Anti-proliferative effect of triterpenoidal glycosides from the roots of Anemone vitifolia through regulating apoptosis-associated proteins

Changcai Bai ${ }^{1, \dagger, *}$, Yunyun $\mathrm{Ye}^{1,2, \dagger}$, Xiao Feng ${ }^{2, \dagger}$, Ruifeng Bai ${ }^{2}$, Lu Han ${ }^{1}$, Xiuping Zhou ${ }^{1}$, Xinyao Yang ${ }^{2}$, Pengfei Tu^{2}, and Xingyun Chai ${ }^{2, *}$
${ }^{1}$ Ningxia Medical University Pharmacy College, Key Laboratory of Hui Medicine Modernization, Ministry of Education, Yinchuan 750004, P. R. China;
${ }^{2}$ Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China

${ }^{\dagger}$ These authors contribute to the paper equally.
*Corresponding authors:

Tel/fax: 869516880 582, E-mail address: changcaibai@163.com (Changcai Bai)

Tel/fax: 86106428 6350, E-mail address: xingyunchai@yeah.net (Xingyun Chai)

Table S1 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR ($500 / 125 \mathrm{MHz}$) data of $1-3, \delta$ in ppm, J in Hz
Table S2 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (500/125 MHz) data of 4-6, δ in ppm, J in Hz
Figure S1 Analysis of the ratio of bax/bcl-2 in compounds 1 and 2 treatment groups
Figure S2 HPLC-PDA (210 nm) profiles of $\mathbf{1}$
Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}(500 \mathrm{MHz})$
Figure $\mathbf{S 4}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}(125 \mathrm{MHz})$
Figure $\mathbf{S 5}$ HPLC-PDA (210 nm) profiles of $\mathbf{2}$
Figure S6 HR-ESI-MS spectrum of $\mathbf{2}$
Figure $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OD}(500 \mathrm{MHz})$
Figure S8 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OD}(125 \mathrm{MHz})$
Figure S9 IR spectrum of $\mathbf{3}$
Figure S10 HR-ESI-MS spectrum of $\mathbf{3}$
Figure S11 HPLC-PDA (210 nm) profiles of $\mathbf{3}$
Figure $\mathbf{S 1 2}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{OD}(500 \mathrm{MHz})$
Figure $\mathbf{S 1 3}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{OD}(125 \mathrm{MHz})$
Figure $\mathbf{S 1 4}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3}$
Figure $\mathbf{S 1 5}$ HSQC spectrum of $\mathbf{3}$
Figure S16 HMBC spectrum of $\mathbf{3}$
Figure S17 general acid hydrolysis of $\mathbf{3}$
Figure S18 HPLC-PDA (210 nm) profiles of 4
Figure S19 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in Pyridine- $d_{5}(500 \mathrm{MHz})$
Figure S20 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in Pyridine- $d_{5}(125 \mathrm{MHz})$
Figure S21 ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in Pyridine- $d_{5}(500 \mathrm{MHz})$
Figure S22 ${ }^{13} \mathrm{C}$ NMR spectrum of 5 in Pyridine- $d_{5}(125 \mathrm{MHz})$
Figure S23 HR-ESI-MS spectrum of 6
Figure S24 ${ }^{1} \mathrm{H}$ NMR spectrum of 6 in Pyridine- $d_{5}(500 \mathrm{MHz})$
Figure S25 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$ in Pyridine- $d_{5}(125 \mathrm{MHz})$
Figure S26 The separation of the compounds 1-6

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR ($500 / 125 \mathrm{MHz}$) data of $1-3, \delta$ in ppm, J in Hz

