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1. Introduction

Fungi from the genus Acremonium isolated from both terrestrial or marine sources have been
reported to produce meroterpenoids, alkaloids, peptides or oxygenated metabolites [1–6]. Recently,
we reported the structure elucidation, including a stereochemical investigation, of the meroterpenoid
acremine P (1) (Chart 1) from a strain of Acremonium persicinum isolated from the marine sponge
Anomoianthella rubra, obtained offshore from Mooloolaba in southeast Queensland. The chemical
correlation of acremine P with its co-metabolite acremine A (2) by catalytic hydrogenation under mild
conditions (H2, Pd/C, 24 h) was instrumental in defining the carbon framework and partial relative
configuration of acremine P, while the absolute configuration at C-6 was determined by NMR analysis
of O-methylmandelate (MPA) ester derivatives. The remaining stereochemical elements were resolved
by evaluation of NOESY data, molecular modeling and selected heteronuclear coupling constant
values [7].
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guiding the choice of diastereomer for structure confirmation by total synthesis [8–10]. Recent examples
which highlight the role of computed chemical shift values in the stereochemical evaluation of natural
products include vannusal B [11] and nobilisitine [12]. The structural revision of acremine A likewise
necessitated a review of its overall relative stereochemistry, and this was informed by nOe data as well
as molecular modeling. Finally, a biosynthetic pathway based on oxidative cleavage of a didehydro
analogue of acremine Q is proposed.

2. Results and Discussions

The structures of acremines P and Q were examined using a combination quantum
chemical/empirical approach (Spartan, Wavefunction Inc., Irvine, CA, USA) [13] that provides
13C-NMR shifts with a mean absolute error (MAE) of ~1.6 ppm. The calculations involve
Boltzmann averaging from a ωB97X-V/6-311+G(2df,2p) model using conformer geometries from
the ωB97X-D/6-31G* model and chemical shifts from ωB97X-D/6-31G*, but are also empirically
corrected to account for the local environment. There was close agreement between the calculated
vs. experimental 13C-NMR shift values for acremine Q (3), thereby corroborating the structure and
stereochemistry of the metabolite as previously published. For acremine P, originally assigned structure
2, the preliminary computational search for conformers revealed a single dominant conformer, with the
closest alternative being upwards of 10 kJ/mol higher in energy and thus not contributing significantly
to the equilibrium mixture. As shown in Table 1, there was a significant mismatching of the calculated
vs. experimental 13C-NMR shift values for acremine P, with deviations of 20.4 ppm for the alkene
carbon (C-2) and 23.0 ppm for the hydroxymethine carbon (C-7). Consequently, the published structure
for acremine P could not be correct. While deviations of 3 ppm between the experimental and calculated
values are considered acceptable, even up to 5–6 ppm for carbonyl groups, a deviation of >10 ppm
between experimental and calculated values is diagnostic of an incorrect structure [8,14].

Table 1. Comparison of experimental vs. calculated 13C-NMR chemical shifts for acremine P (4). 1

Carbon Exptl. Calc. (1) Calc. (4a) Calc. (4b) Calc. (4c) Calc. (4d)

1 192.3, C 197.6 193.3 193.5 193.0 192.3
2 102.4, CH 122.8 108.7 104.0 108.7 102.4
3 162.5, C 159.0 164.6 163.3 165.5 162.5
4 99.0, C 108.0 101.3 116.5 101.0 99.0
5 59.1, CH 55.5 60.3 58.7 60.4 59.1
6 57.4, C 57.2 57.3 57.5 57.7 57.4
7 95.0, CH 72.0 95.9 99.4 98.8 95.0
8 86.2, CH 89.0 88.7 82.2 82.0 86.2
9 78.2, C 81.5 80.4 80.8 83.4 78.2
10 25.8, CH3 21.9 23.9 27.6 26.2 25.8
11 23.4, CH3 21.9 23.2 23.1 22.9 23.4
12 14.4, CH3 13.4 15.9 15.8 15.9 14.5

