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Abstract: 1,4-Pentadien-3-one derivatives derived from curcumin possess excellent inhibitory activity
against plant viruses. On the basis of this finding, a series of novel 1,4-pentadien-3-one derivatives
containing a 1,3,4-thiadiazole moiety were designed and synthesized, and their structures confirmed
by IR, 1H-NMR, and 13C-NMR spectroscopy and elemental analysis. The antiviral activities of
the title compounds were evaluated against tobacco mosaic virus (TMV) and cucumber mosaic
virus (CMV) in vivo. The assay results showed that most of compounds had remarkable antiviral
activities against TMV and CMV, among which compounds 4b, 4h, 4i, 4k, 4o, and 4q exhibited good
curative, protection, and inactivation activity against TMV. Compounds 4h, 4i, 4k, 4l, 4o, and 4q
exhibited excellent protection activity against TMV, with EC50 values of 105.01, 254.77, 135.38, 297.40,
248.18, and 129.87 µg/mL, respectively, which were superior to that of ribavirin (457.25 µg/mL).
In addition, preliminary SARs indicated that small electron-withdrawing groups on the aromatic
ring were favorable for anti-TMV activity. This finding suggests that 1,4-pentadien-3-one derivatives
containing a 1,3,4-thiadiazole moiety may be considered as potential lead structures for discovering
new antiviral agents.
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1. Introduction

Tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) are two important plant viruses,
which can infect at least 125 species of nine plant families and cause significant economic losses in
various crops, including tobacco, tomato, pepper, cucumbers, and a number of ornamental flowers [1,2].
Ribavirin (Figure 1) is widely used for preventing plant viruses, however, its inhibitory activities
against TMV and CMV are less than 50% at 500 µg/mL [3]. In recent years, biologists have made
great efforts to develop novel and effective antiviral compounds [4,5], but few compounds with high
inhibition against plant virus have been found. That is to say, there are no efficient antiviral agents that
can absolutely inhibit plant virus [6], so the development of new effective antiviral agents remains a
significant challenge.

Natural products are important sources for drug development, and some natural products and
their derivatives, such as limonoids [7], quassinoids [8], xanthones [9], antofine and its derivatives [10,11],
as well as phenanthroindolizidine and its analogues [6], show excellent antiviral activity. Therefore,
it is a development trend of modern agrochemical research to design and synthesize pesticides
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based on natural products. Curcumin (Figure 1), a member of a small family of natural products,
exhibits extensive biological activities, including antibacterial [12], anticancer [13,14], and antiviral
properties [15,16]. 1,4-Pentadien-3-one derivatives derived from curcumin possess numerous potential
biological activities and play an important role in the discovery of new antiviral molecules. Our group
has designed and synthesized a number of such 1,4-pentadien-3-one derivatives [17–22], and most of
them exhibited excellent antiviral activities against TMV and CMV.

1,3,4-Thiadiazole is a potent multi-targeting pharmacological scaffold in heterocyclic chemistry [23].
1,3,4-Thiadiazole derivatives have various biological activities, such as antimicrobial [24],
antitubercular [25], anticonvulsants [26], antibacterial [27], anti-inflammatory [28,29], anticancer [30,31],
antinociceptive [32], enzyme inhibitory [33], antidepressant and anxiolytic [34] effects. In our previous
work, a number of 5-(4-chlorophenyl)-1,3,4-thiadiazole sulfonamides were designed and synthesized,
and these compounds showed moderate anti-TMV activities [35]. In addition, 1,3,4-thiadiazole
thioether derivative A (Figure 1) was found to display remarkable antiviral activity against TMV, and
the results indicated that the thioethers exhibited better antiviral activity than sulfonamides [36].

