
tomatoes, peppers, aubergines (eggplants), petunias, and tobacco. According to recent Food and
Agriculture Organization estimates, China is the biggest global potato producer, with 87.26 million
metric tons which constitutes almost one-third of the total worldwide production [1]. The rapidly
growing demand for plant-based proteins due to their economic affordability and relatively higher
nutritional values, including attractive amino acid profile, low caloric content, and ease of digestibility,
has replaced that for expensive animal proteins [2].

Soluble proteins present in potato fruit juice (PFJ) have been divided into three groups: patatins
(30%–40%), protease inhibitors (40%–50%), and other proteins (10%–15%) (mainly enzymes, such as
kinases and enzymes involved in starch synthesis) [3–8]. Patatin represents a group of immunologically
identical glycoprotein isoforms with a monomeric molecular weight (MW) from ~40 kDa to 45 kDa
(the native conformation is a dimer) [9] and isoelectric point value between 4.5 and 5.2 [10]. It was
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first purified by Racusen and Foote [9] using diethylaminoethyl (DEAE)-cellulose and concanavalin
A-sepharose chromatography and comprises ~40% of the total soluble protein of a mature potato
tuber. As a glycoprotein, it contains monosaccharide residues, including mannose, galactose, glucose,
and rhamnose, connected as α-mannose (1→3), α-galactose (1→4), β-glucose (1→4), and α-rhamnose
(1→2) linkages, respectively [11].

Existing methods for extracting potato-protein isolates include ultrafiltration, ion exchange,
gel permeation, affinity and mixed-mode chromatography, carboxymethyl cellulose complexation,
acid and heat coagulation, and ethanol and various salt-precipitation methods [12,13]. (NH4)2SO4

precipitation is one of the most stable methods used to isolate high-yield patatin exhibiting better
physicochemical and structural characteristics [13].

The globular structure of patatin offers versatile bioactive sites for numerous biofunctionalities,
such as antioxidant, enzymatic, and anticancer activities [11,14–17]. Patatin isoforms at 45 kDa
exhibit antioxidant activity, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical-scavenging activity,
anti-human low-density lipoprotein peroxidation, protection against hydroxyl radical-mediated DNA
damage, and peroxynitrite-mediated dihydrorhodamine 123 oxidation, based on a series of in vitro
assays. Moreover, recent studies by Sun et al. [11] reported an antioxidant role for patatin according to
its various antioxidant activities. Unlike classical lipases, the unique structural topology of patatin
enables it to act as a lipid hydrolase [18].

Various biologically active peptides are usually inactive within the sequence of native proteins;
therefore, modification via several means (physical, chemical, or enzymatic,) is required to improve
their biological activities. Recently, several studies focused on eco-friendly techniques, such as
the use of high hydrostatic pressure (HHP), which is relatively more economical and effective [19].
HHP is an alternative, non-thermal, food-processing method showing promise for the development
of new food products exhibiting additional functional and health benefits [20]. HPP is an applied
technique already successfully utilized in mostly protein-product industries [21]. Pressure-induced
changes at less than between 100 MPa and 250 MPa are sometimes reversible and temporary, whereas
those >300 MPa cause irreversible conformation changes [22]. HHP affects only non-covalent bonds
(hydrogen, ionic, and hydrophobic bonds) and alters the protein structure by unfolding protein
chains [23]. According to the United States Food and Drug Administration, potato proteins are
intended for use in a variety of protein-related functions, including as water binders in meat and
sausage, foaming aids in confectionary, bakery, and dairy products, and as emulsifiers in spreads,
sauces, desserts, and dressings. The described uses of coagulated potato protein and hydrolyzed
coagulated potato protein mark them as generally recognized as safe.

Here, we isolated and purified patatin to a high purity from S. tuberosum L. and evaluated the effect
of HHP on its secondary structure and thermal stability in order to compare the functional properties
of NP and HHP-treated patatin regarding their antioxidant potential and iron-chelating activities.

2. Results and Discussion

2.1. Patatin Purification

Patatin is slightly acidic, although at neutral pH and ambient temperature it exists as a dimer held
together by non-covalent hydrophobic forces [24]. Two peaks were obtained following potato-protein
elution and confirmed by SDS-PAGE analysis (Figure 1). Peak 1 showed a MW of ~20 kDa representing
a protease inhibitor, with peak 2 at 40 kDa representing patatin. Based on the MW difference, the 40-kDa
peak was further purified by gel filtration chromatography to obtain high-purity patatin (Figure 2).
Subsequently, purified patatin was dialyzed (MWCO 12–14 kDa; P. Inter-trade Equipment, Seguin,
TX, USA) against distilled water at 4 ◦C until the conductivity of the retentate reached ≤2 µs·cm−1

and remained constant. Dialysis through a semipermeable membrane is among the most convenient
methods for removing salts or other small molecules following purification. Dialyzed samples were
removed from the membrane and stored at −20 ◦C following lyophilization.
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Figure 1. (A) Patatin purification using AKTA Protein Pure M1 and a HiTrap DEAE-sepharose FF (1 mL); (B) SDS-PAGE results showing peak 1 at MW ~20 kDa representing 

the protease inhibitor and peak 2 at ~40 kDa representing patatin. 
Figure 1. (A) Patatin purification using AKTA Protein Pure M1 and a HiTrap DEAE-sepharose FF (1 mL); (B) SDS-PAGE results showing peak 1 at MW ~20 kDa
representing the protease inhibitor and peak 2 at ~40 kDa representing patatin.
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Figure 2. Superdex 200 10/300 gel filtration chromatograph of peak 2 results from ion-exchange chromatography. 
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2.2. Patatin Yield and Purity

The protein content of lyophilized patatin as determined using the Kjeldahl method [25] was
89.21%, with a protein-nitrogen coefficient of 6.25. Total soluble protein was previously determined by
Lowry et al. [26] using bovine serum albumin as the standard calibration curve with a linearity range
R2 = 0.998. Results indicated total protein content 96.218 µg·mL−1.

