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Abstract: In this study, novel phthalonitrile 3 and their corresponding metal-free 4 and
metallophthalocyanine derivatives 5-7 bearing 2-isopropenyl-4-methoxy-1-methylbenzene groups
were synthesized and characterized. 3,4-Dihydropyrimidinones have been synthesized by a modified
Biginelli-type reaction with various metallophthalocyanines 5-7 as catalysts. Compared to the
classical Biginielli reaction, the new method has the advantages of good yield and short reaction time.
Among the various metallophthalocyanines studied, cobalt (II)-phthalocyanine was found to be most
active for this transformation. The newly prepared compounds were characterized using elemental
analyses, MS, IR, 'H/13C-NMR and UV-Vis spectroscopy. In addition; the 3,4-dihydropyrimidinones
(DHPMs) 8-12 were investigated for antimicrobial activities and revealed good activity. The minimum
inhibitory concentration (MIC) was determined by the microdilution technique in Mueller-Hinton
broth. The MICs were recorded after 24 hours of incubation at 37 °C. These results are promising,
showing these compounds are biologically active.

Keywords: Biginelli reaction; dihydropyrimidinones; metallophthalocyanine derivatives; aggregation;
antimicrobial activity

1. Introduction

In 1893 Biginelli reported the first synthesis of dihydropyrimidines of type 8-12 by a simple
one-pot condensation reaction of ethyl acetoacetate, benzaldehyde, and urea [1,2]. In the following
decades the original cyclocondensation reaction has been extended widely to include variations in
all three components, allowing access to a large number of multifunctionalized dihydropyrimidine
derivatives [3]. Largely ignored for many years, the Biginelli reaction has recently attracted a great deal
of renewed attention, and several improved procedures for the preparation of dihydropyrimidines of
type 8-12 have been reported within the past few years [4,5]. Various solid phase modifications of the
Biginelli reaction suitable for combinatorial chemistry have also been described [6-9]. The Biginelli
reaction is a multiple-component chemical reaction that creates 3,4-dihydropyrimidin-2(1H)-ones
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from ethyl acetoacetate, an aryl aldehyde (such as benzaldehyde ), and urea [10].The reaction can be
catalyzed by Brensted acids and/or by Lewis acids such as copper(Il) trifluoroacetate hydrate and
boron trifluoride. Furthemore running this reaction under heterogeneous condition is more promising
since it involves the facile recovery and reuse of the expensive catalyst [11-20].

In the current work, we report an efficient procedure for the synthesis of 3,4-dihydropyrimidin-
2(1H)-ones through one pot cyclocondensation of aldehyde, urea and ethylacetate compounds using
metallophthalocyanines as reusable heterogeneous catalysts. Additionally their antibacterial activities
against Gram-positive as well as gram-negative bacteria followed by MIC determination were
evaluated (Scheme 1).
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Scheme 1. General one-pot Biginelli reaction to generate 3,4-dihydropyrimidinones 8-12.

2. Results

Acetylation of hydroquinone can be achieved by treating hydroquinone with an acid chloride
or anhydride in the presence of a Lewis acid. Rosenmund and Lohfert reported the synthesis of
quinacetophenone 1 through the reaction of hydroquinone with acetyl chloride in the presence of
aluminum chloride under thermal conditions [21]. The following text describes the synthesis of the
phthalonitrile ligand 3, and its applications. The non-hydrogen bonded, less crowded hydroxyl group
of quinacetophenone 1 can be methylated regioselectively by the reaction with Me,COj3 in the presence
of potassium carbonate yielding 2-hydroxy-5-methoxyacetophenone 2 in moderate yield (Scheme 2).
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Scheme 2. Regioselective methylation of quinacetophenone 1.

Spectral data were coherent with the proposed structure 2. According to the IR spectral results of
the compound 2, characteristic OH stretching vibration was observed at 3315 cm™!. In the 'H-NMR
spectrum of 2, the disappearance of one OH peak of 1 and the presence of additional methylic
protons at 4 2.2 ppm indicated that the synthesis of compound 2 was accomplished. The signals of
aromatic protons were observed at § 7.33-7.85 ppm. In 1*C-NMR of 2, the new peak at 50.8 ppm
and 195.6 ppm belonging to OCHj3 and the (CO) lactone carbons indicated that the acylation has
occurred. Mass spectrum of compound 2 indicated that target compound was successfully prepared.
Also elemental analysis data of compound 3 was satisfactory.
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The procedure for the synthesis of compound 3 was similar to that used for many examples in the
literature [22,23]. Phthalonitrile derivative 3 was prepared from 4-nitrophthalonitrile by nucleophilic
substitution of the nitro group with the OH function of compound 2 via SNAr reaction in polar aprotic
dry solvents (DMSO or DMF) [24,25] in the presence of potassium carbonate as basic catalyst K,COs3
with 90% yield (Scheme 3).
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Scheme 3. Synthesis of compound 3.

