Supplementary data

Anti-proliferative effect of triterpenoidal glycosides from the roots of *Anemone vitifolia* through regulating apoptosis-associated proteins

Changcai Bai ^{1, †, *}, Yunyun Ye ^{1, 2, †}, Xiao Feng ^{2, †}, Ruifeng Bai ², Lu Han ¹, Xiuping Zhou ¹, Xinyao Yang ², Pengfei Tu ², and Xingyun Chai ^{2, *}

¹Ningxia Medical University Pharmacy College, Key Laboratory of Hui Medicine Modernization, Ministry of Education, Yinchuan 750004, P. R. China;

² Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China

[†]These authors contribute to the paper equally.

*Corresponding authors:

Tel/fax: 86 951 6880 582, E-mail address: changcaibai@163.com (Changcai Bai)

Tel/fax: 86 10 6428 6350, E-mail address: xingyunchai@yeah.net (Xingyun Chai)

- **Table S1** ¹H and ¹³C NMR (500/125 MHz) data of 1–3, δ in ppm, J in Hz
- **Table S2** ¹H and ¹³C NMR (500/125 MHz) data of 4-6, δ in ppm, J in Hz
- Figure S1 Analysis of the ratio of bax/bcl-2 in compounds 1 and 2 treatment groups
- Figure S2 HPLC-PDA (210 nm) profiles of 1
- Figure S3 ¹H NMR spectrum of 1 in CD₃OD (500 MHz)
- Figure S4¹³C NMR spectrum of 1 in CD₃OD (125 MHz)
- Figure S5 HPLC-PDA (210 nm) profiles of 2
- Figure S6 HR-ESI-MS spectrum of 2
- Figure S7¹H NMR spectrum of 2 in CD₃OD (500 MHz)
- **Figure S8**¹³C NMR spectrum of **2** in CD₃OD (125 MHz)
- Figure S9 IR spectrum of 3
- Figure S10 HR-ESI-MS spectrum of 3
- Figure S11 HPLC-PDA (210 nm) profiles of 3
- **Figure S12** ¹H NMR spectrum of **3** in CD₃OD (500 MHz)
- Figure S13¹³C NMR spectrum of 3 in CD₃OD (125 MHz)
- Figure S14 ¹H-¹H COSY spectrum of 3
- Figure S15 HSQC spectrum of 3
- Figure S16 HMBC spectrum of 3
- Figure S17 general acid hydrolysis of 3
- Figure S18 HPLC-PDA (210 nm) profiles of 4
- **Figure S19** ¹H NMR spectrum of **4** in Pyridine- d_5 (500 MHz)
- **Figure S20** ¹³C NMR spectrum of **4** in Pyridine-*d*₅ (125 MHz)
- **Figure S21** ¹H NMR spectrum of **5** in Pyridine- d_5 (500 MHz)
- **Figure S22** ¹³C NMR spectrum of **5** in Pyridine- d_5 (125 MHz)
- Figure S23 HR-ESI-MS spectrum of 6
- **Figure S24** ¹H NMR spectrum of **6** in Pyridine- d_5 (500 MHz)
- **Figure S25** ¹³C NMR spectrum of **6** in Pyridine- d_5 (125 MHz)
- Figure S26 The separation of the compounds 1-6