NO.	1		2		3	
	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	$\delta_{\text {H }}$
1	40.0	0.98 (m),1.61 (m)	40.0	0.98 (m), 1.59 (m)	40.0	0.99 (m), 1.60 (m)
2	27.3	1.67 (m),1.78 (m)	27.3	1.66 (m), 1.76 (m)	27.1	1.86 (m)
3	90.2	3.13 (dd, 4.0, 11.5)	90.2	3.11 (dd, 4.0, 11.5)	90.6	3.12 (dd, 4.0, 11.5)
4	40.3	-	40.3	-	40.0	-
5	57.3	0.77 (m)	57.2	0.77 (m)	57.1	0.78 (m)
6	19.4	1.61 (m)	19.3	1.59 (m)	19.4	1.58 (m)
7	34.0	1.40 (m), 1.55 (m)	34.0	1.30 (m), 1.53 (m)	34.0	1.38 (m), 1.55 (m)
8	40.6	-	40.6	-	40.6	-
9	48.5	1.61 (m)	48.5	1.62 (m)	48.5	1.61 (m)
10	37.9	-	37.9	-	37.9	-
11	24.5	1.88 (m), 1.90 (m)	24.5	1.88 (m), 1.93 (m)	24.5	1.84 (m), 1.90 (m)
12	123.6	5.24 br. s	123.6	5.24 br. s	123.6	5.24 br. s
13	145.2	-	145.1	-	145.2	-
14	42.8	-	42.7	-	42.7	-
15	28.8	1.80 (m),2.01 (m)	28.8	1.81 (m)	28.8	1.75 (m)
16	24.0	1.80 (m), 1.90 (m)	24.0	1.82 (m), 1.94 (m)	24.0	1.83 (m), 2.01 (m)
17	47.7	-	47.6	-	47.6	-
18	42.9	2.85 (d, 10.5)	42.9	2.84 (d, 10.5)	42.9	2.84 (d, 11.0)
19	47.3	1.19 (m),1.72 (m)	47.2	1.17 (m), 1.73 (m)	47.2	1.08 (m), 1.76 (m)
20	31.6	-	31.6	-	31.6	-
21	34.9	0.98 (m), 1.29 (m)	34.9	0.98 (m), 1.29 (m)	34.9	1.12 (m), 1.43 (m)
22	33.8	1.49 (m),1.81 (m)	33.8	1.50 (m), 1.84 (m)	33.8	1.50 (m), 1.89 (m)
23	28.6	1.06 (s)	28.5	1.06 (s)	28.7	1.04 (s)
24	17.2	0.86 (s)	17.2	0.86 (s)	17.2	0.86 (s)
25	16.0	0.94 (s)	16.0	0.94 (s)	16.0	0.93 (s)
26	17.7	0.81 (s)	17.7	0.81 (s)	17.7	0.81 (s)
27	26.4	1.16 (s)	26.4	1.17 (s)	26.4	1.17 (s)
28	181.9	-	181.8	-	181.8	-
29	33.6	0.94 (s)	33.6	0.94 (s)	33.6	0.95 (s)
30	24.1	0.91 (s)	24.1	0.91 (s)	24.1	0.91 (s)
	3-Xyl		3-Xyl		3-Ara	
1	106.3	4.38 (d, 7.0)	106.5	4.38 (d, 7.0)	105.2	4.51 (d, 5.0)
2	78.9	3.44 (m)	78.8	3.46 (m)	76.5	3.76 (m)
3	78.4	3.35 (m)	78.5	3.33 (m)	72.5	3.70 (m)
4	72.5	3.41 (m)	72.6	3.41 (m)	68.5	3.98 (t)
5	66.5	3.85 (m)	66.6	3.86 (m)	64.5	3.88(m), 3.52 (m)
	Rha		Rha		Rha	
1	101.5	5.36 (s)	101.6	5.30 (s)	101.7	5.17 (s)
2	71.6	4.09 br. s	71.0	4.27 br. s	71.9	4.04 br. s
3	80.8	3.86 (m)	82.9	3.88 (m)	80.7	3.81 (m)
4	73.0	3.53 (m)	72.7	4.08 (m)	73.0	3.52 (m)

$\mathbf{5}$	70.1	$3.87(\mathrm{~m})$	70.0	$3.96(\mathrm{~m})$	70.3	$3.88(\mathrm{~m})$
$\mathbf{6}$	18.0	$1.23(\mathrm{~d}, 6.0)$	18.2	$1.23(\mathrm{~d}, 10.5)$	18.0	$1.23(\mathrm{~d}, 6.0)$
	Rib		Glc		Rib	
$\mathbf{1}$	104.4	$4.99(\mathrm{~d}, 4.0)$	103.3	$4.84(\mathrm{~d}, 8.0)$	104.2	$5.00(\mathrm{~d}, 3.5)$
$\mathbf{2}$	71.7	$3.68(\mathrm{~m})$	71.6	$3.17(\mathrm{~m})$	73.7	$3.70(\mathrm{~m})$
$\mathbf{3}$	68.7	$3.76(\mathrm{~m})$	68.4	$3.56(\mathrm{~m})$	69.0	$3.75(\mathrm{~m})$
$\mathbf{4}$	70.2	$3.88(\mathrm{~m})$	75.3	$3.67(\mathrm{~m})$	70.2	$3.90(\mathrm{~m})$
$\mathbf{5}$	65.1	$3.68(\mathrm{~m}), 3.88(\mathrm{~m})$	79.5	$3.72(\mathrm{~m})$	65.1	$3.70(\mathrm{~m}), 3.91(\mathrm{~m})$
$\mathbf{6}$			62.7	$3.84(\mathrm{~m}), 3.67(\mathrm{~m})$		

measured in methanol- d_{4}

Table S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (500/125 MHz) data of 4-6, δ in ppm, J in Hz