The structures of new compound 3 were confirmed by the combination of IR, 'H-NMR, 3*C-NMR
and elemental analysis. Spectral investigations of the dinitrile derivative show good agreement with
proposed structure of compound 3. The IR spectrum of compound 3 had a strong acetyl C=0 vibration
absorption at about 1720 cm~! and displayed absorption at about 2230 cm ! assigned to CN function.
Furthermore, the formation of compound 3 was obviously verified by the disappearance of the OH
vibration of compound 2 and NO, vibration of 4-nitrophthalonitrile. In the 'H-NMR spectrum of 3,
the OH group of compound 2 disappeared, as expected, and the appearance of new signals confirmed
the proposed structure. The signals of aromatic protons were observed at § 7.36-8.26 ppm.'3C-NMR
spectral data of 3 show significant peaks for nitriles, OCH3 and COCHj3 carbon atoms at 4 116.07 ppm,
113.25 ppm, 57.8 ppm and 175.5 ppm respectively.

The self-condensation of the dicyanobenzene compound 3 in a high-boiling solvent 2-(dimethylamino)
ethanol (DMAE) in the presence of a few drops 1,8-diazabicyclo[5.4.0Jundec-7-ene (DBU) at 150 °C
under a nitrogen atmosphere for 24 h afforded unmetalled phthalocyanine compound 4 with moderate
yield after purification by column chromatography method utilizing chloroform /methanol (91:9) as

eluent (Scheme 4).
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Scheme 4. Synthesis of unmetalled phthalocyanine compound 4.
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The structure of metal-free phthalocyanine compound 4 was verified by FT-IR, 'H-NMR and
UV-Vis spectroscopic methods, as well as by elemental analysis. All the analytical spectral data are
consistent with the predicted structure.

The disappearance of the CN stretching vibration on the IR spectra of phthalonitrile compound 3
suggested the formation of compound 4. In addition in the IR spectrum of compound 4, stretching
vibrations of the acetyl C=O vibration at 1725 cm~! and aromatic CH at 3056 cm ™! appeared at
expected frequencies. In the 'H-NMR spectrum of compound 4, the aromatic protons appeared at 5:
7.05-8.55 ppm, the aliphatic CH3 protons appeared at 2.94 ppm and the methoxylic protons appeared
at : 3.68 ppm.

Metallophthalocyanines 5, 6, and 7 were obtained from the reaction of phthalonitrile derivative
3 with corresponding anhydrous metal salts CuCl,-2H,0O for complex 5, CoCl,-6H,0O for complex 6,
and ZnCl, for complex 7 in 2-(dimethylamino) ethanol and DBU at 170 °C for 48 h under a nitrogen
atmosphere after purification by column chromatography method utilizing chloroform/methanol
(80:20) as eluent (Scheme 5).
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Scheme 5. Synthesis of metallophthalocyanine derivatives 5-7.

Characterization of the phthalocyanine compounds was achieved by analysis of spectroscopic
data from NMR (for complexe 6), IR, UV-vis, elemental analysis and mass spectroscopy.

In the IR spectra of the phthalocyanines 5-7, the proof of the cyclotetramerization was the absence
of the CN stretching vibration observed at 2230 cm~! of the compound 3. The main differences
between metal-free (compound 4) and metallophthalocyanines 5-7 are inner cores NH stretching
vibrations observed at 3406 cm ! in the IR spectra, respectively.

'H-NMR and "*C-NMR spectra of the metallophthalocyanines (M: Cu, Co) were precluded due
to having paramagnetic metal atom [26,27]. Elemental analysis results of all compounds show good
agreement with the calculated values.

'H-NMR spectra of the Zn phthalocyanine derivative 6 were obtained in DMSO-d, at room
temperature. The aromatic protons were observed at 6 7.36-8.26 ppm.

2.1. Ground State Electronic Absorption and Aggregation Properties

The spectral profiles of the three phthalocyanine compounds 5-7 were recorded in three organic
solvents DMF, DMSO and THEF. The spectra of the phthalocyanines 5-7 in various organic solvents are
presented in Figures 1-3.
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Figure 1. Absorption spectra of MPc 5 in different solvents at the concentration (Molar, 10~ M).
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Figure 2. Absorption spectra of MPc 6 in different solvents at the concentration (Molar, 107> M).
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Figure 3. Absorption spectra of MPc 7 in different solvents at the concentration (Molar, 10~ M).

It is obvious that there is no considerable change in absorption profile of the molecules with
variation in polarity of the medium. The given compounds 5 and 6 possess bathochromic spectral
shifts (positive solvatochromism) while moving from least polar solvent (DMSO) to the most polar
solvent (THF). This is attributed to the fact that molecule in the ground state and excited state possesses
different polarities. Absorption and extinction coefficients are presented in Table 1.

Table 1. Absorption and extinction coefficients of compounds 5-7.

Solvent Pcs Bandes (Q), Amax (nm) (log ¢) Bandes (B), Amax (nm) (log ¢)
5 615 (4.591); 697 (5.135) 340 (5.033)
DMF 6 636 (4.632); 697 (5.064) 343 (4.834)
7 614 (4.436); 675 (4.968) 332 (4.645)
5 622 (4.462); 708 (5.054) 334 (4.728)
DMSO 6 631 (4.337); 701 (5.004) 340 (4.526)
7 614 (4.246); 693 (4.885) 351 (4.403)

They exhibited typical electronic absorption with single intense 7t-r* transition, referred to as the
Q band, much intense and characteristic for phthalocyanines, and another less intense and broader
7-1* transition which is so-called Soret band (B).