NO		1		2		3		
NU.	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$		
1	40.0	0.98 (m),1.61 (m)	40.0	0.98 (m), 1.59 (m)	40.0	0.99 (m), 1.60 (m)		
2	27.3	1.67 (m),1.78 (m)	27.3	1.66 (m), 1.76 (m)	27.1	1.86 (m)		
3	90.2	3.13 (dd, 4.0, 11.5)	90.2	3.11 (dd, 4.0, 11.5)	90.6	3.12 (dd, 4.0, 11.5)		
4	40.3	-	40.3	-	40.0	-		
5	57.3	0.77 (m)	57.2	0.77 (m)	57.1	0.78 (m)		
6	19.4	1.61 (m)	19.3	1.59 (m)	19.4	1.58 (m)		
7	34.0	1.40 (m),1.55 (m)	34.0	1.30 (m), 1.53 (m)	34.0	1.38 (m), 1.55 (m)		
8	40.6	-	40.6	-	40.6	-		
9	48.5	1.61 (m)	48.5	1.62 (m)	48.5	1.61 (m)		
10	37.9	-	37.9	-	37.9	-		
11	24.5	1.88 (m),1.90 (m)	24.5	1.88 (m), 1.93 (m)	24.5	1.84 (m), 1.90 (m)		
12	123.6	5.24 br. s	123.6	5.24 br. s	123.6	5.24 br. s		
13	145.2	-	145.1	-	145.2	-		
14	42.8	-	42.7	-	42.7	-		
15	28.8	1.80 (m),2.01 (m)	28.8	1.81 (m)	28.8	1.75 (m)		
16	24.0	1.80 (m),1.90 (m)	24.0	1.82 (m), 1.94 (m)	24.0	1.83 (m), 2.01 (m)		
17	47.7	-	47.6	-	47.6	-		
18	42.9	2.85 (d, 10.5)	42.9	2.84 (d, 10.5)	42.9	2.84 (d, 11.0)		
19	47.3	1.19 (m),1.72 (m)	47.2	1.17 (m), 1.73 (m)	47.2	1.08 (m), 1.76 (m)		
20	31.6	-	31.6	-	31.6	-		
21	34.9	0.98 (m),1.29 (m)	34.9	0.98 (m), 1.29 (m)	34.9	1.12 (m), 1.43 (m)		
22	33.8	1.49 (m),1.81 (m)	33.8	1.50 (m), 1.84 (m)	33.8	1.50 (m), 1.89 (m)		
23	28.6	1.06 (s)	28.5	1.06 (s)	28.7	1.04 (s)		
24	17.2	0.86 (s)	17.2	0.86 (s)	17.2	0.86 (s)		
25	16.0	0.94 (s)	16.0	0.94 (s)	16.0	0.93 (s)		
26	17.7	0.81 (s)	17.7	0.81 (s)	17.7	0.81 (s)		
27	26.4	1.16 (s)	26.4	1.17 (s)	26.4	1.17 (s)		
28	181.9	-	181.8	-	181.8	-		
29	33.6	0.94 (s)	33.6	0.94 (s)	33.6	0.95 (s)		
30	24.1	0.91 (s)	24.1	0.91 (s)	24.1	0.91 (s)		
	3-Xyl		3-Xyl		3-Ara			
1	106.3	4.38 (d, 7.0)	106.5	4.38 (d, 7.0)	105.2	4.51 (d, 5.0)		
2	78.9	3.44 (m)	78.8	3.46 (m)	76.5	3.76 (m)		
3	78.4	3.35 (m)	78.5	3.33 (m)	72.5	3.70 (m)		
4	72.5	3.41 (m)	72.6	3.41 (m)	68.5	3.98 (t)		
5	66.5	3.85 (m)	66.6	3.86 (m)	64.5	3.88(m), 3.52 (m)		
	Rha		Rha		Rha			
1	101.5	5.36 (s)	101.6	5.30 (s)	101.7	5.17 (s)		
2	71.6	4.09 br. s	71.0	4.27 br. s	71.9	4.04 br. s		
-3	80.8	3.86 (m)	82.9	3.88 (m)	80.7	3.81 (m)		
4	73.0	3 53 (m)	72.7	4 08 (m)	73.0	3 52 (m)		