2.3. Effects of HHP on MW Distribution of Patatin

As shown in Figure 3, a visible band appeared at MW > 40 kDa in each NP and HHP-treated
sample, agreeing with previous results describing purified patatin [9,10,27,28]. HHP-treated patatin
(250–550 MPa) showed a clearly increasing pattern of new protein bands at MW > 130 kDa, which
could be due to HPP-induced aggregation of patatin. Intensity bands were directly proportional to
the increase in pressure treatment as depicted in SDS-PAGE gel. Similar findings were previously
reported from rapeseed, soy, and amaranth proteins [29–31], and one report related this aggregation to
the intermolecular disulfide bond formation as a result of pressurization [32]. The absence of a band at
~130 kDa for the NP protein clearly indicated that aggregation occurred due to HHP treatment.
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2.4. Neutral Sugar Composition

Due to the glycoprotein composition of patatin, studies revealed that ~6% of patatin consists
of neutral sugar and hexosamine [6,33]. Usually, patatin consists of arabinose, rhamnose, galactose,
glucose, and xylose at different ratios dependent upon the variety and extraction method used [3,34].
Results showed a significant increase in galactose content (18.04% ± 0.57% and 17.03% ± 1.13% at
250 MPa and 550 MPa, respectively, Table 1), whereas a subsequent decrease in glucose content was
also observed following HHP treatment (10.93% ± 0.24%, 10.70% ± 0.08%, 12.30% ± 0.25%, and
11.24% ± 0.37% at 250 to 550 MPa, respectively).

This might be explained by the interconversion of glucose into galactose, whereas a lower effect
of HHP treatment was observed on xylose and mannose content. This was likely due to application of
high pressure unfolding the protein secondary structure, thereby detaching some of the bound neutral
sugar groups from the protein.
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Table 1. Effect of HHP treatment on the monosaccharide content of patatin. Values with different
letters within the same column signify significant differences (p < 0.05).

Treatments Rhamnose Galactose Glucose Xylose Mannose

NP 0.97 ± 0.01 c 14.15 ± 0.64 d 14.30 ± 0.25 a 0.08 ± 0.00 a 0.445 ± 0.02 b

250 MPa 1.69 ± 0.05 a 18.04 ± 0.57 a 10.93 ± 0.24 d 0.08 ± 0.00 a 0.563 ± 0.02 a

350 MPa 0.82 ± 0.03 d 12.16 ± 0.17 e 10.70 ± 0.08 e 0.07 ± 0.00 b,c 0.422 ± 0.01 b

450 MPa 0.97 ± 0.02 c 14.27 ± 0.61 c 12.30 ± 0.25 b 0.07 ± 0.00 a,b 0.467 ± 0.00 b

550 MPa 1.40 ± 0.03 b 17.03 ± 1.13 b 11.24 ± 0.37 c 0.06 ± 0.00 c 0.463 ± 0.01 b

2.5. FTIR Analysis

FTIR spectra depicted pressure-induced changes in the patatin secondary structure according
to characteristic shifts in several band frequencies (Figure 4). The results also showed significant
increases in transmittance intensity along with increases in pressure from 250 MPa to 550 MPa, with
NP showing the least intensity at 0.52 for 250 MPa and maximum intensity at 1.15 for 550. Based on the
peak intensities, these findings suggested that interchain interactions increased along with increasing
pressure [35].
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Both the NP and HHP-induced patatin samples returned a single major band at 1658 cm−1 and
1538 cm−1 associated with amide I and amide II bands, respectively. The spectral shapes of amide I
(1600–1700 cm−1) and amide II (1500–1550 cm−1) did not change considerably when treated at a pressure
level of 250 MPa. The absorption associated with the amide I band was due to stretching vibrations
of the C=O amide bond and reflects the secondary structure of the protein. However, HHP-induced
modifications led to a pronounced decrease in intensity of this characteristic peak. Based on the pressure
effects on the widths of the depolarized and weakly polarized bands, the reorientation rate of the
chains appeared dampened along with increasing pressure. The bandwidth of the strongly polarized
bands (symmetric CH2-stretching) was an indication of interchain interactions [35]. Changes in the
secondary structures (loss of intensity) of highly pressurized proteins (>350 MPa) were observed at
~1658 cm−1 and 1538 cm−1 (Figure 4). These frequencies correspond to β-structures, which were
significantly affected by HHP treatment. Additionally, obvious decreases in the intensity of bands at
1540 cm−1 in modified proteins suggested denaturation of the α-helix, which were similar to patterns
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of change reported by Li et al. [36]. For the untreated sample, a strong band was noted at 1658 cm−1,
which likely corresponded to an α-helix. This band in the HHP-treated samples was diminished,
indicating that the α-helix was altered. A strong band was observed at 3300 cm−1 due to amide
stretching in proteins, which was significantly reduced following HHP treatment. HHP-induced
patatin also showed similar spectra exhibiting decreased intensity as compared to those for NP patatin.
NP presented a peak at 1389 cm−1, indicating an absorbance of C–O stretching typically at ~1400 cm−1

to 1330 cm−1 [37]. An important band associated with secondary structure represents C–C stretching
regions (890–1060 cm−1). We observed a band in NP at 933 cm−1, which reduced abruptly in all
HHP-treated samples. Our findings agreed with those of Hoppe [20], who reported marked reductions
in α-helices and prominent increases in β-sheets following increased HHP treatment. There results
indicated that application of HPP up to 550 MPa induced changes in patatin secondary structure.