2.2. Aggregations Studies

In this study, the aggregation behavior of complexes 5-7 was examined at different concentrations
in DMSO [28-31]. (Figure 4 for complex 5, Figure 5 for complex 6 and Figure 6 for complex 7).
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Figure 4. The aggregation behavior of phthalocyanine 5 in DMSO.
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Figure 5. The aggregation behavior of phthalocyanine 6 in DMSO.

The aggregation behaviours of Pcs (5-7) were investigated at different concentrations ranging
from 1.20 x 107° to 14 x 10~ M in DMSO. It was observed that all of the Pcs (5-7) are consistent with
the Beer-Lambert law for these concentration ranges.
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Figure 6. The aggregation behavior of phthalocyanine 7 in DMSO.

2.3. Catalytic Eficiency of Metallophthalocyanines 5-7

8 of 14

The cyclocondensation of benzaldehyde, ethylacetoacetate and urea was studied by using
phthalocyanines 5-7 as catalysts. These results are summarized in Table 2.

Table 2. Biginelli condensation using different metallophthalocyanines 5-7 as catalysts under different

reaction conditions.

Entry Substrate MPc  Reaction Time (h) Solvent Catalyst (mol %) Yield ? (%)
1 benzaldehyde 5 15 DMC 2 98
2 benzaldehyde 6 3 DMC 2 90
3 benzaldehyde 7 2 DMC 2 85
4 3-methoxy benzaldehyde 5 2.5 EtOH 2 80
5 3-methoxy benzaldehyde 5 3 THF 2 75
6 3-methoxy benzaldehyde 5 35 CH3COCH;3 5 98
7 3-methoxy benzaldehyde 5 1 DMC 10 98
8 3-methoxy benzaldehyde 5 4 DMC - trace

Reaction conditions: aldehyde (5 mmol), urea (5 mmol), ethyl acetoacetate (5 mmol), solvent (5 mL) and catalyst

(2-10 mol %) at refluxing temperature.  Isolated yields. DMC: dimethylcarbonate.

The DMC was found to be the better solvent in terms of reaction time and yield than all other
solvents tested such as THF, ethanol and acetone. Furthermore a variety of different aromatic aldehydes
were reacted with ethylacetoacetate and urea in the presence of a catalytic amount of Co(II)Pc 5 under
similar reaction conditions. Results of these experiments are given in Table 3.

The data obtained from the 'H-NMR spectrum of compound 9 provided the characteristic
chemical shifts for the structures, as expected. The present protocol provides a high yielding,
efficient and improved route for the synthesis of dihydropyrimidinones. Further, Co(II)Pc 5 catalyst
is better than the usual H*, ZnCl, and ammonium salt catalysts used previously for the synthesis of
(DHPMs) [32,33].



Molecules 2017, 22, 605 9of 14

Table 3. Co (II)Pc-catalyzed one pot synthesis of dihydropyrimidinones 8-12.

Substrate MPc DHPM Time (h) Yield 2 (%)
Benzaldehyde Co(I)Pc 8 3 78
3-Methoxybenzaldehyde Co(I)Pc 9 4 92
4-Methylbenzaldehyde Co(II)Pc 10 2 96
4-Bromobenzaldehyde Co(II)Pc 11 2 92
4-Nitrobenzaldehyde Co(Il)Pc 12 3 85
¢ Isolated yields.

The new compounds 8-12 were characterized by IR, 'H-NMR spectroscopies and elemental
analysis. The analyses are consistent with the predicted structures as shown in the experimental section.

2.4. Recycling Performance of the Catalysts 5-7

After separation of the products, the filtrate containing the catalyst was reused in the next
run without further purification. The data listed in Table 4 show that the Co(Il)-phthalocyanine
5 could be reused three times without a notable decrease of catalytic activity. The easy recycling
performance is also an attractive property of the Co(II)-phthalocyanine 5 for environmental protection
and economic reasons.

Table 4. Results of reusability of the Co(II)Pc.

Entry Catalyst (mol) Reaction Time (h) Yield 2 (%)

1 2 1 98
2 Cyclel 1 90
3 Cycle2 1 85
4 Cycle3 1 95

Cycle 1, 2, 3 indicate the reusability of the catalyst recovered from experiment 1. Reaction condition: Benzaldehyde
(5 mmol), ethyl acetoacetate (5 mmol), urea (5 mmol) and catalyst (2 mol %) in refluxing DMC. ? Isolated yields.

The obtained results from Table 4 indicate that the catalyst can be reused as such without
further treatment.

2.5. Antimicrobial Activity

The antimicrobial activity of the tested compounds 8-12 was evaluated against common pathogenic
bacteria. They are are given in Table 5. Significant antimicrobial activity (MIC = 0.312 mg/mL) was
observed against M. luteus. The antibiotic activity is no good (barely miliMolar) .They are slightly
active. The best compound is not from a MCR.



Molecules 2017, 22, 605 10 of 14

Table 5. Determination of the Minimum Inhibitory Concentrations (MICs) expressed in mg/mL.