Table S1. ¹H and ¹³C NMR (500/125 MHz) data of 1–3, δ in ppm, J in Hz

5	70.1	3.87 (m)	70.0	3.96 (m)	70.3	3.88 (m)
6	18.0	1.23 (d, 6.0)	18.2	1.23 (d, 10.5)	18.0	1.23 (d, 6.0)
	Rib		Glc		Rib	
1	104.4	4.99 (d, 4.0)	103.3	4.84 (d, 8.0)	104.2	5.00 (d, 3.5)
2	71.7	3.68 (m)	71.6	3.17 (m)	73.7	3.70 (m)
3	68.7	3.76 (m)	68.4	3.56 (m)	69.0	3.75 (m)
4	70.2	3.88 (m)	75.3	3.67 (m)	70.2	3.90 (m)
5	65.1	3.68 (m),3.88 (m)	79.5	3.72 (m)	65.1	3.70(m), 3.91 (m)
6			62.7	3.84(m), 3.67(m)		

 $\frac{1}{\text{measured in methanol-}d_4}$

Table S2. ¹H and ¹³C NMR (500/125 MHz) data of 4-6, δ in ppm, J in Hz

NO	4 NO.			5		6			
NU.	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$			
1	39.4	1.50 (m)	39.4	0.98 (m)	39.3	1.00 (m), 1.57 (m)			
2	27.4	1.65 (m),1.81 (m)	27.2	1.91 (m)	27.2	1.67 (m), 1.76 (m)			
3	89.1	3.33 (dd, 4.0, 11.5)	89.2	3.31 (dd, 4.0, 11.5)	89.1	3.37 (dd, 3.5, 11.5)			
4	40.1	-	40.1	-	40.1	-			
5	56.5	0.80 (m)	56.5	0.80 (d, 12.0)	56.4	0.84 (d, 12.0)			
6	19.1	1.23 (m),1.50 (m)	19.0	1.22 (m), 1.46 (m)	19.0	1.19 (m), 1.48 (m)			
7	33.7	1.32 (m), 1.52 (m)	33.6	1.30 (m), 1.46 (m)	33.6	1.35 (m), 1.51 (m)			
8	40.2	-	40.4	-	40.4	-			
9	48.5	1.64 (d, 6.4)	48.6	1.64 (m)	48.6	1.67 (m)			
10	37.5	-	37.5	-	37.5	-			
11	24.3	1.84 (m), 1.91 (m)	24.3	1.83 (m), 1.91 (m)	23.9	1.79 (m), 1.93 (m)			
12	123.0	5.46 br. s	123.4	5.44 br. s	123.4	5.43 br. s			
13	145.3	-	144.6	-	144.6	-			
14	42.7	-	42.6	-	42.6	-			
15	28.8	1.21 (m), 2.14 (m)	28.7	1.17 (m),2.36 (m)	28.8	1.16 (m), 2.33 (m)			
16	24.2	1.98 (m), 2.04 (m)	23.9	1.97 (m),2.08 (m)	24.2	1.93 (m), 2.09 (m)			
17	47.2	-	47.5	-	47.5	-			
18	42.5	3.28 (dd, 3.5, 13.0)	42.2	3.21 (dd, 3.5, 13.5)	42.2	3.21 (dd, 7.0, 13.0)			
19	47.0	1.21 (m), 1.76 (m)	46.7	1.25 (m), 1.76 (m)	46.7	1.25 (m), 1.76 (m)			
20	31.5	-	31.3	-	31.2	-			
21	34.7	1.46 (m)	34.5	0.98 (m), 1.40 (m)	34.5	1.00 (m), 1.42 (m)			
22	33.7	1.78 (m), 1.83 (m)	33.0	1.78 (m), 1.83 (m)	33.0	1.76 (m), 1.88 (m)			
23	28.8	1.38 (s)	28.7	1.33 (s)	28.7	1.32 (s)			
24	17.7	1.18 (s)	17.7	1.17 (s)	17.5	1.12 (s)			
25	16.1	0.83 (s)	16.1	0.89 (s)	16.1	0.91 (s)			
26	17.9	1.01 (s)	18.0	1.11 (s)	18.0	1.02 (s)			
27	26.7	1.30 (s)	26.6	1.29 (s)	26.5	1.28 (s)			
28	180.7	-	176.9	-	177.0	-			
29	33.8	0.98 (s)	33.6	0.93 (s)	33.6	0.92 (s)			
30	24.2	0.96 (s)	24.1	0.90 (s)	24.3	0.92 (s)			