In the further development of antiviral agents, a series of novel 1,4-pentadien-3-one derivatives
containing a 5-phenyl-1,3,4-oxadiazole moiety (B, Figure 1) was found to have excellent anti-TMV
activity [37]. In this study, we aimed to use a phenyl-1,3,4-thiadiazole to replace the phenyl-1,3,4-
oxadiazole system to build novel 1,4-pentadien-3-one derivatives containing a 1,3,4-thiadiazole moiety
for the development of antiviral agents. The assay results showed that most of title compounds
exhibited good antiviral activity, among which compounds 4b, 4h, 4i, 4k, 4o, and 4q exhibited
good curative, protection, and inactivation activity against TMV. The structure-activity relationships
(SAR) of the compounds are also discussed. To the best of our knowledge, this is the first report
on the synthesis and antiviral activity evaluation of 1,4-pentadien-3-one derivatives containing a
1,3,4-thiadiazole moiety.
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2. Results and Discussion

2.1. Chemistry

A synthetic route to 1,4-pentadien-3-one derivatives containing a 1,3,4-thiadiazole moiety
was designed and is shown in Scheme 1. According to previously reported methods [38], 5-phenyl-1,3,4-
thiadiazole-2-thiol could be obtained. The (1E,4E)-1-(4-(2-bromoethoxy)phenyl)-5-substitued phenylpenta-
1,4-dien-3-ones 3a–3t were prepared from 4-hydroxybenzaldehyde and aromatic aldehydes via
reported procedures [22,37].

To obtain the target compounds in high yield, the reaction solvent, catalyst and temperature
for the synthesis of compound 4a were optimized on the basis of the molar ratio of 5-phenyl-1,3,4-
thiadiazole-2-thiol:base:3a = 1.05:1.2:1.0, after a reaction time of 4 h, and the results are outlined in
Table 1. It was shown that the maximum yield of 4a (up to 87%) was achieved when the solvent,
base and temperature were DMF, KOH and 40 ◦C, respectively. The other compounds were then
synthesized under these conditions.
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Table 1. Effect of the different conditions for the synthesis of 4a.

No. Solvent Base Temperature (◦C) Yield (%) a

1 DMF Et3N 25 0
2 DMF K2CO3 25 21
3 DMF K2CO3 50 38
4 acetone KOH 25 18
5 THF KOH 25 26
6 CH3CN KOH 25 38
7 DMF KOH 25 56
8 DMF KOH 40 87
9 DMF NaOH 40 72

a Yields of isolated products.

The structures of the target compounds were confirmed by IR, 1H-NMR, and 13C-NMR spectroscopy
and elemental analysis. The data of 4a are shown and discussed below. The IR spectra exhibited
characteristic absorption bands at 3435 cm−1, which indicate the presence of a =CHCOCH= grouping.
The stretching frequency at 2942–2838 cm−1 was assigned to CH vibrations. The characteristic
absorptions at 1627 cm−1, 1610 cm−1, and 1598–1448 cm−1 were attributed to the presence of C=O,
C=N, and C=C group vibrations, respectively. The characteristic absorption at 1108 cm−1 was assigned
to CH vibrations. In the 1H-NMR, the four low-frequency downfield doublets at δ 7.71 (d, 1H, J =
16.0 Hz), 7.69 (d, 1H, J = 16.0 Hz), 7.03 (d, 1H, J = 16.0 Hz), and 6.97 (d, 1H, J = 15.0 Hz) ppm revealed
the presence of four trans =C-H protons. The various absorption peaks at δ 7.89–6.98 ppm indicated the
presence of phenyl protons. The triplets at 4.77 and 3.80 ppm indicated the presence of -O-CH2- and
–S-CH2- absorption peaks. The presence of Ar-CH3 showed a singlet at 2.39 ppm. The typical chemical
shifts near δ 189.03, 168.81, 164.50, and 160.35 ppm of 13C-NMR spectra validated the presence of
C=O, C-N (two), and C-O, respectively. Meanwhile, peaks near δ 66.33 and 32.69 ppm confirmed
the presence of -OCH2- and -SCH2-. The typical peak near δ 21.64 ppm also verified the presence of
-ArCH3. ESI-HRMS (m/z), calcd. for C28H24O2N2NaS2 [M + Na]+ 507.11714, found 507.11646.