Indicator Microorganism Compounds MIC (mg/mL)

8 10

. 9 1.25
Micrococcus luteus 10 4
LB 14110 1 15
12 8
8 5

9 2.5
Staphylococcus aureus 10 5
ATCC 6538 11 4

12
8 5
L 9 0.625

Listeria monocytogenes 10 _
ATCC 19117 11 5

12 3.5

8 10
. . 9 5
Salmonella Typhimurium 10 B
ATCC 14028 1 5
12 8

3. Experimental Section

3.1. General Information

All solvents and commercially available reagents were purchased from the suppliers and used
without further purification. H-NMR(300 MHz) and '*C-NMR(75 MHz) spectra were recorded
using (Bruker DPX 300, University of Almeria, Spain). Spectra were recorded in DMSO solutions
and chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS) as
the standard. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet,
m = multiplet signal. IR spectra were recorded on a 398 spectrophotometer (Perkin-Elmer, King Saud
University, Ryadh, Saudi Arabia). Elemental microanalysis was performed on an Elementar Vario El
III Carlo Erba 1108 elemental analyzer (INRAP, Sidi Thabet, Tunisia) and the values found were within
+0.3% of the theoretical values.

3.2. Synthesis of 4-(2-Acetyl-4-methoxyphenoxy)phthalonitrile (3)

To a stirred solution of 4-nitrophthalonitrile (0.38 g, 1.92 mmol) and 1-(2-hydroxy-5-methoxy-
phenyl)ethanone (0.55 g, 1.92 mmol) in anhydrous DMF (15 mL) was added portionwise finely
powdered anhydrous potassium carbonate (0.8 g, 5.76 mmol) and the resulting mixture was stirred
at room temperature for 24 h. The crude product was collected by filtration recrystallized from
THEF-petroleum ether to afford a white powder. Yield: 0.77 g (98%). m.p. = 400 °C. FT-IR (KBr) viax,
cm~1: 1305 (C-N), 1568 (C=C), 2230 (C=N), 3049 (C-H, aromatic). 'H-NMR & ppm: 7.35-8.26 (m,
6H, Harom), 3.60 (s, 3H, OCH3), 2.02 (s, 3H, CH3). >*C-NMR &: 19.9 (CH3), 116.07 (CN), 113.25 (CN),
116.4-135.4 (Carom). MS (LCMS-MS) m/z: Calc. 292.2; found: 292.2. Anal. Calc. for C17H1,03N5: C,
69.85%; H, 4.13%; N, 9.58%; found: C, 69.8%; H, 4.1%; N, 9.4%.

3.3. Synthesis of Metal-Free 4

Compound 3 (0.38 g, 1 mmol), dry N,N-dimethylaminoethanol (DMAE) (4 mL), three drops of
1,8-diazabicyclo[5.4.0Jlundec-7-ene (DBU) were placed in a standard a Schlenk tube under a nitrogen
atmosphere and the mixture was refluxed for 24 h at 150 °C. After cooling to room temperature, the
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reaction mixture was precipitated by the addition of ethanol and this green product was filtered off.
The raw product was purified by silica gel column chromatography. Yield: (75%). m.p. = 330 °C. FT-IR
(KBr) Vmax, cm~1: 3406 (N-H); 3056 (C-Harom); 1232 (C-N)arom; 1613 (C=C). UV /Vis (DMSO, Amax nm
(log ¢)): 340 (4.684), 605 (4.377), 624 (4.528), 658 (5.004), 697 (5.117). 'H-NMR & ppm: 7.05-8.55 (m, 24H,
Harom), 3.68 (s, 12H, OCH3), 2.94 (s, 12H, CH3). Calc. for (CgyH3gNgO15): calculated (C, 70.15%; H,
3.33%; N, 9.76%); found (C, 70.1%; H, 3.20%; N, 9.8%).

3.4. General Procedure for the Synthesis of Metallophthalocyanines 5-7

Compound 3 (0.24 mmol), 0.06 mmol of the corresponding metal salts (ZnCl,, CuCl,-2H,0,
CoCl,-6H,0), N,N-dimethylaminoethanol (DMAE) (4 mL) and 1,8-diazabicyclo [4.5.0]-undec-7-ene
(DBU) (3 drops) were added in a Schlenk tube. The mixture was heated at reflux temperature of 170 °C
for 48 h under a N; atmosphere. After cooling to room temperature, the precipitate was filtered off and
dried in vacuo over P,Os. The obtained green solid product was purified with column chromatography
on silica gel with chloroform/methanol (8:1) as eluent.

Co(II)Pc (5).Yield: (52%). m.p. =330 °C. FT-IR (KBr) vmax, em ™1 3024 (C-Harom); 1387 (C-C); 1270
(C-N); 1607 (C=C); 1480 (C=N); 902 (Co-N). UV /Vis (DMSO, Amax nm (log ¢)): 340 (5.033), 606 (4.648),
693 (5.243). Calc. for (Cg7H36NgO12Co): calculated (C, 66.83%; H, 3.01%; N, 9.30%); found (C, 66.8%;
H, 3.20%; N, 9.4%).