2.6. DSC

Patatin thermal stability as measured by DSC and influenced by HHP is shown in Table 2.
Our results shows that NP exhibited a Td2 of 66.62 ◦C and a ∆H of 24.03 J·g−1. As shown in Table 2,
a slight decrease in Td2 from 65.88 ◦C to 65.64 ◦C was observed in patatin samples treated with
250 MPa to 550 MPa, respectively, indicating low-affinity protein-protein interactions as a result of
aggregation [29]. The ∆H of the HHP-treated patatin showed a significant (p < 0.05) reduction from
24.03 J·g−1 to 3.056 J·g−1 with increased pressurization from 250 MPa to 550 MPa. These findings
agreed with those previously reported for rapeseed protein and soy protein, with decreases in ∆H
from 10.25 J·g−1 to 3.72 J·g−1 and 7.8 J·g−1 to 0.6 J·g−1, respectively [29,38]. These thermal parameters
may be a useful guide in the design of appropriate HHP schemes for application and incorporation of
patatin in food and nutraceutical products.

Table 2. DSC thermograms of NP and HHP-induced patatin.

Sample Ton-set (◦C) Td (◦C) ∆T(1/2) ∆H (J·g−1)

NP 58.89 ± 0.48 c 66.62 ± 0.61 a 5.84 ± 0.98 b,c 24.03 ± 1.93 a

250 MPa 60.06 ± 0.27 a 65.98 ± 0.28 b,c 5.32 ± 1.98 d 12.56 ± 2.32 b

350 MPa 58.53 ± 0.32 c 65.88 ± 0.37 b 5.56 ± 0.76 c 6.97 ± 1.53 c

450 MPa 59.99 ± 0.81 b 65.88 ± 0.54 b 7.07 ± 0.58 a 5.72 ± 2.06 d

550 MPa 60.41 ± 0.42 a 65.64 ± 0.31 b,c 6.04 ± 0.98 b 3.05 ± 0.32 e

Onset temperatures (Ton-set), peak or denaturation temperatures (Td), and enthalpies of denaturation (∆H).
Values with different letters in the same column are significantly different according to Duncan’s multiple range test
(p < 0.05).

2.7. CD

Results presented in Table 3 show significant increases in β-sheet conformations along with
elevations in HHP (NP (24.2%), 250 MPa (26.5%), 350 MPa (31.6%), 450 MPa (36.4%), and 550 MPa
(39.5%)), whereas decreased α-helix conformations was observed at the same pressures (24.2%, 21.7%,
16.3%, 7.3%, and 4.1%, respectively). High-pressure treatment influenced the intermolecular and
intramolecular attractions in unfolded protein structures by increasing β-sheet conformations and
reductions in α-helices, which agreed with previously reported literature [39–42].

Table 3. CD results of NP and HHP-treated patatin.

Sample α-Helix β-Strand β-Turn Random Coil

NP 24.2 a 24.2 e 21.2 a 30.3 d

250 MPa 21.7 b 26.5 d 21.0 a 30.9 c,d

350 MPa 16.3 c 31.6 c 20.6 b 31.4 c

450 MPa 7.3 d 36.4 b 21.4 a 34.8 b

550 MPa 4.1 e 39.5 a 19.2 c 37.2 a

Values with different letters in the same column are significantly different according to Duncan’s multiple range test
(p < 0.05).
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Decreases in α-helix conformation and random-coil structures along with increased β-sheet
conformations induced by HHP treatment from 250 MPa to 550 MPa might result from the formation
of intermolecular hydrogen bonding, which ultimately results in insoluble protein aggregates that
modify secondary structure [43].

2.8. Ho

Ho has greater significance in elucidating protein function associated with biological
phenomena [44]. ANS was used as a hydrophobic fluorescent probe due to its increased specificity
toward hydrophobic sites of protein molecules. Changes in hydrophobicity promoted by structural
and conformational changes in proteins allow different molecules to interact, ultimately resulting
in potentially improved activity. Changes in patatin Ho were induced by HHP probed by ANS as
indicated following ANS binding to proteins via electrostatic interactions, resulting in fluorescence
signals upon binding to hydrophobic domains. Fluorescence spectra are mainly attributed to
tryptophan, tyrosine, and phenylalanine residues, with tryptophan specifically contributing to the
fluorescence quantum yield, which decreases as their exposure to solvent increases [45]. As shown in
Figure 5, HHP treatment resulted in significant effects on the molecular properties of patatin (p < 0.05),
with increases in Ho (289.8 ± 1.2, 1438 ± 1.6, and 2434.7 ± 2.4) at 250, 350 and 450 MPa respectively, as
compared with those observed in NP (Ho = 180.4 ± 1.5).
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Figure 5. Flourometric results of NP and HHP-modified patatin (pH 7.0) measured at 390 nm (excitation),
with emission measured between 300 nm and 800 nm. Characters (a–e) on the top of each column indicate
significant differences (p < 0.05). Each data point represents the mean ± SD of triplicate treatments.

