Supplementary Materials: Increased understanding of enolate additions under mechanochemical conditions

Heather Hopgood, and James Mack*

1. Spectral Data of selected compounds

¹H-NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 7.2 Hz, 2H), 7.55 (d, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.27 (m, 7H), 7.17 (dt, *J* = 8.8, 4.5 Hz, 3H), 4.83 (t, *J* = 7.3 Hz, 1H), 3.74 (d, *J* = 7.3 Hz, 2H). same as reported in Iwai, T.; Tanaka, R.; Sawamura, M., Synthesis, Coordination Properties, and Catalytic Application of Triarylmethane-Monophosphines. *Organometallics* **2016**, *35* (23), 3959-3969.

¹³C NMR ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.99, 144.15, 137.06, 133.09, 128.61, 128.57, 128.06, 127.85, 126.39, 45.93, 44.74. same as reported in Iwai, T.; Tanaka, R.; Sawamura, M., Synthesis, Coordination Properties, and Catalytic Application of Triarylmethane-Monophosphines. *Organometallics* **2016**, *35* (23), 3959-3969.

di-addition ¹**H-NMR** (400 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 7.5 Hz, 2H), 7.33 – 7.27 (m, 2H), 7.22 (d, *J* = 7.5 Hz, 4H), 7.15 (d, *J* = 7.5 Hz, 5H), 7.06-7.12 (m, 8H), 7.05 – 7.00 (m, 4H), 5.26 – 5.20 (m, 1H), 4.45 (d, *J* = 8.9 Hz, 2H). IR (ATR): 3085.8, 3061.1, 3027.4, 2924.3, 2854.9, 1675.4, 1493.8, 728.8, 698.5 cm⁻¹ HRMS (ESI) m/z: [M + Na]+ Calcd for (C₃₄H₂₈O)Na⁺ 475.2032; Found 475.2041. colorless viscous oil

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 fi (ppm)

di-addition ¹³C NMR (101 MHz, CDCl₃) δ 203.03 142.43, 141.51, 139.63, 132.03, 129.21, 128.70, 128.15, 128.01, 127.87, 126.43, 126.36, 55.23, 54.53.

-100

-80

-60

-40

-20

¹**H-NMR** ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 5.3 Hz, 3H), 7.26- 7.16 (m, 12H), 4.45 (s, 2H). 1. Same as reported in Koppolu, S. R.; Naveen, N.; Balamurugan, R., Triflic Acid Promoted Direct α-Alkylation of Unactivated Ketones Using Benzylic Alcohols via in Situ Formed Acetals. *J. Org. Chem.* **2014**, *79* (13), 6069-6078.

¹³**C NMR** (101 MHz, CDCl₃) δ 197.24, 147.33, 147.07, 132.87, 131.31, 130.16, 129.58, 129.41, 128.55, 128.15, 128.01, 127.94, 127.53, 126.21, 49.53, 31.10 Same as reported in Koppolu, S. R.; Naveen, N.; Balamurugan, R., Triflic Acid Promoted Direct α-Alkylation of Unactivated Ketones Using Benzylic Alcohols via in Situ Formed Acetals. *J. Org. Chem.* **2014**, *79* (13), 6069-6078.

¹**H-NMR** (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.3 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.30-7.10 (m, 8H), 7.06 (t, *J* = 7.2 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 2H), 6.87 (t, *J* = 7.3 Hz, 1H), 4.38 – 4.25 (m, 2H), 1.01 (d, *J* = 4 Hz, 3H). Same as reported in Jayamani, M.; Pant, N.; Ananthan, S.; Narayanan, K.; Pillai, C. N., Synthesis of indenes from phenylpropanones using alumina catalyst. *Tetrahedron* **1986**, *42* (15), 4325-4332.

¹³C NMR (101 MHz, Chloroform-*d*) δ 203.37, 143.60, 143.08, 136.75, 133.00, 128.68, 128.66, 128.52, 128.45, 128.13, 127.68, 126.54, 126.18, 54.32, 44.79, 18.07. Same as reported in Jayamani, M.; Pant, N.; Ananthan, S.; Narayanan, K.; Pillai, C. N., Synthesis of indenes from phenylpropanones using alumina catalyst. *Tetrahedron* **1986**, *42* (15), 4325-4332.