	3-Xyl		3-Ara		3-Xyl	
1	106.7	4.81 (d, 6.5)	105.8	4.86 (d, 5.0)	108.1	4.81 (d, 7.5)
2	77.9	4.27 (m)	75.8	4.54 (m)	78.8	4.24 (m)
3	79.9	4.16 (m)	75.3	4.25 (m)	74.5	4.18 (m)
4	72.1	4.1 4(m)	69.4	4.33 (m)	71.7	4.14 (m)
5	67.5	3.69 (t), 4.33 (m)	66.3	3.82 (m)	67.6	3.79 (t), 4.34 (m)
	Rha		Rha		28-Glc	
1	102.0	6.47 (s)	101.9	6.68 (s)	96.1	6.25 (d, 8.0)
2	72.0	5.09 br. s	72.6	4.94 br. s	74.4	4.12 (m)
3	83.6	4.80 (d, 6.5)	81.8	4.65 (m)	79.2	4.22 (m)
4	73.3	4.33 (m)	73.4	4.46 (m)	71.4	4.41 (m)
5	70.3	4.72 (m)	70.4	4.78 (m)	78.5	4.09 (m)
6	19.0	1.44 (d, 6.0)	18.9	1.56 (d, 6.0)	69.7	4.46 (m), 4.34 (m)
	Gal		Rib		Glc	
1	104.8	5.90 (d, 8.0)	105.2	5.99 (d, 4.5)	105.1	5.00 (d, 8.0)
2	73.5	4.05 (m)	73.3	4.31 (m)	75.8	3.95 (t)
3	73.3	4.70 (m)	69.9	4.50 (m)	77.0	4.14 (m)
4	69.2	4.28 (m)	70.8	4.19 (m),4.33 (m)	79.1	4.40 (m)
5	76.5	4.49 (m)	65.8	4.17 (m)	77.7	3.68 (m)
6	63.1	4.40 (m)	-		61.8	4.03 (t), 4.18 (m)
			28-Glc		Rha	
1			96.3	6.36 (d, 8.5)	103.2	5.86 br. s
2			74.6	4.30 (m)	73.2	4.68 (m)
3			79.4	4.20 (m)	73.3	4.55 (m)
4			71.6	4.38 (m)	74.5	4.34 (m)
5			79.8	4.06 (m)	70.8	4.97 (m)
6			62.7	4.33 (m), 4.46 (m)	19.0	1.71 (d, 6.0)

measured in pyridine- d_5

Figure S1 Analysis of the ratio of bax/bcl-2 in compounds 1 and 2 treatment groups. *P < 0.05, **P < 0.01.

Thanks again for all your excellent comments and suggestions

HPLC was performed on a Shimadzu LC-20A pump system (Shimadzu Corporation, Tokyo, Japan), equipped with an SPD-M20A photodiode array detector monitoring, analytical RP-HPLC column (Agilent XDB- C_{18} , 250 × 4.6 mm, 5 µm).

50% ACN-H₂O 210 nm t_R = 12.435min 1 ml/min

Figure S4¹³C NMR spectrum of 1 in CD₃OD (125 MHz)

50% ACN-H₂O 210 nm t_R =12.714 min 1 ml/min

Formula Predictor Report - AVR-02_3.lcd

Data File: D:\Datas\叶云云\新建文件夹\AVR-02_3.lcd

Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Use Adduct
н	1	22	100	F	1	0	0	Br	1	0	0	н
C	4	17	60	P	3	0	0					HCOO
N	3	0	0	S	2	0	0					CI
0	2	0	30	CI	1	0	0					CF3COO
Error M	largin (j	opm):	100			D	BE Rar	nge: -2.0	- 1200	.0		Electron lons: both
	HCI	Ratio:	unlimite	d		Ap	ply N R	lule: no				Use MSn Info: no
Max Isotopes: all Isotope RI ((%): 1.00				Isotope Res: 10000			
MSn Iso RI (%): 75.00 MSn Logic Mode: A						ode: ANE)			Max Results: 100		