While a dramatic drop (Ho = 587.5 ± 1.8) was observed when treated at 550 MPa, the gradual
increase in Ho in HHP-treated samples might be attributed to the increased exposure of buried
nonpolar (hydrophobic sites), which were ultimately bound to the ANS probe and resulted in
increased fluorescence. The lower S0 values in NP might be attributed to the unexposed hydrophobic
groups becoming buried and less accessible to ANS. The highest Ho value occurred at 450 MPa
(Ho = 2434.7 ± 2.4), which might be explained by protein dissociation, leading to the exposure of
additional hydrophobic regions. These results are in agreement with previous findings reporting
HHP-induced hydrophobicity in different proteins [38,46]. Furthermore, a previous report showed
that a gradual increase to 400 MPa and ultimately reaching 600 MPa significantly reduced the
hydrophobicity of soy protein [47]. Additionally, ANS as an anionic probe could easily interact



Molecules 2017, 22, 438 9 of 20

with positively charged sites on HHP-modified patatin, thereby resulting in potential overestimation
of hydrophobicity [48], although the Ho values determined by the same ANS probe were slightly
higher than those derived from lentil legumin-like protein [49] and other proteins from peas and
soybeans [47,49]. The FTIR spectra also confirmed the findings of elevated hydrophobicity due to
changes in CH-stretching and the amide III band [20]. These results indicated that the globular
confirmation of NP consists of a compact folded structure, and that pressurization unfolds it to allow
a more open and flexible conformation, ultimately exposing additional hydrophobic regions and
increasing overall hydrophobicity [50]. The NP is usually folded sufficiently to bury most of the
hydrophobic amino acids, which may hinder the exposure of hydrophobic regions. HHP treatment
might have exposed the buried hydrophobic residues to enhance surface hydrophobicity. Our findings
suggested that patatin is more sensitive to HHP treatment than other storage proteins.

2.9. Free-SH

Positive and negative charges of side chains are randomly distributed over the patatin sequence,
and it contains one cysteine residue [51]. Figure 6 shows a significant increase (p < 0.05) in free-SH
content (23.2 ± 0.34, 52.0 ± 0.8 and 55.6 ± 0.2 µmol·g−1) along with increased HHP treatment at 250,
350 and 450 MPa respectively.
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Increases in free-SH content in the presence of HHP at up to 450 MPa might be attributed
to the pressure-induced exposure of embedded SH groups inside the structure or cleavage of S-S
linkage. Usually, 213.1 kJ·mol−1 of energy is required to disrupt disulfide bonds above the normal
HHP-treatment ranges (~600 MPa). Therefore, covalent peptide linkages usually remain unaffected by
HHP treatment [52]. The marked increase in free-SH groups might be related to the unfolding of the
protein following exposure of embedded SH groups [53]. Previous findings on amaranth and rapeseed
protein isolates showed similar trends [29,31]. We observed abrupt decreases in free-SH content upon
increasing the pressure to 550 MPa (34.4 ± 0.8 µmol·g−1), which might be due to re-arrangement of
free-SH in other peptide regions to form S-S linkages leading to protein aggregation [29,38,54]. Previous
studies also reported that this trend might be due to protein aggregation and cross-linking through
intermolecular interaction [55]. SDS-PAGE results (Figure 3) confirmed this phenomenon of newly
formed S-S bonds, which appeared to contribute to high-MW fractions in HHP-treated samples due to
aggregation [38]. Formation of high-MW aggregates through the formation of disulfide bonds in α- and
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β-lactoglobulin following HHP treatment at >200 MPa was previously reported [38,54]. Other reports
concerning whey protein indicated that free-SH groups might contribute to antioxidative activities [56].
Decreases in free-SH groups at 550 MPa might also be due to increased pressurization forcing
reformation of disulfide bonds between free-SH groups [53]. However, amaranth protein showed a
continuous increase in free-SH content in the presence of increasing pressure up to 600 MPa [31]. It is
assumed that the differences in structural and conformational properties of proteins are reflected in
their behaviors to HPP treatment. These results confirmed the occurrence of HPP-induced protein
unfolding and subsequent aggregation/re-association of the unfolded proteins.

2.10. DPPH-Radical-Scavenging Activity

The results of DPPH-radical-scavenging assays are shown in Figure 7. Our findings revealed
that antioxidant activity was markedly enhanced following HHP treatment. Maximum activity
(52.8% ± 0.5%) was observed with patatin treated with 450 MPa at a concentration of 4 mg·mL−1.
Liu et al. [17] reported that thiol groups of cysteine and tryptophan residues in patatin might have
major contribution in radical scavenging activity. The IC50 value for patatin (45 kDa) associated with
DPPH-radical-scavenging activity at 0.582 mg·mL−1 [17], was significantly higher than that of patatin
(40.6 kDa) reported by Sun et al. [11]. This difference in antioxidant potential might be due to different
patatin isoforms, as well as differences in extraction method, which would ultimately result in variable
bioactivities. Trypsin inhibitor from sweet potato (33 kDa) exhibited profound scavenging activity
(22% at 46.8 pmol) against DPPH radical, although it was suggested that free-SH groups in the trypsin
inhibitor might be responsible for these antioxidant activities [57].
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represents the mean ± SD of triplicate treatments.

HHP treatment at 250 MPa resulted in relatively fewer conformational changes and less functional
activity as compared with those observed at higher pressure ranges. This could be attributed to the
reversible behavior of the protein due to its elasticity and weak interactions between intermolecular
and intramolecular forces [58]. These results indicated that HHP treatment might be an effective
method to enhance the antioxidant activity of patatin.
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2.11. ORAC

The ORACs of NP and HHP-treated patatin are presented in Figure 8. The Trolox-standard
curve was plotted between 0 µg·mL−1 and 60 µg·mL−1, with a NetAUC standard equation of
Y = 0.899x + 2.581 (R2 = 0.993). We observed a strong correlation between patatin concentration
and antioxidant potential for the NP protein and patatin treated with 250 MPa, 350 MPa, 450 MPa,
and 550 MPa. Patatin pressurized at 550 MPa showed maximum activity at 4 mg·mL−1 and yielded
110,700 ± 106 µM TE 100 g−1, followed by results from pressurization at 450 MPa (105,688 ± 208 µM
TE 100 g−1), which was relatively higher than results for NP patatin (99,860 ± 56.1 µM TE 100 g−1).
Treatment at 250 MPa resulted in higher TE values in a dose-dependent manner, which might be
attributed to the increased availability of the patatin active site following pressurization. Comparison
of patatin results with those of other Solanaceae family members revealed that NP exhibited a higher
ORAC value as compared with tomato and eggplant, but lower than that of pepper, thereby indicating
that it might be a more effective antioxidant relative to some family members [59].
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2.12. Iron-Chelating Activity