NO.	4		5		6	
	$\boldsymbol{\delta}_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\boldsymbol{\delta}_{\text {C }}$	$\delta_{\text {H }}$
1	39.4	1.50 (m)	39.4	0.98 (m)	39.3	1.00 (m), 1.57 (m)
2	27.4	1.65 (m),1.81 (m)	27.2	1.91 (m)	27.2	1.67 (m), 1.76 (m)
3	89.1	3.33 (dd, 4.0, 11.5)	89.2	3.31 (dd, 4.0, 11.5)	89.1	3.37 (dd, 3.5, 11.5)
4	40.1	-	40.1	-	40.1	-
5	56.5	0.80 (m)	56.5	0.80 (d, 12.0)	56.4	0.84 (d, 12.0)
6	19.1	1.23 (m), 1.50 (m)	19.0	1.22 (m), 1.46 (m)	19.0	1.19 (m), 1.48 (m)
7	33.7	1.32 (m), 1.52 (m)	33.6	1.30 (m), 1.46 (m)	33.6	1.35 (m), 1.51 (m)
8	40.2	-	40.4	-	40.4	-
9	48.5	1.64 (d, 6.4)	48.6	1.64 (m)	48.6	1.67 (m)
10	37.5	-	37.5	-	37.5	-
11	24.3	1.84 (m), 1.91 (m)	24.3	1.83 (m), 1.91 (m)	23.9	1.79 (m), 1.93 (m)
12	123.0	5.46 br. s	123.4	5.44 br. s	123.4	5.43 br. s
13	145.3	-	144.6	-	144.6	-
14	42.7	-	42.6	-	42.6	-
15	28.8	1.21 (m), 2.14 (m)	28.7	1.17 (m), 2.36 (m)	28.8	1.16 (m), 2.33 (m)
16	24.2	1.98 (m), 2.04 (m)	23.9	1.97 (m),2.08 (m)	24.2	1.93 (m), 2.09 (m)
17	47.2	-	47.5	-	47.5	-
18	42.5	3.28 (dd, 3.5, 13.0)	42.2	3.21 (dd, 3.5, 13.5)	42.2	3.21 (dd, 7.0, 13.0)
19	47.0	1.21 (m), 1.76 (m)	46.7	1.25 (m), 1.76 (m)	46.7	1.25 (m), 1.76 (m)
20	31.5	-	31.3	-	31.2	-
21	34.7	1.46 (m)	34.5	0.98 (m), 1.40 (m)	34.5	1.00 (m), 1.42 (m)
22	33.7	1.78 (m), 1.83 (m)	33.0	1.78 (m), 1.83 (m)	33.0	1.76 (m), 1.88 (m)
23	28.8	1.38 (s)	28.7	1.33 (s)	28.7	1.32 (s)
24	17.7	1.18 (s)	17.7	1.17 (s)	17.5	1.12 (s)
25	16.1	0.83 (s)	16.1	0.89 (s)	16.1	0.91 (s)
26	17.9	1.01 (s)	18.0	1.11 (s)	18.0	1.02 (s)
27	26.7	1.30 (s)	26.6	1.29 (s)	26.5	1.28 (s)
28	180.7	-	176.9	-	177.0	-
29	33.8	0.98 (s)	33.6	0.93 (s)	33.6	0.92 (s)
30	24.2	0.96 (s)	24.1	0.90 (s)	24.3	0.92 (s)