¹H-NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 7.2 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.29 – 7.23 (m, 5H), 7.20 (m, 4H), 7.05 (m, 4H 6H), 4.67 (q, J = 6.8 Hz, 1H), 1.52 (d, J = 6.9 Hz, 3H). IR (ATR): 3083.9, 3058.3, 3024.9, 2972.9, 2927.9, 2870.2, 2853.2, 1681.3, 1220.25, 698.9, 607.6 cm⁻¹ .HRMS (ESI-MS) m/z: [M +H]+ Calcd (C₂₈H₂₄O)H⁺ 377.1900; Found 377.1905. colorless viscous oil

¹³C NMR (101 MHz, Chloroform-*d*) δ 200.55,143.89, 142.56, 139.41, 136.60, 132.93, 130.06, 129.54, 128.94, 128.61, 128.42, 127.83, 126.44, 77.16, 56.57, 47.43, 19.64.

Mass Spectrum

¹**H-NMR**(400 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 8.6 Hz, 2H), 7.35 – 7.19 (m, 3H), 7.12 (m, 3H), 7.00 (d, *J* = 6.4 Hz, 2H), 2.97 (s, 2H), 1.19 (s, 6H). same as reported in Barluenga, J.; Aguilar, E.; Olano, B.; Fustero, S., Mild and regiospecific reduction of masked 1,3-dicarbonyl derivatives to monocarbonyl compounds and primary and secondary amines. *J. Org. Chem.* **1988**, 53 (8), 1741-4.

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 $f_1(ppm)$

¹³C NMR (101 MHz, Chloroform-*d*) δ 209.44, 139.44, 137.89, 130.66, 130.52, 128.06, 127.49, 126.44, 48.78, 46.25, 26.11. Same as reported in Barluenga, J.; Aguilar, E.; Olano, B.; Fustero, S., Mild and regiospecific reduction of masked 1,3-dicarbonyl derivatives to monocarbonyl compounds and primary and secondary amines. *J. Org. Chem.* **1988**, *53* (8), 1741-4.

¹**H-NMR** ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (t, *J* = 7.0 Hz, 1H), 7.22 – 7.14 (m, 12H), 7.10 (t, *J* = 7.0 Hz, 2H), 4.66 (s, 1H), 1.34 (s, 6H). Same as reported in Chen, W.; Liu, Z.; Tian, J.; Li, J.; Ma, J.; Cheng, X.; Li, G., Building Congested Ketone: Substituted Hantzsch Ester and Nitrile as Alkylation Reagents in Photoredox Catalysis. *J. Am. Chem. Soc.* **2016**, *138* (38), 12312-12315.

^{2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5} f1(ppm)

¹³C NMR (101 MHz, Chloroform-*d*) δ 210.65, 141.68, 140.21, 130.33, 128.22, 127.97, 127.23, 126.56, 58.77, 52.19, 25.71. Same as reported in Chen, W.; Liu, Z.; Tian, J.; Li, J.; Ma, J.; Cheng, X.; Li, G., Building Congested Ketone: Substituted Hantzsch Ester and Nitrile as Alkylation Reagents in Photoredox Catalysis. *J. Am. Chem. Soc.* **2016**, *138* (38), 12312-12315.

Mass Spectrum

MW= 314g/mol

¹**H-NMR** (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 7.2 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.25 (m, 11H), 7.09 (d, J = 6.9 Hz, 6H), 1.58 (s, 6H). IR (ATR): 3083.9, 3058.3, 3054.9, 2961.7, 2927.4, 2854.3, 1674.7, 1264.2, 734.6, 704.1 cm⁻¹ HRMS (ESI-MS) m/z: [M + Na]+ Calcd for (C₂₉H₂₆O)H⁺ 391.2056; Found 391.2062. colorless viscous oil

(59) ¹³**C NMR** ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.80, 143.88, 143.35, 142.45, 136.35, 131.76, 130.10, 129.88, 129.52, 128.44, 127.99, 126.48, 125.87, 56.47, 51.23, 27.87.

Mass Spectrum

MW= 390g/mol