Inhibition of ferrozine-Fe2+ complex formation in the presence of chelating agents is indicated by
reduced coloration of the reaction mixture. Several proteins from plants, as well as their hydrolysates,
were studied to explore their metal chelating abilities [60]. Both NP and HHP-treated patatin showed
significant (p < 0.05) iron-chelating activity (Figure 9). All HHP-treated patatin samples showed
improved Fe2+-chelation ability as compared with that observed by NP patatin. HHP treatment at
550 MPa resulted in the highest activity (87.7% at 3 mg·mL−1), followed by 450 MPa (84.8%), 350 MPa
(82.4%), and 250 MPa (76.2%). However, at the same concentration, the NP showed relatively lower
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chelation ability (71.8%). Although both NP and HHP-treated patatin showed chelation activity >50%
at all concentrations, dose-dependent effects were not significant from 1 mg·mL−1 to 3 mg·mL−1.
Our findings indicated improved Fe2+-chelating activity in patatin as compared with that observed
in other plant proteins, such as cannabis protein hydrolysates (50% at 2.2 mg·mL−1), sweet potato
protein hydrolysate (34.74% at 2 mg·mL−1), and whey protein hydrolysate (<60% at 8% protein) [61,62].
However, gram wheat protein isolate showed better Fe2+-chelating activity at ~89% at 1 mg·mL−1 [60].
These results indicated that patatin exhibited improved iron-binding ability following HHP treatment,
suggesting that the iron-chelating ability of patatin might be important in its role as an antioxidant.Molecules 2017, 22, 438 12 of 20 

 

 
Figure 9. Fe2+-chelating activity at different concentrations (1, 2, and 3 mg·mL−1). EDTA was used as 
the positive control. Characters (a–l) on the top of each column indicate significant differences (p < 0.05) 
among the groups. All results represent the mean ± SD of each value. 

3. Materials and Methods 

3.1. Chemicals and Reagents 

1,1-Diphenyl-2-picrylhydrazyl free radical (DPPH) free radical (DPPH), trolox (6-hydroxy-
2,5,7,8-tetramethethylchroman-2-carboxylic acid), 2,4,6-tris(2-pyridyl)-s-triazine) (TPTZ) and 2,2′-
azobis (2-aminopropane) dihydrochloride (AAPH) were obtained from Sigma-Aldrich (St. Louis, 
MO, USA). DEAE-sepharose fast flow and superdex 200 10/300 were obtained from (GE Healthcare 
BioScience, Stockholm, Sweden). All other chemicals used in this study were of analytical grade 
unless otherwise stated. 

3.2. Patatin Isolation and Purification 

Patatin was isolated from potatoes according to the procedure of Racusen and Foote [6] with 
slight modifications. Initially, fresh potatoes (S. tuberosum L.) were purchased from the local market 
and stored at 4 °C. Potatoes were carefully sorted, washed, and peeled, followed by chopping (1 × 1 
× 5 cm). Chopped potatoes were kept in 50 mM NaHSO3 to prevent enzymatic browning. PFJ was 
extracted using a domestic juice extractor (HR1866/30; Philips, Eindhoven, The Netherlands), filtered 
through a 120-mm mesh sieve, and the starch slurry was allowed to sediment. The PFJ was 
centrifuged twice at 3000× g for 10 min (LXJ-IIC; Shanghai Anting Scientific Instruments, Shanghai, 
China) to remove all traces of starch from the juice. 

Ammonium sulfate precipitate (ASP) was prepared from PFJ by adding (NH4)2SO4 to 60% 
saturation as described by Seppala et al. [63] and maintaining the pH at 5.7 by addition of small 
volumes of 0.5 M H2SO4. After 1 h at 4 °C, the suspension was centrifuged (30 min at 19,000× g at 4 °C), 
and the resulting precipitate was washed twice with half of the starting volume of 50 mM sodium 
phosphate buffer (pH 7.0) containing (NH4)2SO4 up to 60% saturation. Subsequently, the protein 

Figure 9. Fe2+-chelating activity at different concentrations (1, 2, and 3 mg·mL−1). EDTA was used as
the positive control. Characters (a–l) on the top of each column indicate significant differences (p < 0.05)
among the groups. All results represent the mean ± SD of each value.

3. Materials and Methods

3.1. Chemicals and Reagents

1,1-Diphenyl-2-picrylhydrazyl free radical (DPPH) free radical (DPPH), trolox (6-hydroxy-
2,5,7,8-tetramethethylchroman-2-carboxylic acid), 2,4,6-tris(2-pyridyl)-s-triazine) (TPTZ) and
2,2′-azobis (2-aminopropane) dihydrochloride (AAPH) were obtained from Sigma-Aldrich (St. Louis,
MO, USA). DEAE-sepharose fast flow and superdex 200 10/300 were obtained from (GE Healthcare
BioScience, Stockholm, Sweden). All other chemicals used in this study were of analytical grade unless
otherwise stated.

3.2. Patatin Isolation and Purification

Patatin was isolated from potatoes according to the procedure of Racusen and Foote [6] with slight
modifications. Initially, fresh potatoes (S. tuberosum L.) were purchased from the local market and stored
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at 4 ◦C. Potatoes were carefully sorted, washed, and peeled, followed by chopping (1 × 1 × 5 cm).
Chopped potatoes were kept in 50 mM NaHSO3 to prevent enzymatic browning. PFJ was extracted
using a domestic juice extractor (HR1866/30; Philips, Eindhoven, The Netherlands), filtered through
a 120-mm mesh sieve, and the starch slurry was allowed to sediment. The PFJ was centrifuged twice
at 3000× g for 10 min (LXJ-IIC; Shanghai Anting Scientific Instruments, Shanghai, China) to remove all
traces of starch from the juice.