2.2. Antiviral Activity of Title Compounds against TMV In Vivo

The antiviral activities of the title compounds 4a–4t against TMV were evaluated by the half-leaf
method [39] and the results were summarized in Table 2. It was found that most of the title compounds
exhibited good antiviral activity against TMV in vivo. Compounds 4a, 4b, 4g, 4h, 4i, 4k, 4o, 4q, and 4t
showed remarkable curative activity against TMV, with values of 55.8, 56.4, 56.3, 56.2, 53.7, 56.5, 51.7,
58.7 and 54.5%, respectively, which were better than that of ribavirin (37.9%). Meanwhile, compounds
4b, 4f, 4h, 4i, 4k, 4l, 4o, and 4q exhibited excellent protection activity, also superior to ribavirin (51.8%).
Overall, most of the compounds except 4d indicated significant inactivation activity against TMV at
500 µg/mL.
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Based on the previous bioassays, the 50% effective concentration (EC50) values of protection
activities against TMV of the title compounds were tested and are listed in Table 2. Most of the
target compounds showed good antiviral activity against TMV. Compounds 4h, 4i, 4k, 4l, 4o, and
4q exhibited excellent protection activity against TMV, with the EC50 values of 105.01, 254.77, 135.38,
297.40, 248.18 and 129.87 µg/mL, respectively, which were better than that of ribavirin (457.25 µg/mL).
In summary, we found that the compounds 4b, 4h, 4i, 4k, 4o, and 4q had good curative, protection,
and inactivation activity against TMV.

Table 2. Antiviral activities of the test compounds against TMV in vivo.

Compound Curative
Activity (%) a

Protection
Activity (%) a

Inactivation
Activity (%) a

EC50 of Protection
Activity (µg/mL) a

4a 55.8 ± 3.1 55.9 ± 3.5 84.1 ± 4.8 344.23 ± 2.35
4b 56.4 ± 1.5 64.5 ± 1.1 84.1 ± 4.8 319.67 ± 1.89
4c 36.8 ± 0.6 52.2 ± 1.4 91.8 ± 3.8 411.42 ± 2.68
4d 21.2 ± 1.5 24.2 ± 2.1 64.3 ± 2.6 1058.25 ± 2.11
4e 45.0 ± 1.6 30.4 ± 2.1 82.4 ± 1.8 1042.09 ± 1.28
4f 40.6 ± 0.8 61.6 ± 3.3 90.1 ± 0.3 389.46 ± 2.32
4g 56.3 ± 2.7 46.3 ± 1.4 78.5 ± 1.9 592.44 ± 1.89
4h 56.2 ± 3.5 70.2 ± 1.3 93.8 ± 1.7 105.01 ± 3.15
4i 53.7 ± 1.6 64.3 ± 2.7 85.3 ± 2.0 254.77 ± 1.66
4j 44.6 ± 3.2 53.6 ± 3.7 85.2 ± 2.2 388.31 ± 2.05
4k 56.5 ± 2.1 68.4 ± 1.8 87.1 ± 3.6 135.38 ± 3.12
4l 45.9 ± 3.1 63.4 ± 4.4 83.0 ± 1.9 297.40 ± 4.10

4m 40.5 ± 1.8 54.8 ± 2.5 81.5 ± 1.2 334.03 ± 1.08
4n 47.9 ± 2.5 59.8 ± 4.3 89.3 ± 2.5 309.09 ± 2.56
4o 51.7 ± 2.8 64.8 ± 3.1 77.6 ± 1.3 248.18 ± 4.14
4p 24.2 ± 4.5 50.7 ± 1.5 88.6 ± 1.1 466.15 ± 1.98
4q 58.7 ± 3.0 68.4 ± 1.6 84.7 ± 2.6 129.87 ± 3.55
4r 42.3 ± 2.4 56.7 ± 2.8 87.4 ± 2.9 316.77 ± 2.54
4s 28.2 ± 3.8 59.0 ± 1.7 82.7 ± 1.6 316.52 ± 4.29
4t 54.5 ± 4.4 54.1 ± 1.2 82.7 ± 1.6 425.71 ± 3.17

Ribavirin b 37.9 ± 1.9 51.8 ± 2.3 72.9 ± 2.4 457.25± 2.68
a Average of three replicates, at 500 µg/mL. b The commercial antiviral agent.

2.3. Antiviral Activity of Title Compounds against CMV In Vivo

The antiviral activities of the title compounds 4a–4t against CMV were tested by the half-leaf
method [22] and the results are summarized in Table 3. Some of the title compounds exhibited good
antiviral activity against CMV in vivo. Compounds 4e, and 4f showed remarkable curative activity
against CMV, with values of 55.9% and 50.2%, respectively, which were better than that of ribavirin
(36.8%). Meanwhile, the protection and inactivation activity of the target compounds was similar to
that of ribavirin.