Zn(II)Pc (6). Elution solvent system: chloroform/methanol (100:3) as eluent. Yield: (66%). m.p. =330 °C.
FT-IR (KBr) Vmax, cm ™ : 3020 (C-Harom); 1390 (C-C); 1272 (C-N); 1602 (C=C); 1482 (C=N); 903 (Zn-N).
UV /Vis (DMSO, Amax nm (log ¢€)): 331 (4.924), 620 (4.653), 690 (5.169). Calc. for (Cs7H36NgO12Zn):
calculated (C, 66.48%; H, 2.99%; N, 9.25%); found (C, 66.5%; H, 3.10%; N, 9.3%).

Cu(1l)Pc (7). Yield: (39%). m.p. = 325 °C. FI-IR (KBr) Vmax, em ™1 3020 (C-Harom); 1385 (C-C); 1269
(C-N); 1606 (C=C); 1479 (C=N); 904 (Cu-N). UV /Vis (DMSO, Amax nm (log €)): 345 (4.818), 622 (4.526),
681 (5.074). Calc. for (Cg7H3¢NgO1,Cu): calculated (C, 66.58%; H, 3.00%; N, 9.27%); found (C, 66.5%;
H, 3.10%; N, 9.3%).

3.5. General Procedure for Preparation of Compounds 8-12

Ethyl acetoacetate (1 mmol), aldehyde (1 mmol) and urea or urea (1.5 mmol) was heated at reflux
for appropriate duration of time. After completion of the reaction as indicated by TLC (hexane/ethyl
acetate 8:2), the reaction mixture was brought to room temperature. The remaining solid material was
washed with hot ethyl acetate. The filtrate was concentrated and the solid product was recrystallized
from ethanol to give the pure product.

6-Methyl-2-oxo-4-phenyl-1,2,3 4-tetrahydropyrimidine-5—carboxylate (8). Yield: (78%). m.p. = 310 °C. IR
(KBr): Vimax (cm™1) = 3394 (NH); 3217 (NH); 3068 (NH); 1730 (C=0); 1660 (C=0); 1566 (C=C). 'H-NMR
5 ppm: 1.06 (t, 3H, CH3(a)); 2.24 (s, 3H, CH;z(b)); 3.85 (q, 2H, Hd); 6.74 (s, 1H, H3); 6.87 (s, 1H, Hy); 7.1
(s, 1H, Hg); '*C-NMR & ppm: 13.5 (CHz(b)); 16.6 (CH3(a)); 52.5 (Cp,); 60.7 (Cq); 109.8 (Cs); 141.6 (Cy);
158.7 (CO ester); 157.4 (Cy), 127.4-144.2(Carom)- Calc. for C14H 503N, C, 9.82%; H, 88.53%, N, 1.63%;
found: C 9.7%; H, 88.4%; N, 1.5%.

4-(3-Methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5—carboxylate (9).  Yield: (92%).
m.p. =220 °C. IR (KBr): vmax (cm 1) = 3361 (NH); 3221 (NH); 1725 (C=0); 1616 (C=0); 1581 (C=C).
'H-NMR & ppm: 1.14 (s,3H, (CHz(b)); 1.2 (s, 3H, (CH3(c)); 2,19 (s, 3H, CHs(a)); 4.50 (s, 2H, Hy); 6.72
(s, 1H, H3); 7.3-8.4 (m, 5H, Harom); 5.24 (s, 1H, Hg). 3C-NMR 6 ppm: 13.6 (CH3); 16.5 (CH3(b)); 42.1
(CH3z(a)); 52.4 (Cs); 60.6 (Cq); 109.6 (Cs); 140.7 (Cy); 159.6 (COester); 163,5 (C1); 127.5-139.4 (Carom),
176,4 (C3). Calc. for C15H;704N; C, 9.35%; H, 89.19%, N, 1.45%; found: C, 9.4%; H, 89.2%; N, 1.5%.

4-(3-Methylphenyl)-6-methyl-2-oxo-1,2,3 4-tetrahydropyrimidine-5—carboxylate (10).  Yield: (96%).
m.p. = 315 °C. IR (KBr): vmax (cm 1) = 3382 (NH); 3232 (NH); 1720 (C=0); 1652 (C=0); 1570 (C=C).
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'H-NMR & ppm: 1.03 (t, 3H, CH3(c)); 2.24 (s, 3H, CHz(b)); 3.42 (s, 3H, CHz(a)); 3.82 (q, 2H, Hy); 5.85 (s,
1H, Hb); 6,85 (dd, 1H, Hy'); 6.80 (s, 1H, Hy'); 7.1 (dd, 1H, Hy'); 7.25 (dd, 1H, Hz'); 7.6 (s, 1H, Hy); 8.7 (s,
1H, Hz). BC-NMR § ppm: 55.5 (OCH3); 16.4 (CHz(b)); 42.5 (CHs(a)); 52.7 (Cs); 60,4 (Cg); 109.5 (Cs);
140.6 (Cy4); 160.1 (COester); 156.5 (Cy); 127.3-139.1 (Carom). Calc. for C15H1703N, C, 9.36%; H, 89.18%, N,
1.45%; found: C, 9.4%; H, 89.2%; N, 1.5%.