Ammonium sulfate precipitate (ASP) was prepared from PFJ by adding (NH4)2SO4 to 60%
saturation as described by Seppala et al. [63] and maintaining the pH at 5.7 by addition of small
volumes of 0.5 M H2SO4. After 1 h at 4 ◦C, the suspension was centrifuged (30 min at 19,000× g
at 4 ◦C), and the resulting precipitate was washed twice with half of the starting volume of 50 mM
sodium phosphate buffer (pH 7.0) containing (NH4)2SO4 up to 60% saturation. Subsequently, the
protein isolate was filtered using an ultrafiltration (UF) column with a MW cut-off of 20 kDa and a
reverse osmosis cellulose acetate membrane (Shenzhen Feyian Water Treatment Technology Co., Ltd.,
Shenzhen, China) at 4 ◦C to remove low MW compounds and salts. The retentate was subsequently
freeze-dried and stored at −20 ◦C. Additional patatin purification was performed using an ÄKTA
Protein Pure M1 system with unicorn software and HiTrap DEAE-sepharose FF (1 mL; GE Healthcare
BioScience), followed by transfer to a Superdex 200 10/300 column (GE Healthcare BioScience) to
obtain high-purity patatin.

3.3. High-Pressure Treatment of Patatin Samples

HHP treatment was performed using a high-pressure device (model HHP.L3-600/0.6;
Tianjin Huatai Senmiao Engineering and Technique Co. Ltd., Tianjin, China) and a hydraulic type cell
with an inner capacity of 1 L and a water jacket for temperature control. Patatin solution (2%) was
prepared in mili-Q water, and 10 mL of each patatin solution was packed in polyethylene bags under
vacuum to remove air bubbles. All solutions were then pressure-treated at 25 ◦C for 15 min at 250 MPa,
350 MPa, 450 MPa, and 550 MPa. The target pressure was reached at a rate of ~250 MPa·min−1 and
released at ~300 MPa·min−1. An unpressurized sample (0.1 MPa) was referred to as NP.

3.4. Patatin MW Determination

Patatin MW determination was performed under reducing conditions using one-dimensional
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; ATTO Corporation, Tokyo,
Japan) according the method described by Laemmli et al. [64], with slight modifications. Separating-
and stacking-gel recipes were prepared at 12.5% and 5%, respectively, using a discontinuous buffer
system. Samples were boiled in loading buffer containing 75 mM Tris-HCl, pH 6.8, 5% (v/v)
β-mercaptoethanol (a thiol-reducing agent), 2% (w/v) SDS, 10% glycerol, 150 mM EDTA-Na, sucrose
(60% (w/v)), and 0.01% bromophenol blue and denatured at 97 ◦C in a water bath for 5 min.
Each denatured sample (20 µL) along with 8 µL of prestained protein-standard solution (PageRuler
prestained protein ladder, 10–170 kDa range; Thermo Fisher Scientific, Waltham, MA, USA) was loaded
into each well of a dual-plate electrode assembly with running buffer (25 mM Tris, 192 mM glycine,
0.1% (w/v) SDS (pH 8.3), and 0.01% (v/v) β-mercaptoethanol) at 30 mA constant power for ~30 min at
room temperature. The electrophoresed gel was transferred to staining solution (0.25% Coomassie
Brilliant Blue R-250 in 10% (v/v) CH3COOH and 40% (v/v) methanol) on a shaker with gentle agitation
for 2 h. The gel was destained with 40% (v/v) methanol and 10% (v/v) CH3COOH, and gel imaging
was performed upon appearance of clear electrophoretic band patterns.

3.5. Neutral Sugar Composition of Patatin

The monosaccharide composition of NP and HHP-treated patatin was determined using the
method of Ogutu and Mu [65], with some modifications. Initially, 5 mg of each sample was hydrolyzed
in 4 mL of 4 M trifluoroacetic acid (TFA) at 121 ◦C for 2 h. After cooling to room temperature, TFA
was evaporated in a water bath with continuous nitrogen flushing until dry. Evaporated samples
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were diluted to 10 mL with Mili-Q water to a concentration of 10 ppm. Individual sugars were
quantified by high-performance anion-exchange chromatography (HPAEC-ICS 3000 Dionex System;
Thermo Fisher Scientific) with an AS50 Dionex autosampler (3 × 30 mm CarboPac PA20 guard
column and 3 × 150 mm CarboPac PA20 column; Thermo Fisher Scientific) connected in series and
an ED fluorometer detector (Thermo Fisher Scientific) used to monitor the sugars. Chromatography
conditions were employed according to previously described methods [66].

Eluent A consisted of Mili-Q water (0.055 µS·cm−1 at 25 ◦C), eluent B contained 1 M sodium
acetate (NaOAc) in 250 mM NaOH, and eluent C consisted of only 250 mM NaOH. All eluents were
filtered through 0.2-µm filter paper (Whatman; GE Healthcare Life Sciences, Little Chalfont, UK) prior
to use. Standard solutions containing neutral sugars (L-[−]-arabinose, D-[+]-galactose, D-[+]-xylose,
D-[+]-glucose, D-[+]-mannose, and L-rhamnose) with concentration ranges of 0.001 ppm, 0.05 ppm,
0.1 ppm, 0.5 ppm, 1 ppm, and 5 ppm in a single run (35 ◦C) at a flow rate of 0.5 mL·min−1 were
used to confirm the linearity of the detector response and to determine the relative response factors.
Each sample (10 µL) was injected using a 0.45-µm Ministart filter membrane at the same flow rate as
that of the standard.