2.4. Antiviral Activity and Structure-Activity Relationships

The antiviral bioassay results indicated that the target compounds showed excellent antiviral
activity against TMV. The preliminary SAR results were deduced on the basis of the anti-TMV activity
(as shown in Table 2). The results showed that when the Ar is 4-OCH3-Ph (4b), 3,4-diOCH3-Ph (4f),
4-F-Ph (4h), 4-Br-Ph (4i), 2-F-Ph (4k), 2-Cl-Ph (4l), 3-NO2-Ph (4o), and 2,4-diCl-Ph (4q) groups, the
corresponding target compounds exhibited good protection activity. Moreover, the results showed
that electron-withdrawing groups on aromatic rings were favorable for antiviral activity at the
same position, these findings were confirmed by the following activity order 4h (Ar = 4-F-Ph) >
4i (Ar = 4-Br-Ph) > 4a (Ar = 4-CH3-Ph), 4k (Ar = 2-F-Ph) > 4l (Ar = 2-Cl-Ph) > 4c (Ar = 2-OCH3-Ph),
and 4q (2,4-diCl-Ph) > 7e (2,4-diOCH3-Ph). Bulky group of aromatic rings disfavor antiviral activity,
a notion supported by the activity order of 7b (Ar = 4-OCH3-Ph) > 4e (Ar = 2,4-diOCH3-Ph), 4h
(Ar = 4-F-Ph) > 4i (Ar = 4-Br-Ph), and 4k (Ar = 2-F-Ph) > 4l (Ar = 2-Cl-Ph) > 4m (Ar = 2-Br-Ph).
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Table 3. Antiviral activities of the test compounds against CMV in vivo.

Compound Curative Activity (%) a Protection Activity (%) a Inactivation Activity (%) a

4a 29.3 ± 1.3 40.1 ± 2.5 71.3 ± 3.1
4b 23.6 ± 2.2 38.9 ± 2.9 65.2 ± 2.5
4c 37.9 ± 3.7 43.4 ± 3.1 61.5 ± 2.2
4d 18.5 ± 1.8 33.6 ± 2.1 51.2 ± 3.4
4e 55.9 ± 1.8 42.3 ± 1.1 79.6 ± 4.2
4f 50.2 ± 2.7 46.6 ± 2.3 62.5 ± 1.9
4g 39.8 ± 2.5 48.5 ± 2.7 66.7 ± 2.2
4h 39.8 ± 2.5 36.2 ± 2.2 62.1 ±1.9
4i 37.3 ± 2.5 35.6 ± 2.1 51.8 ± 1.1
4j 40.6 ± 3.7 45.9 ± 1.6 79.1± 2.5
4k 26.4 ± 2.3 35.6 ± 1.9 49.9± 3.6
4l 29.7 ± 1.1 43.5 ± 2.5 66.5 ± 2.0

4m 28.5 ± 2.3 42.2 ± 1.4 68.9 ± 2.8
4n 18.9 ± 2.9 25.4 ± 1.7 46.2 ± 0.9
4o 31.8 ± 2.8 49.9 ± 1.9 58.2 ± 3.2
4p 29.5 ± 1.4 38.5 ± 2.1 59.8 ± 1.9
4q 44.5 ± 1.8 48.1 ± 2.4 43.9 ± 1.2
4r 26.4 ± 2.2 40.5 ± 1.9 42.5 ± 2.8
4s 41.0 ± 1.7 54.7 ± 2.4 78.5 ± 1.9
4t 34.8 ± 2.3 48.1 ± 1.6 69.5 ± 2.0

Ribavirin b 36.8 ± 1.6 47.9 ± 2.7 71.2 ± 1.7
a Average of three replicates, at 500 µg/mL. b A commercial antiviral agent.