1 Carbon numbering selected so that carbon chemical shift values align with those provided in Reference [7].

A re-evaluation of the 13C-NMR shift values suggested that the signal at 95.0 ppm (C-7),
previously assigned to a secondary alcohol center, was instead associated with an acetal or lactol
center. Furthermore, the alkene carbon signals (102.4 and 162.5 ppm) indicated a polarized double
bond, likely enolized given the number of oxygen atoms in the molecule. With this information, three
candidate structures (4)–(6) (Chart 2), each of which contained a lactol functionality, were assessed
against the previously reported HMBC data. In acremine P, the lactol proton at δH 5.83 (d) and the
signal at ™H 4.15 (s) for the hydroxymethine proton (H-8) each showed HMBC bond correlations to
the acetal carbon at 99.0 ppm. In isomer 4, these correspond to three bond correlations, whereas in
isomers 5 and 6, the lactol proton and the hydroxymethine proton, respectively, were each four bonds
distant from the acetal center. Furthermore, in planar structure 5, an HMBC between the lactol proton
and the alkene C-3 at 162.5 ppm would be anticipated.
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Therefore, planar structure 3 was considered further with DFT computations undertaken on four
diastereomers (4a–4d) (Chart 3) following a conformational search on each of the four candidates.
Diastereomers 4a and 4d had two contributing conformers, while 4b and 4c each had one contributing
conformer. Three of the four candidates were reasonable matches to the 13C data, suggesting that the
correct planar structure of acremine P had been elucidated; further, these data enabled diastereomer
4b, for which the C-4 chemical shift was calculated at 116.5 ppm compared to an experimental value of
99.0 ppm, to be eliminated. It was not feasible to use the computational data to distinguish between
the three remaining diastereomers owing to the similarity of their 13C-NMR shift values, and also to
the errors inevitably inherent to the quantum mechanical calculations. It was noted that the quantum
mechanical calculations revealed stereoisomers 4a and 4d to be the lowest in energy.

Molecules 2017, 22, 521 3 of 5 

 

structures (4)–(6) (Chart 2), each of which contained a lactol functionality, were assessed against the 
previously reported HMBC data. In acremine P, the lactol proton at δH 5.83 (d) and the signal at ™H 4.15 
(s) for the hydroxymethine proton (H-8) each showed HMBC bond correlations to the acetal carbon at 
99.0 ppm. In isomer 4, these correspond to three bond correlations, whereas in isomers 5 and 6, the lactol 
proton and the hydroxymethine proton, respectively, were each four bonds distant from the acetal 
center. Furthermore, in planar structure 5, an HMBC between the lactol proton and the alkene C-3 at 
162.5 ppm would be anticipated. 

Therefore, planar structure 3 was considered further with DFT computations undertaken on four 
diastereomers (4a–4d) (Chart 3) following a conformational search on each of the four candidates. 
Diastereomers 4a and 4d had two contributing conformers, while 4b and 4c each had one contributing 
conformer. Three of the four candidates were reasonable matches to the 13C data, suggesting that the 
correct planar structure of acremine P had been elucidated; further, these data enabled diastereomer 4b, 
for which the C-4 chemical shift was calculated at 116.5 ppm compared to an experimental value of  
99.0 ppm, to be eliminated. It was not feasible to use the computational data to distinguish between the 
three remaining diastereomers owing to the similarity of their 13C-NMR shift values, and also to the 
errors inevitably inherent to the quantum mechanical calculations. It was noted that the quantum 
mechanical calculations revealed stereoisomers 4a and 4d to be the lowest in energy 

 
Chart 3. Candidate diastereomers of acremine P. 