3.6. Fourier Transform Infrared Spectroscopy (FTIR) Spectrum of Patatin

Primary structural changes between NP and HHP-treated patatin were determined using FTIR
spectroscopy. Lyophilized samples (NP and HHP-treated) were pulverized with potassium bromide
(KBr; 1:100 (w/w)) and pressed under hydraulic pressure at ~100 bars to obtain an even, clear pallet
disk of ~13-mm diameter. Infrared spectra were recorded on an IR spectrophotometer (Tensor-27
spectrometer; Bruker, Bremen, Germany) equipped with an attenuated total reflection ATR system
(MKII Golden Gate; Specac, Orpington, UK) and a deuterated triglycine sulfate detector (Nicolet,
Thermo Fisher Scientific). Spectra in the range of 4000 cm−1 to 400 cm−1 were obtained with an average
of 64 scans and a resolution of 4 cm−1 at room temperature. Each spectrum was baseline-corrected
against a blank (KBr only). The absorption peaks were fixed using spectrometer-coupled software
OPUS version 6.5 (Bruker).

3.7. Differential Scanning Calorimetry (DSC)

The thermal denaturation and stability of NP and HHP-treated patatin were analyzed using
a differential scanning calorimeter (Q200; TA Instruments, New Castle, DE, USA) [67]. NP and
HHP-treated patatin were accurately weighed (≤1 mg each), followed by transfer to an aluminum pan
with 10 µL of 0.05 M phosphate buffer (pH 7.0) and mixing to uniformity. Pans containing slurries were
hermetically sealed prior to analysis. The calorimeter was calibrated using an empty pan containing
10 µL of 0.05 M phosphate buffer (pH 7.0) as a reference. Samples were heated at a programmed rate
of 20 ◦C to 95 ◦C at 5 ◦C·min−1 intervals. The onset (Ton), peak, denaturation (Td2), and off-set (Toff)
temperatures, as well as the enthalpies of denaturation (∆H), were recorded from the thermogram
using Universal Analysis 2000 software (TA Instruments).

3.8. Circular Dichroism (CD)

CD allows the study of protein stability, folding, and interactions. CD measurements were
performed using a MS-450 spectropolarimeter (BioLogic Science Instruments, Grenoble, France).
All samples (0.25 mg·mL−1) were prepared in 10 mM phosphate buffer (pH 7.0). Far-UV CD spectra
were recorded as the average of triplicate scans (190–240 nm) in a 0.1 cm path-length quartz cuvette
using a scan speed of 1000 nm·min−1, a wavelength step of 1 nm, and a response time of 0.5 s. Input unit
was
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Analysis program DICHROWEB [68]. The algorithm and reference database used were CONTIN and
Set7, respectively.

3.9. Surface Hydrophobicity (Ho)

The Ho of NP and HHP-treated patatin was measured using 1-anilino-8-naphthalene sulfonate
(ANS) as the hydrophobic fluorescence probe [69]. ANS solution (8 mM) was prepared in 10 mM
phosphate buffer (pH 7.0), and protein solutions (4 mL) at various concentrations from 0.005% to 0.025%
(w/v) in 10 mM phosphate buffer (pH 7.0) were thoroughly mixed with 20 mL of freshly prepared ANS.
The mixtures were shaken vigorously and stored for 10 min in the dark. The fluorescence intensity (FI)
of each sample was measured at 390 nm (excitation), and emission within the range 300 nm to 800 nm
was recorded using a fluorometer (F-4500; Hitachi, Tokyo, Japan). Net FI of each solution (FINet) was
calculated as:

FINet = FI of protein dilution blank − FI of protein solution with ANS

The initial slope of FI versus protein concentration (%; w/v) was calculated using linear regression
analysis and used as an index of Ho.

3.10. Determination of Free Sulfhydryl Groups

NP and HHP-treated samples were determined using Ellman’s reagent according to the method
of Beveridge et al. [70], with slight modifications. NP and HHP-treated samples (4 mg·mL−1)
were prepared in 0.086 M tris-glycine buffer (0.09 M glycine, 0.004 M EDTA, and 8 M urea; pH
8.0). An aliquot (3 mL) of the sample was then mixed with 40 µL Ellman’s reagent (4 mg·mL−1

of 5,5′-dithiobis-[2-nitrobenzoic acid]) in tris-glycine buffer. The mixture was incubated at room
temperature for 30 min, followed by centrifugation at 1000× g for 5 min. The absorbance of the
mixture was measured at 412 nm using a UV-Vis spectrophotometer, with tris-glycine buffer used
as a blank. Results consisted of the absorbance value divided by the molar extinction coefficient
of 13,600 mol·L−1·cm, and free-sulfhydryl (SH) content was expressed as µmol·g−1 of protein.
All measurements were conducted in triplicate.

3.11. DPPH-Radical-Scavenging Activity Assay

The DPPH-radical-scavenging activity of patatin was measured according to the method described
by Zhang et al. [71], with modifications. Each sample (1 mL; 2, 3, and 4 mg·mL−1) was added to 2 mL
of freshly prepared DPPH solution (0.1 mM in 95% ethanol). The mixture was vortexed using a mixer
(WH-2 vortex Mixer; Huxi Analysis Instrument Factory Co., Ltd., Shanghai, China) and incubated
in the dark at 27 ◦C for 30 min. The absorbance of each solution was measured at 517 nm using
a UV-vis spectrophotometer (Persee TU-1810 UV-vis; Persee Instruments Co. Ltd., Beijing, China) at
room temperature. The lower absorbance of the reaction mixture indicated higher radical-scavenging
activity. Radical-scavenging activity was calculated as the percentage of DPPH discoloration using the
following equation:

DPPH-radical-scavenging activity % = 100 × [1 − AE/AD]

where “AE” represents the solution absorbance at 517 nm when 1 mL of each patatin solution was
mixed with 2 mL of 0.1 mmol·L−1 DPPH solution after incubation (30 min) at room temperature, and
“AD” represents the absorbance of 2 mL of 0.1 mmol·L−1 DPPH solution with 1 mL Milli-Q H2O.