4-(4-Bromophenyl)-6-methyl-2-oxo-1,2,3 4-tetrahydropyrimidine-5—carboxylate (11). Yield:  (92%).
m.p. = 315 °C. IR (KBr): Vmax (cm™!) = 3398 (NH); 3219 (NH); 3107 (NH); 1720 (C=0); 1631 (C=0);
1568 (C=C). 'H-NMR & ppm: 1.4 (t, 3H, CHj3(c)); 2.22 (s, 3H, CH3(b)); 2.14 (s, 6H, N(CH3),); 3.55 (q, 2H,
Hd); 5.85 (s, 1H, Hy); 8.65 (s, 1H, H3); 7.40 (s, 1H, Hy); 6.62-7.25 (m, 5H, Harom). *C-NMR & ppm:
16.5 (N(CH3),); 14.6 (CH3(b)); 42.5 (CH3(a)); 52.7 (Cg); 61.1 (Cq); 109.4 (Cs); 141.3 (Cy); 158.8 (COester);
157.4(C5); 125.5-137.3 (Carom). Calc. for C14H1403N,Br C, 9.948%; H, 83.66%, N, 1.65%; found: C, 9.8;
H,83.2,N, 1.7.

4-(4-Nitrophenyl)-6-methyl-2-oxo0-1,2,3,4-tetrahydropyrimidine-5—carboxylate  (12). Yield:  (85%).
m.p. = 315 °C. IR (KBr): vmax (cm™1) = 3390.6 (NH); 3218 (NH); 1729 (C=0); 1656 (C=0);
1560.3 (C=C). 'H-NMR & ppm: 1.3 (t, 3H, CH3(c)); 2.22 (s, 3H, CHj(b)); 3.85 (q, 2H, Hy); 5.98 (s, 1H,
Hg); 8.69 (s, 1H, H3); 7.50 (s, 1H, Hy); 6.76-7.36 (m,5H, Harom). >*C-NMR 6§ ppm: 14.9 (CH3(b)); 41.5
(CHs(a)); 53.7 (Cg); 61.3 (Cq); 108.2 (Cs); 142.3 (Cy); 158.6 (COester); 157. 4 (Cy); 127.5-139.3 (Carom)-
Calc. for C14H1405N3 C, 10.33%; H, 87.07%; N, 2.58%; found: C, 10.4%; H, 87.2%; N, 2.6%.

3.6. Antimicrobial Activities

Antimicrobial activities of different DHPMs were evaluated by the agar well diffusion method [34]
and Minimum inhibitory concentration (MIC) [35,36].

4. Conclusions

The present study reports a new method for the preparation of DHPMs was discovered that
utilizes a multicomponent coupling reaction catalyzed by MPc, with a rapid and high yielding
cyclocondensation to afford the corresponding DHPMSs. The use of MPc, was well tolerated by a range
of aldehydes. These phthalocyanine complexes were found to be efficient, recyclable heterogeneous
catalyst and showed rate enhancements and high yields in this transformation. Hence the use of
MPc as a catalyst, for synthesis DHPMs is a precious addition to the available methods. Structures
of synthesized compounds have been confirmed by IR, 'H-NMR, 3C-NMR and mass spectra.
The compounds 8-12 were investigated for their antimicrobial activities and revealed good activity.

Acknowledgments: The authors would like to express their sincere appreciation to the Deanship of Scientific
Research at King Saud University for funding the research group No. RG-1435-023. Thanks are given also to Junta
de Andalucia PAl-research group FOM-317.

Author Contributions: All the compounds are prepared by Naceur HAMDI. Rawdha Medyouni and Bilel allouma
assisted in the interpretation of spectra. Lamjed Mansour performed some of analysis as well as interpretation
of biological activities. While A.R. planned and discussed part of the research. All authors are aware of this
manuscript and have agreed for its publication.

Conflicts of Interest: The authors confirm that this paper content has no conflict of interests.

References

1. Kleidernigg, O.P; Kappe, C.O. Separation of enantiomers of 4-aryldihydropyrimidines by direct enantioselective
HPLC. A critical comparison of chiral stationary phases. Tetrahedron Asymmetry 1997, 8, 2057-2067. [CrossRef]

2. Biginelli, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones was discovered in 1893 by Pietro Biginelli.
Gazz. Chim. Ital. 1893, 23, 360-416.

3. Kappe, C.O. 100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron 1993, 49, 6937-6963.
[CrossRef]


http://dx.doi.org/10.1016/S0957-4166(97)00214-0
http://dx.doi.org/10.1016/S0040-4020(01)87971-0

Molecules 2017, 22, 605 13 of 14

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Kappe, C.O.; Fabian, WM.E,; Semones, M.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium
channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron
1997, 53, 2803-2816. [CrossRef]

Atwal, K.S.; Rovnyak, G.C.; O'Reilly, B.C.; Schwartz, ]. Substituted 1,4-dihydropyrimidines. III: Synthesis of
selectively functionalized 2-hetero-1,4-dihydropyrimidines. J. Org. Chem. 1989, 54, 5898-5907. [CrossRef]
Wipf, P; Cunningham, A.A. Solid phase protocol of the biginelli dihydropyrimidine synthesis suitable for
combinatorial chemistry. Tetrahedron Lett. 1995, 36, 7819-7822. [CrossRef]

Kappe, C.O.; Uray, G.; Roschger, P; Lindner, W.; Kratky, C.; Keller, W. Synthesis and Reactions and Resolution
of a of Biginelli Compounds -5.1 Facile Preparation Stable 5-Dihydropyrimidinecarboxylic Acid. Tetrahedron
1992, 48, 5473-5480. [CrossRef]

Kappe, C.O. Recent Advances in the Biginelli dihydropyrimidine synthesis. New Tricks from an old dog.
Acc. Chem. Res. 2000, 33, 879-888. [CrossRef] [PubMed]

Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type—A literature survey. Eur. |.
Med. Chem. 2000, 35, 1043-1052. [CrossRef]

Biginelli, P. The Biginelli Reaction. Gazz. Chim. Ital. 1893, 23, 360—413.