3-Xyl			3-Ara		3-Xyl	
1	106.7	4.81 (d, 6.5)	105.8	4.86 (d, 5.0)	108.1	4.81 (d, 7.5)
2	77.9	4.27 (m)	75.8	4.54 (m)	78.8	4.24 (m)
3	79.9	4.16 (m)	75.3	4.25 (m)	74.5	4.18 (m)
4	72.1	4.14 (m)	69.4	4.33 (m)	71.7	4.14 (m)
5	67.5	3.69 (t), 4.33 (m)	66.3	3.82 (m)	67.6	3.79 (t), 4.34 (m)
	Rha		Rha		28-Glc	
1	102.0	6.47 (s)	101.9	6.68 (s)	96.1	6.25 (d, 8.0)
2	72.0	5.09 br. s	72.6	4.94 br.s	74.4	4.12 (m)
3	83.6	4.80 (d, 6.5)	81.8	4.65 (m)	79.2	4.22 (m)
4	73.3	4.33 (m)	73.4	4.46 (m)	71.4	4.41 (m)
5	70.3	4.72 (m)	70.4	4.78 (m)	78.5	4.09 (m)
6	19.0	1.44 (d, 6.0)	18.9	1.56 (d, 6.0)	69.7	4.46 (m), 4.34 (m)
	Gal		Rib		Glc	
1	104.8	5.90 (d, 8.0)	105.2	5.99 (d, 4.5)	105.1	5.00 (d, 8.0)
2	73.5	4.05 (m)	73.3	4.31 (m)	75.8	3.95 (t)
3	73.3	4.70 (m)	69.9	4.50 (m)	77.0	4.14 (m)
4	69.2	4.28 (m)	70.8	4.19 (m),4.33 (m)	79.1	4.40 (m)
5	76.5	4.49 (m)	65.8	4.17 (m)	77.7	3.68 (m)
6	63.1	4.40 (m)	28-Glc		61.8	4.03 (t), 4.18 (m)
					Rha	
1			96.3	6.36 (d, 8.5)	103.2	5.86 br. s
2			74.6	4.30 (m)	73.2	4.68 (m)
3			79.4	4.20 (m)	73.3	4.55 (m)
4			71.6	4.38 (m)	74.5	4.34 (m)
5			79.8	4.06 (m)	70.8	4.97 (m)
6			62.7	4.33 (m), 4.46 (m)	19.0	1.71 (d, 6.0)

measured in pyridine- d_{5}

Figure S1 Analysis of the ratio of bax/bcl-2 in compounds 1 and 2 treatment groups. $* \mathrm{P}<0.05, * * \mathrm{P}<0.01$.

Thanks again for all your excellent comments and suggestions

Compound 1

HPLC was performed on a Shimadzu LC-20A pump system (Shimadzu Corporation, Tokyo, Japan), equipped with an SPD-M20A photodiode array detector monitoring, analytical RP-HPLC column (Agilent XDB-C $18,250 \times$ $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m})$.

```
50% ACN-H2O 210 nm tr m = 12.435min 1 ml/min
```

Compound 1

Figure $\mathbf{S} \mathbf{2}$ HPLC-PDA (210 nm) profiles of $\mathbf{1}$

Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}(500 \mathrm{MHz})$

Figure $\mathbf{S 4}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}(125 \mathrm{MHz})$

Compound 2

$50 \% \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O} \quad 210 \mathrm{~nm} \quad \mathrm{t}_{\mathrm{R}}=12.714 \mathrm{~min} \quad 1 \mathrm{ml} / \mathrm{min}$

Compound 2

Figure $\mathbf{S 5}$ HPLC-PDA (210 nm) profiles of $\mathbf{2}$

Data File：D：IDatas\叶云云新建文件夹\AVR－02＿3．Icd

C47 H76 O16［M－H］－：Predicted region for $895.5061 \mathrm{~m} / \mathrm{z}$

Figure S6 HR－ESI－MS spectrum of $\mathbf{2}$

Figure $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OD}(500 \mathrm{MHz})$
$\stackrel{\infty}{\stackrel{\infty}{\infty}}$
$\stackrel{\bar{v}}{1}$

(7)

Figure $\mathbf{S 8}^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OD}(125 \mathrm{MHz})$

Data File：D：\Datas\叶云云\新建文件夹VAVR－01＿2．Icd

Event\＃： 3 MS（E－）Ret．Time ： 11.508 Scan\＃： 2058

C46 H74 O15［M－H］－：Predicted region for $865.4955 \mathrm{~m} / \mathrm{z}$

Figure $\mathbf{S 9}$ HR－ESI－MS spectrum of $\mathbf{3}$

Compound 3

$50 \% \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O} \quad 210 \mathrm{~nm} \quad \mathrm{t}_{\mathrm{R}}=12.260 \mathrm{~min} \quad 1 \mathrm{ml} / \mathrm{min}$

Compound 3

Figure S10 HPLC-PDA (210 nm) profiles of $\mathbf{3}$

Figure S11 IR spectrum of $\mathbf{3}$

Figure $\mathbf{S 1 2}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{OD}(500 \mathrm{MHz})$

Figure $\mathbf{S 1 3}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{OD}(125 \mathrm{MHz})$

Figure S14 ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of $\mathbf{3}$

Figure S15 HSQC spectrum of $\mathbf{3}$

Figure S16 HMBC spectrum of $\mathbf{3}$

Determination of Sugar Configuration:

Sugar was dissolved in pyridine (1.0 ml) containing L-cysteine methyl ester hydrochloride (5.0 mg) and heated at $60^{\circ} \mathrm{C}$ for 1 h . A 0.05 ml solution of o-torylisothiocyanate (5.0 mg) in pyridine was added to the mixture, which was heated at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was directly analyzed by reversed-phase HPLC. HPLC was performed on a Shimadzu LC-20A pump system (Shimadzu Corporation, Tokyo, Japan), equipped with an SPD-M20A photodiode array detector monitoring, analytical RP-HPLC column (Agilent XDB-C ${ }_{18}, 250 \times 4.6 \mathrm{~mm}$, $5 \mu \mathrm{~m}) .25 \% \mathrm{CH}_{3} \mathrm{CN}$ for 35 min and subsequent washing of the column with $95 \% \mathrm{CH}_{3} \mathrm{CN}$ at a flow rate 0.8 $\mathrm{ml} / \mathrm{min}$.

The glycoside (2.0 mg) were hydrolyzed in $2 \mathrm{M} \mathrm{HCl}(10.0 \mathrm{ml})$ and heated at $80^{\circ} \mathrm{C}$ for 4 h , then concentrated to dryness. The residue was dissolved in pyridine $(1.0 \mathrm{ml})$ containing L-cysteine methyl ester hydrochloride (5.0 mg) and heated at $60^{\circ} \mathrm{C}$ for 1 h . A 0.05 ml solution of o-torylisothiocyanate (5.0 mg) in pyridine was added to the mixture, which was heated at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was directly analyzed by reversed-phase HPLC. HPLC was performed on a Shimadzu LC-20A pump system (Shimadzu Corporation, Tokyo, Japan), equipped with
an SPD-M20A photodiode array detector monitoring, analytical RP-HPLC column (Agilent XDB-C ${ }_{18}, 250 \times 4.6$ $\mathrm{mm}, 5 \mu \mathrm{~m}) .25 \% \mathrm{CH}_{3} \mathrm{CN}$ for 35 min and subsequent washing of the column with $95 \% \mathrm{CH}_{3} \mathrm{CN}$ at a flow rate 0.8 $\mathrm{ml} / \mathrm{min}$.

Compared with the standard sugar and glycoside retention time, identified the type and number of sugar.
$25 \% \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O} \quad 0.8 \mathrm{ml} / \mathrm{min} \quad 254 \mathrm{~nm}$

分析: $\mathrm{t}_{\mathrm{R} 1}=19.241 \min (\alpha-\mathrm{L}-\mathrm{Ara})$
$\mathrm{t}_{\mathrm{R} 2}=20.906 \mathrm{~min}(\beta$-D-rib)
$\mathrm{t}_{\mathrm{R} 3}=30.504 \mathrm{~min}(\alpha-\mathrm{L}-\mathrm{Rha})$

Figure S17 general acid hydrolysis of 3

Compound 4

$50 \% \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O} \quad 210 \mathrm{~nm} \quad \mathrm{t}_{\mathrm{R}}=12.518 \mathrm{~min} \quad 1 \mathrm{ml} / \mathrm{min}$

Compound 4

Figure S18 HPLC-PDA (210 nm) profiles of 4

Figure S19 ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in Pyridine- $d_{5}(500 \mathrm{MHz})$

Figure $\mathbf{S 2 0}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in Pyridine- $d_{5}(125 \mathrm{MHz})$

Figure S21 ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in Pyridine- $d_{5}(500 \mathrm{MHz})$

Figure S22 ${ }^{13}$ C NMR spectrum of 5 in Pyridine- $d_{5}(125 \mathrm{MHz})$

Data File：D：IDatas\叶云云lic－3＿1．Icd

Event\＃： 3 MS（E－）Ret．Time ： 8.410 Scan\＃： 1413

Measured region for $1057.5395 \mathrm{~m} / \mathrm{z}$

C53 H86 O21［M－H］－：Predicted region for $1057.5589 \mathrm{~m} / \mathrm{z}$

Figure $\mathbf{S 2 3}$ HR－ESI－MS spectrum of $\mathbf{6}$

Figure S24 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ in Pyridine- $d_{5}(500 \mathrm{MHz})$

Figure S25 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$ in Pyridine- $d_{5}(125 \mathrm{MHz})$

Anemone vitifolia Roots
(4 kg)
$\downarrow 70 \%$ ethanol reflux extraction three times Extract

Dispersed in water, different solvent extraction

PE soluble extract EtOAc soluble extract BuOH soluble extract $\mathrm{H}_{2} \mathrm{O}$ soluble extract (47 g)

$$
(58 \mathrm{~g})
$$

Figure S26 The separation of the compounds 1-6