3.12. Oxygen-Radical Absorbance Capacity (ORAC) Assay

An ORAC assay was performed according to the method described by Prior et al. [72]. Phosphate
buffer (0.075 M; pH 7.4) was used as a diluent to prepare all reagents and samples. Briefly, sample
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solutions (20 µL) at different concentrations (1, 2, 3 and 4 mg·mL−1) were added to 20 µL phosphate
buffer in 96-well microtiter plates. Subsequently, 20 µL sodium fluorescein solution (63 nmol·L−1) was
added to each well, followed by incubation at 37 ◦C for 15 min. After incubation, 140 µL of freshly
prepared AAPH (18.28 mmol·L−1) solution was pipetted into the duplicate wells, whereas other
duplicate wells were diluted with 140 µL of phosphate buffer (0.075 M; pH 7.4) alone. After 10 min of
vigorous shaking, fluorescence intensity was measured using a ChameleonTM V multi-label microplate
reader (Hidex, Turku, Finland). The system was set to fluorescence mode, and the fluorescence intensity
of each well was recorded 60 times at 2-min intervals. The excitation and emission filter wavelengths
were set at 485 nm and 535 nm, and the detection temperature was kept constant at 37 ◦C.

The fluorescence intensity of each sample was determined without the effect of AAPH (i.e., AAPH
solution was replaced by an equal amount of phosphate buffer) in order to calculate the relative
fluorescence intensity using Equation (1). The relative fluorescence intensity was used to calculate
the area under the curve (AUC) using the approximate integration method shown in formula (2).
ORAC values were expressed as the net area under the curve (netAUC) between the samples and the
blank as shown in Equation (3). A calibration curve for the trolox standards (at concentrations of 5,
10, 20, 40 and 60 µg·mL−1) was prepared. The linear regression equation was y = 0.8898x + 2.5805
(R2 = 0.9929). ORAC values of the samples were expressed as µg Trolox equivalent per 100 g of sample
(µg TE 100 g−1). The results were interpreted according to the ORAC equation as follows:

Fi = fi(+AAPH)÷ fi(−AAPH) (1)

AUC = ∆t× F0 + F1 . . . . . . . . . + Fn (2)

net AUC = AUCsample −AUCblank (3)

where fi(+AAPH) represents the fluorescence intensity of the reaction solution containing the AAPH
solution, fi(−AAPH) represents the fluorescence intensity of the reaction solution without AAPH,
and Fi represents the relative fluorescence intensity of the reaction solution. The AUC corresponds
to the relative fluorescence decay, and (∆t) represents the interval time, with ∆t in this study at 2 h.
AUCsample and AUCblank represent the AUCs of the sample and the blank, respectively, and net AUC
represents the net AUC between the sample and the blank.

3.13. Ferrous Ion-Chelating Activity

Determination of ferrous ion-chelation activity was performed according to the method of
Miao et al. [73] and at different concentrations of NP and HHP-treated patatin (1, 2, 3 and 4 mg·mL−1).
Each sample (600 µL) was mixed with freshly prepared FeSO4 (60 µL) and 2.42 mL Milli-Q H2O and
incubated for 30 min at room temperature with continuous shaking (80 rpm). After incubation, 120 µL
of 5 mM ferrozine solution was added to the mixture, and decolorization due to Fe2+ dissociation was
monitored by determining the absorbance at 532 nm. Milli-Q H2O and EDTA were used as negative
and positive controls, respectively. The percentage of inhibition of ferrozine–Fe2+ complex formation
was determined using the following formula:

Iron (II) Chelating activity (%) =

[
(Blank absorbance – Sample absorbance)

Blank absorbance

]
× 100 (4)

3.14. Statistical Analysis

Results were expressed as the mean ± standard deviation (SD) of triplicate experiments unless
otherwise stated. GraphPad Prism software version 5.0 (GraphPad Software; San Diego, CA, USA) and
SAS 8.1 software (SAS Institute, Cary, NC, USA) were used for all statistical analyses and to generate
data plots. OriginPro 8.5.1 (Origin Lab Corporation, Wellesley Hills, MA, USA) was used to plot FTIR
spectra. Statistical significance was determined at p < 0.05.
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4. Conclusions

Patatin was effectively isolated and purified from PFJ and modified by HHP treatment
(250–550 MPa). The effects of HHP treatment on the structure, composition, heat profile, and
antioxidant potential indicated significant changes in patatin structure and physical properties, which
enhanced its physicochemical behavior. HHP treatment also enhanced the antioxidant potential of
patatin according to results measuring DPPH-radical-scavenging ability and ORAC. Iron-chelation
activity was also improved significantly (p < 0.05) along with increases in HHP treatment. Furthermore,
we observed significant enhancement of antioxidant potential in HHP-treated patatin as compared
with that observed in the NP. Our findings suggested that pressurization might significantly contribute
to patatin stabilization. The structural, thermal, and bio-functional properties were dependent upon
the intensity of HHP treatment. Therefore, this suggested that patatin from S. tuberosum L. might
constitute a potential antioxidant for use in enhancing human health. Moreover, our findings revealed
the potential application of HHP treatment as an economical and effective means of modification
that might contribute to the conversion of certain proteins into value-added ingredients. Despite
this progress, there remain many unanswered questions and unexplained avenues of research to
be explored.
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