Bruno, P; Zhang, W. Synthesis of diverse dihydropyrimidine-related scaffolds by fluorous benzaldehyde-based
Biginelli reaction and post-condensation modifications. Beilstein |. Org. Chem. 2011, 7, 1294-1298.

Shobha, D.; Chari, M.A.; Mano, A.; Selvan, S.T.; Mukkanti, K.; Vinu, A. Synthesis of 3,4-dihydropyrimidin-
2-ones (DHPMs) using mesoporous aluminosilicate (AIKIT-5) catalyst with cage type pore structure.
Tetrahedron 2009, 65, 10608-10611. [CrossRef]

O'Reilly, B.C.; Atwal, K.S. Synthesis of substituted 1,2,3,4-Tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylic
acid esters: The Biginelli condensation revisited. Heferocycles 1987, 26, 1185-1188. [CrossRef]

Clark, J.H. Catalysis of Organic Reactions by Supported Reagents; VCH Publishers: New York, NY, USA, 1994;
pp- 35-68.

Sheldon, R.A.; Van Bekkum, H. Catalysis through Heterogeneous Catalysis; Wiely-VCH Publishers: Weinheim,
Germany, 2002.

Pérollier, C.; Sorokin, A.B. Preparation of «,[3-acetylenic ketones by catalytic heterogeneous oxidation of
alkynes. Chem. Commun. 2002, 1548-1549. [CrossRef]

Meunier, B.; Sorokin, A. Oxidation of pollutants catalyzed by metallophthalocyanines. Acc. Chem. Res. 1997,
30, 470-476. [CrossRef]

Sorokin, A.; De Suzzoni-Dezard, S.; Poullain, D.; Noél, ].P.; Meunier, B. CO, as the ultimate degradation
product in the HyO, oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine. J. Am.
Chem. Soc. 1996, 118, 7410-7411. [CrossRef]

Grootboom, N.; Nyokong, T. Iron perchlorophthalocyanine and tetrasulfophthalocyanine catalyzed oxidation
of cyclohexane using hydrogen peroxide, chloroperoxybenzoic acid andtert-butylhydroperoxide as oxidants.
J. Mol. Catal. A Chem. 2002, 179, 113-123. [CrossRef]

Jain, S.L.; Joseph, ].K.; Singhal, S.; Sain, B. Metallophthalocyanines (MPcs) as efficient heterogeneous catalysts
for Biginelli condensation: Application and comparison in catalytic activity of different MPcs for one pot
synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. . Mol. Catal. A Chem. 2007, 268, 134-138. [CrossRef]
Bayrak, R.; Akcay, H.T,; Beris, ES.; Sahin, E.; Bayrak, H.; Demirbas, U. Synthesis, aggregation and
spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines
and investigation of their anti-bacterial properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133,
272-280. [CrossRef] [PubMed]

Rawdha, M.; Wissal, E.; Olfa, N.; Antonio, R.; Abdullah, S.; Lasaad, B.; Naceur, H. One-pot three-component
Biginelli-type reaction to synthesize 3,4-dihydropyrimidine-2-(1H)-ones catalyzed by Co phthalocyanines:
Synthesis, characterization, aggregation behavior and antibacterial activity. Spectrochim. Acta Part A Mol.
Biomol. Spectrosc. 2016, 167, 165-174.

Rosenmund, K.W.; Lohfert, H. Uber Synthese von Polyphenol-Ketonen. Eur. |. Inorg. Chem. 1928, 61,
2601-2607. [CrossRef]

Zhao, W,; Sun, J.; Xiang, H.; Zeng, Y.Y,; Li, X.B.; Xiao, H.; Chen, D.Y,; Ma, R.L. Synthesis and biological
evaluation of new flavonoid fatty acid esters with anti-adipogenic and enhancing glucose consumption
activities. Bioorg. Med. Chem. 2011, 19, 3192-3203. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/S0040-4020(97)00022-7
http://dx.doi.org/10.1021/jo00286a020
http://dx.doi.org/10.1016/0040-4039(95)01660-A
http://dx.doi.org/10.1016/S0040-4020(01)88301-0
http://dx.doi.org/10.1021/ar000048h
http://www.ncbi.nlm.nih.gov/pubmed/11123887
http://dx.doi.org/10.1016/S0223-5234(00)01189-2
http://dx.doi.org/10.1016/j.tet.2009.10.074
http://dx.doi.org/10.1002/chin.198742194
http://dx.doi.org/10.1039/B204122G
http://dx.doi.org/10.1021/ar960275c
http://dx.doi.org/10.1021/ja960177m
http://dx.doi.org/10.1016/S1381-1169(01)00404-6
http://dx.doi.org/10.1016/j.molcata.2006.12.015
http://dx.doi.org/10.1016/j.saa.2014.05.075
http://www.ncbi.nlm.nih.gov/pubmed/24952089
http://dx.doi.org/10.1002/cber.19280611130
http://dx.doi.org/10.1016/j.bmc.2011.03.063
http://www.ncbi.nlm.nih.gov/pubmed/21515060