The three remaining stereoisomers could be further distinguished by the zero coupling between the 
vicinal lactol and hydroxymethine protons, which necessitated a bond angle close to 90°. Selected 
homonuclear (H7–H8) couplings were calculated using the methods of Kutateladze et al. [15], yielding 
values of 0.2, 4.1, 3.9 and 0.3 Hz for JH7–H8 in stereoisomers 4a–4b, respectively. The two stereoisomers  
(4a, 4d) thus fitted the coupling data. It was noted that all four stereoisomers showed a heteronuclear 
(C4-H8) J value close to 5 Hz, and so these data did not distinguish 4a from 4d. NOe data also supported 
the choice of stereoisomer, in that from their 3D stereostructures both isomers 4a and 4d were expected 
to show an nOe between the lactol proton and one only of the two methyl groups; in contrast, isomers 
4b and 4c were each expected to show nOes between the lactol proton and both methyl groups.  
In acremine P, the lactol proton at δH 5.83 shows an nOe to the methyl signal at δH 1.43 for H-11, but not 
to the methyl signal at δH 1.47 (Figure 1). The calculated chemical shifts were further examined using the 
DP4+ computational approach developed by Sarotti et al. to assign the most probable diastereomer [16]. 
Using the 13C-NMR data alone, the probability was 99.7% that 4d was the correct diastereomer. 

 
Figure 1. Three-dimensional image of stereoisomer 4d showing nOe to Me-11. 

E-10 

H-7 

Me-11 

H-8 

Me-10 

Chart 3. Candidate diastereomers of acremine P.

The three remaining stereoisomers could be further distinguished by the zero coupling between
the vicinal lactol and hydroxymethine protons, which necessitated a bond angle close to 90◦. Selected
homonuclear (H7–H8) couplings were calculated using the methods of Kutateladze et al. [15], yielding
values of 0.2, 4.1, 3.9 and 0.3 Hz for JH7–H8 in stereoisomers 4a–4b, respectively. The two stereoisomers
(4a, 4d) thus fitted the coupling data. It was noted that all four stereoisomers showed a heteronuclear
(C4-H8) J value close to 5 Hz, and so these data did not distinguish 4a from 4d. NOe data also
supported the choice of stereoisomer, in that from their 3D stereostructures both isomers 4a and 4d
were expected to show an nOe between the lactol proton and one only of the two methyl groups; in
contrast, isomers 4b and 4c were each expected to show nOes between the lactol proton and both
methyl groups. In acremine P, the lactol proton at δH 5.83 shows an nOe to the methyl signal at δH

1.43 for H-11, but not to the methyl signal at δH 1.47 (Figure 1). The calculated chemical shifts were
further examined using the DP4+ computational approach developed by Sarotti et al. to assign the
most probable diastereomer [16]. Using the 13C-NMR data alone, the probability was 99.7% that 4d
was the correct diastereomer.
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In our earlier publication [7], we reported that the hydrogenation of acremine P yielded acremine
A (2) as the sole product, and used this information to specify the absolute configuration at C-6 of
acremine P; clearly this information must be in error since the dioxolane ring of the revised structure
is incompatible with the tetrahydrofuran ring previously ascribed to acremine P. Nevertheless, we
anticipated that acremine P would have the same 6R configuration as its co-metabolite acremine A.
Scheme 1 shows a plausible biosynthetic route to the revised structure of acremine P. A didehydro
derivative, generated by the action of a P450 enzyme on the co-metabolite acremine Q, could undergo
oxidative ring cleavage of the C-3/C7 double bond [17], thereby generating an aldehyde group at the
original C-7 position. The 1,3-dioxolane ring is formed by cyclization of the C-4 hydroxy group onto
the aldehyde, and would be anticipated to provide the thermodynamically most stable lactol product.
Finally, nucleophilic attack of the C-9 hydroxy group onto the C-3 carbonyl generates a hemiacetal
intermediate; the subsequent dehydration step which generates an enol ether is facilitated by the
associated formation of an α,β-unsaturated carbonyl.
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