Figure S6 HR-ESI-MS spectrum of 2

Data File: D:\Datas\叶云云\新建文件夹\AVR-01_2.lcd

Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Use Addue	ct
н	1	22	100	F	1	0	0	Br	1	0	0	н	
С	4	17	60	P	3	0	0					HCOO	
N	3	0	0	S	2	0	0					CI	
0	2	0	30	CI	1	0	0					CF3COO	
Error M	largin (j	opm):	100			D	BE Rar	ige: -2.0	- 1200	.0		Electron lons:	both
	HCI	Ratio:	unlimite	d		Ap	ply N R	ule: no				Use MSn Info:	no
Max Isotopes: all Isotope					ope RI (%): 1.00)			Isotope Res:	10000		
MSn Iso RI (%): 75.00					MSn L	ogic Mc	de: ANE)			Max Results:	100	

Event#: 3 MS(E-) Ret. Time : 11.508 Scan# : 2058

Figure S11 IR spectrum of 3

Figure S12 ¹H NMR spectrum of 3 in CD₃OD (500 MHz)

Figure S13 ¹³C NMR spectrum of 3 in CD₃OD (125 MHz)

Figure S16 HMBC spectrum of 3

Determination of Sugar Configuration:

Sugar was dissolved in pyridine (1.0 ml) containing L-cysteine methyl ester hydrochloride (5.0 mg) and heated at 60 $^{\circ}$ C for 1 h. A 0.05 ml solution of o-torylisothiocyanate (5.0 mg) in pyridine was added to the mixture, which was heated at 60 $^{\circ}$ C for 1 h. The reaction mixture was directly analyzed by reversed-phase HPLC. HPLC was performed on a Shimadzu LC-20A pump system (Shimadzu Corporation, Tokyo, Japan), equipped with an SPD-M20A photodiode array detector monitoring, analytical RP-HPLC column (Agilent XDB-C₁₈, 250 × 4.6 mm, 5 µm). 25% CH₃CN for 35 min and subsequent washing of the column with 95% CH₃CN at a flow rate 0.8 ml/min.

The glycoside (2.0 mg) were hydrolyzed in 2 M HCl (10.0 ml) and heated at 80 $^{\circ}$ C for 4h, then concentrated to dryness. The residue was dissolved in pyridine (1.0 ml) containing L-cysteine methyl ester hydrochloride (5.0 mg) and heated at 60 $^{\circ}$ C for 1 h. A 0.05 ml solution of o-torylisothiocyanate (5.0 mg) in pyridine was added to the mixture, which was heated at 60 $^{\circ}$ C for 1 h. The reaction mixture was directly analyzed by reversed-phase HPLC. HPLC was performed on a Shimadzu LC-20A pump system (Shimadzu Corporation, Tokyo, Japan), equipped with

an SPD-M20A photodiode array detector monitoring, analytical RP-HPLC column (Agilent XDB-C₁₈, 250 \times 4.6 mm, 5 μ m). 25% CH₃CN for 35 min and subsequent washing of the column with 95% CH₃CN at a flow rate 0.8 ml/min.

Compared with the standard sugar and glycoside retention time, identified the type and number of sugar.

 $25\% \ ACN-H_2O \quad 0.8 \ ml/min \quad 254 \ nm$

分析: t_{R1}=19.241 min (a-L-Ara)

t_{R2}=20.906 min (β-D-rib)

t_{R3}=30.504 min (α-L-Rha)

Figure S17 general acid hydrolysis of 3

Figure S19 ¹H NMR spectrum of **4** in Pyridine- d_5 (500 MHz)

17

Formula Predictor Report - ic-3_1.lcd

Data File: D:\Datas\마굸궃\ic-3_1.lcd

Figure S23 HR-ESI-MS spectrum of 6

Page 1 of 1

Figure S26 The separation of the compounds 1-6