3. Materials and Methods

3.1. General Information

Melting points of the compounds were recorded on an XT-4 binocular microscope melting point
apparatus (Beijing Tech Instruments Co., Beijing, China), and are uncorrected. Proton nuclear magnetic
resonance (NMR) spectra were determined at 500 and 125 MHz using an ECX 500 NMR spectrometer
(JEOL, Tokyo, Japan) in CDCl3 solvent, using TMS as an internal standard. Infrared (IR) spectra were
obtained on a Vector 22 Fourier transform infrared (FTIR) spectrometer (Bruker, Karlsruhe, Germany)
in KBr disks. Elemental analyses were determined on an Elementar Vario-III CHN analyzer (Elementar
Analysensysteme GmbH, Frankfurt, Germany). High resolution mass spectrometer (HRMS) data was
conducted using a Thermo Scientific Q Exactive (Thermo, Waltham, MA, USA). Reaction progress
was monitored by thin-layer chromatography (TLC) on silica gel GF254. Column chromatographic
purification was carried out using silica gel (200–300 mesh, Qingdao Bangkai Hi-Tech materials Co.,
Ltd. Qingdao, Shandong, China). All solvents and reagents were of analytical reagent grade or
chemically pure, and the solvents were dried in advance and distilled before use.

3.2. Chemistry

3.2.1. General Procedure for Preparation of Intermediates 3a–3t

(E)-4-(4-hydroxyphenyl) but-3-en-2-one (1) was synthesized from 4-hydroxybenzaldehyde
(20 mmol) and acetone (20 mL) via a room temperature Claisen-Schmidt aldol condensation.
(1E,4E)-1-(4-Hydroxyphenyl)-5-substitued phenylpenta-1,4-dien-3-ones 2 were synthesized from
1 (4 mmol) and an aromatic aldehyde (4 mmol) at room temperature. Thus, to a solution of the
corresponding 2 (2 mmol) in DMF (3 mL), potassium carbonate (4 mmol) was added, and the resulting
solution was stirred at room temperature for 1 h. Then 1,2-dibromoethane (10 mmol) was added to the
mixture, warmed to 80 ◦C and stirred for 6 h. Upon reaction completion (as indicated by TLC), the
solid was removed by filtration, and N,N-dimethylformamide and excess 1,2-dibromoethane were
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evaporated under vacuum. The crude product was purified by silica-gel column chromatography using
petroleum ether/ethyl acetate (5:1/v:v) as the eluant to give (1E,4E)-1-(4-(2-bromoethoxy)phenyl)-
5-substitued phenylpenta-1,4-dien-3-ones 3a–3t as faint yellow powders [22,37].

3.2.2. General Procedure for Preparation of Title Compounds 4a–4t

A mixture of 5-phenyl-1,3,4-thiadiazole-2-thiol (1.05 mmol) and potassium hydroxide (1.2 mmol)
in DMF (4 mL) was stirred at room temperature for 1 h, and then a solution of the appropriate
(1E,4E)-1-(4-(2-bromoethoxy)phenyl)-5-substitued phenylpenta-1,4-dien-3-one 3 (1.0 mmol) in DMF
(4 mL) was added. The mixture was warmed to 50 ◦C and stirred continuously for 4 h to 6 h. Upon
reaction completion (as indicated by TLC), after dropwise addition of cold brine, the solid was filtered
off, and washed with cold water. Then the crude product was recrystallized from ethyl acetate, filtered,
washed, and dried to obtain the title 1,4-pentadien-3-one derivatives. The physical characteristics, IR,
1H-NMR, 13C-NMR, and elemental analysis data, for all the synthesized compounds are provided in
Supporting Information and the representative data of 4a are listed below.