Molecules 2017, 22, 605 14 of 14

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Yenilmez, H.Y.; Okur, A.1; Giil, A. Peripherally tetra-palladated phthalocyanines. J. Organomet. Chem. 2007,
692, 940-945. [CrossRef]

Degirmencioglu, i; Atalay, E.; Er, M,; Koysal, Y.; Isik, $.; Serbest, K. Novel phthalocyanines containing
substituted salicyclic hydrazone-1,3-thiazole moieties: Microwave-assisted synthesis, spectroscopic
characterization, X-ray structure and thermal characterization. Dyes Pigments 2010, 84, 69-78. [CrossRef]
Chauke, V,; Durmus, M.; Nyokong, T. Photochemistry, photophysics and nonlinear optical parameters of
phenoxy and tert-butylphenoxy substituted indium (III) phthalocyanines. J. Photochem. Photobiol. A Chem.
2007, 192, 179-187. [CrossRef]

Bayrak, R.; Akcay, H.T.; Durmus, M.; Degirmencioglu, I Synthesis, photophysical and photochemical
properties of highly soluble phthalocyanines substituted with four 3,5-dimethylpyrazole-1-methoxy groups.
J. Organomet. Chem. 2011, 696, 3807-3815. [CrossRef]

Wires, T.M. Synthesis and supramolecular chemistry of novel liquid crystalline crown ether-substituted
phthalocyanines: Toward molecular wires and molecular ionoelectronics. |. Am. Chem. Soc. 1995, 117,
9957-9965.

Wu, W.T,; Wu, WH.; Ji, SM.; Guo, HM.; Wang, X.; Zhao, ].Z. The synthesis of 5,10,15,20-tetraarylporphyrins
and their platinum (II) complexes as luminescent oxygen sensing materials. Dyes Pigment. 2011, 89, 199-207.
[CrossRef]

Kocan, H.; Burat, A.K. Synthesis and characterization of [7-(trifluoromethyl) quinolin-4-yl] oxy-substituted
phthalocyanines. Monatsh. Chem. 2013, 144, 171-177. [CrossRef]

Hojatollah, K.; Esmat, TK.; Tayebeh, J. An efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed
by molten [EtsNH][HSO,]. Arab. ]. Chem. 2012, 5, 485-488.

Pasha, M.A.; Ramachandra, N.S.; Jayashankara, V.P. One pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/
-thiones catalysed by zinc chloride: An improved procedure for the Biginelli reaction using microwaves
under solvent free condition. Indian J. Chem. 2005, 44, 823-826.

Guven, K; Yucel, E.; Etintas, C. Antimicrobial activities of fruits of Crataegus and Pyrus species. Pharm. Biol.
2006, 44, 79-83. [CrossRef]

National Committee for Clinical Laboratory Standard. Referece Method for Broth Dilution Antifungal
Susceptibility Testing of Conidium Forming Filamentous Fungi; Proposed standard M38-P; National Committee
for Clinical Laboratory Standards: Wayne, PA, USA, 1998.

Medyouni, R.; Mtibaa, A.C.; Mellouli, L.; Romerosa, A.; Hamdi, N. Convenient synthesis of novel unmetalled
and metallophthalocyanines bearing coumarin derivatives: Synthesis, characterization, aggregation
behaviors and antimicrobial activity. J. Incl. Phenom. Macrocycl. Chem. 2016, 86, 201-210. [CrossRef]

Sample Availability: Samples of the compounds are available from the authors.

@ © 2017 by the authors. Licensee MDP]I, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.jorganchem.2006.10.044
http://dx.doi.org/10.1016/j.dyepig.2009.07.001
http://dx.doi.org/10.1016/j.jphotochem.2007.05.022
http://dx.doi.org/10.1016/j.jorganchem.2011.09.002
http://dx.doi.org/10.1016/j.dyepig.2010.01.020
http://dx.doi.org/10.1007/s00706-012-0790-9
http://dx.doi.org/10.1080/13880200600591253
http://dx.doi.org/10.1007/s10847-016-0655-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Ground State Electronic Absorption and Aggregation Properties 
	Aggregations Studies 
	Catalytic Eficiency of Metallophthalocyanines 5–7 
	Recycling Performance of the Catalysts 5–7 
	Antimicrobial Activity 

	Experimental Section 
	General Information 
	Synthesis of 4-(2-Acetyl-4-methoxyphenoxy)phthalonitrile (3) 
	Synthesis of Metal-Free 4 
	General Procedure for the Synthesis of Metallophthalocyanines 5–7 
	General Procedure for Preparation of Compounds 8–12 
	Antimicrobial Activities 

	Conclusions 