(1E,4E)-1-(4-(2-((5-Bhenyl-1,3,4-thiadiazol-2-yl)thio)ethoxy)phenyl)-5-(p-tolyl)penta-1,4-dien-3-one (4a). Faint
yellow powder; m.p. 125–126 ◦C; yield 87%; IR (KBr, cm−1): ν 3435 (=CHCOCH=), 2942–2838 (CH),
1627 (C=O), 1610 (C=N), 1598–1448 (C=C and benzene), 1108 (-C-O-C); 1H-NMR: δ 7.89 (d, 2H,
J = 8.6 Hz, 5’-Ar-2, 6-H), 7.71 (d, 1H, J = 16.0 Hz, 5-H), 7.69 (d, 1H, J = 16.0 Hz, 1-H), 7.57 (d, 2H,
J = 8.5 Hz, 1-Ar-2, 6-H), 7.51 (d, 2H, J = 8.0 Hz, 5-Ar-2, 6-H), 7.49–7.48 (m, 3H, 5’-Ar-3, 4, 5-H), 7.22 (d,
2H, J = 8.0 Hz, 5-Ar-3, 5-H), 7.03 (d, 1H, J = 16.0 Hz, 2-H), 6.98 (d, 2H, J = 8.5 Hz, 1-Ar-3, 5-H), 6.97 (d,
1H, J = 15.0 Hz, 4-H), 4.47 (t, 2H, J = 6.5 Hz, -CH2O-), 3.80 (t, 2H, J = 6.5 Hz, -CH2S-), 2.39 (s, 3H, CH3);
13C-NMR: δ 189.03, 168.81, 164.50, 160.35, 143.08, 142.84, 141.00, 132.24, 131.28, 130.26, 130.26, 129.79,
129.79, 129.34, 129.34, 128.47, 128.47, 128.14, 127.82, 127.82, 124.78, 123.67, 115.15, 115.15, 66.33, 32.69,
21.64.; Anal. Calcd. for C28H24N2O2S2: C, 69.39; H, 4.99; N, 5.78; Found: C, 69.30; H, 5.01; N, 5.81.
ESI-HRMS (m/z), calcd. for C28H24O2N2NaS2 [M + Na]+ 507.11714, found 507.11646.

3.3. Antiviral Biological Assay

3.3.1. Purification of TMV and CMV

TMV and CMV were inoculated in Nicotiana tabacum cv. K326, and purified by the Gooding
method [40].

3.3.2. Curative Activities of Compounds against TMV and CMV In Vivo

TMV and CMV (at a concentration of 6 µg/mL) were inoculated on the whole leaves of the same
growing leaves of Nicotiana tabacum L. After 1 h, the leaves were washed with water, and after drying,
the compound solution was smeared on the left side of leaf and the solvent was smeared on the right
side for control. The local lesion numbers were recorded 3 to 4 days after inoculation [22,39].

3.3.3. Protective Activities of Compounds against TMV and CMV In Vivo

The solution of the compound was smeared on the left side of leaf, while the solvent was served
as control on the right side of leaf. The leaves were inoculated with 6 µg/mL TMV and CMV after
12 h. Then, the leaves were washed with water. The number of local lesions numbers was counted
after 3 to 4 days [22,39].

3.3.4. Inactivation Activities of Compounds aga inst TMV and CMV In Vivo

TMV and CMV was inhibited by mixing with the compound solution at the same volume for
30 min, respectively. Then, it was inoculated on the left side of leaf, and the right side of the leaf was
inoculated with solvent and virus mixture as the control. The local lesion numbers were recorded 3 to
4 days after inoculation [22,39]. The in vivo inhibition rates of the compound were calculated based on
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the following formula (“av” means average). Inhibition rate (%) = [(av local lesion no. of control − av
local lesion no. smeared with drugs)/av local lesion no. of control] × 100%. Three replications were
conducted for each compound.

4. Conclusions

In summary, a serial of 1,4-pentadien-3-one derivatives containing a 1,3,4-thiadiazole moiety were
designed for the development of antiviral agents, and twenty novel compounds were synthesized
using optimized reaction conditions. The assay results demonstrated that most of compounds exhibited
remarkable antiviral activities against TMV and CMV, among which compounds 4b, 4h, 4i, 4k, 4o, and
4q exhibited good curative, protection, and inactivation activity against TMV. Especially, compounds
4h, 4i, 4k, 4l, 4o, and 4q displayed excellent protection activity against TMV, with the EC50 values of
105.01, 254.77, 135.38, 297.40, 248.18, and 129.87 µg/mL, respectively, which were better than that of
ribavirin (457.25 µg/mL). Preliminary SARs illuminated that small electron-withdrawing groups on
the aromatic ring were favorable for antiviral activity at the same position. This finding suggests that
1,4-pentadien-3-one derivatives containing a 1,3,4-thiadiazole moiety may be used as potential lead
structures for development of new antiviral agents.

Supplementary Materials: The following are available online. The data and spectrogram of compounds 4a–4t.
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