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Abstract: Cancer comprises a collection of related diseases characterized by the existence of altered
cellular pathways resulting in an abnormal tendency for uncontrolled growth. A broad spectrum,
coordinated, and personalized approach focused on targeting diverse oncogenic pathways with low
toxicity and economic natural compounds can provide a real benefit as a chemopreventive and/or
treatment of this complex disease. Oleuropein, a bioactive phenolic compound mainly present in
olive oil and other natural sources, has been reported to modulate several oncogenic signalling
pathways. This review presents and critically discusses the available literature about the anticancer
and onco-suppressive activity of oleuropein and the underlying molecular mechanisms implicated
in the anticarcinogenic and therapeutic effects. The existence of limitations and the promising
perspectives of research on this phenolic compound are also critically analyzed and discussed.

Keywords: cancer; chemopreventive effect; oleuropein; olive oil

1. Introduction

Natural products obtained from various sources have been a source of inspiration for medicinal
chemists and correspond to a significant reserve for the identification of new drugs. Among different
sources of natural products, medicinal and edible plants have been precious sources of therapeutic
agents for millennia, and numerous medicines generally used today are based on natural products
from plants or their derivatives [1–3]. Medicinal plants and vegetables together with food products
derived from them are important sources of natural compounds that have proven their beneficial
effects for health by preventing or curing diseases [4,5]. Referring to medicinal plants, the bioactive
natural compounds can ultimately be developed as pharmaceuticals [4,6–8].
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Natural products from various sources have been used for the prevention or treatment of
several chronic ailments for centuries. In this frame, cancer is a growing health concern worldwide,
especially associated with the progressive increase in life expectancy, increased urbanization, the
shift towards a more sedentary lifestyle and subsequent transformation of the environmental
conditions [9,10]. Moreover, an abundance of mechanistic information has recently been presented
about how phytochemicals derived from dietary sources have reputed chemopreventive properties that
interfere with the initiation, promotion, and progression of tumor. Chemopreventive phytochemicals
often have similar or identical mechanisms with molecularly targeted chemotherapeutic agents, and
may therefore serve as alternative or complementary coadjuvant to conventional antitumoral therapies.
In a similar manner to synthetic chemotherapeutical agents, chemopreventive phytochemicals
confound events from different signaling pathways involved in tumor growth or invasion and may
ultimately act as antineoplastic agents [11,12].

Additionally, a large amount of epidemiological evidence suggests that a habitual intake of
vegetables, fruits, and herbal products is linked with a reduction in the risk of suffering from chronic
diseases such as cardio-metabolic syndrome and cancer. This assumption is at least in part sustained
by the presence of several important phytochemicals in plant-based foods [13,14]. Olive oil, especially
extra virgin olive oil, derived from the olive tree (Olea europaea) is highly appreciated for its taste and
flavor, but also for its health benefits. The intriguing properties of this functional food are ascribed to
its adequate fatty acid profile and phenolic composition [15]. Among bioactive components of olive
oil, phenolic compounds have been extensively investigated and their occurrence and health claims
are well documented by many studies [15]. This review presents comprehensive information about
the chemistry, dietary sources, bioavailability, and anticancer effects of oleuropein, one of the most
abundant bioactive components contained in the olive fruit of the Oleaceae family, with a special
emphasis on molecular mechanisms and involved signaling pathways.

2. Chemistry

Oleuropein is a member of the secoiridoids that belongs to the class of coumarin-like components.
It is a secoiridoid glycoside that is abundant in plants of the family Oleaceas, Gentianales, Cornales [15].
It is one of the most common active compounds in the leaves of olive tree (Olea europaea L.), the use
of which dates back to 6000 BCE according to archaeological evidence [16]. In fact, olive leaves were
used by ancient Egyptians to mummify pharaohs in the classical era and later, and in folk medicine to
treat fevers, colic, alopecia, sciatica, paralysis, rheumatic pain, and hypertension [17,18]. Olives are
used to produce extra-virgin olive oil, the main lipid source in the “Mediterranean diet” associated
with several health benefits, including low incidence of cardiovascular diseases. These benefits are
generally related to the favorable fatty acid (FA) based composition of extra virgin olive oil and the
occurrence of diverse minor constituents (e.g., carotenoids and polyphenols) responsible for the unique
taste and flavor [17]. Extra-virgin olive oil is obtained by crushing olives using mechanical or other
physical procedures that do not imply any alteration in the oil composition. Oleuropein consists of
hydroxytyrosol (3,4′-dihydroxyphenylethanol), elenolic acid, and glucose (Figure 1). Table 1 presents
various chemical and physical properties of oleuropein. In the tree, oleuropein is believed to confer
resistance to insect and infections [17].
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Table 1. Various physical properties of oleuropein (CAS 32619-42-4) [19].

Physical Properties Value

Molecular weight 540.5148 g/mol
Melting Point 88 ◦C

log P (octanol-water) −0.080
Atmospheric OH Rate Constant 2.59 × 10−10 cm3/molecule-sec at 25 ◦C

3. Sources

Oleuropein, a characteristic biophenol present in the plants of Oleaceae family, is responsible
for the bitterness of olive fruits [20]. Phenols of olives are also responsible for the resistance
of olive oil to oxidative rancidity [17]. Olive biophenols greatly change depending on variety,
species, ripening stages and edaphoclimatic conditions during development [21,22]. For instance,
demethyloleuropein was reported as a potential varietal marker because it was not found in all
the varieties [17,23]. Several methods can be used to determine oleuropein in different parts
of the Olea europaea (fruits, leaves, stems, and roots) or its products (pomace, olive oil, and
alperujo) [24], including infrared spectroscopy [25], voltammetry [26], capillary electrophoresis
with UV detection [27], capillary electrophoresis-electrospray ionization mass spectrometry
(CZE-ESI-MS) [28], gas chromatography-mass spectrometry (GC-CI-MS) [29,30], or high performance
liquid chromatography (HPLC), which can be equipped with several detectors such as UV detector
(HPLC-UV) [20,31,32], diode array detector (HPLC-DAD) [24,33], electrospray ionization tandem
mass spectrometry (HPLC-ESI-MS/MS) [21,33–35], ion trap multiple mass spectrometry (IT-MSn),
and electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) [36]. Table 2 presents the
concentration of oleuropein in different parts of the olive plant or in different products (e.g., olive
pomace and extra virgin olive oil).

Although oleuropein is found in all parts of the olive tree and olive fruits (peel, pulp and
seed), the highest amount is found in olive leaves. Small fruit cultivars are associated with high
oleuropein content and large fruit cultivars with low oleuropein content [17]. The analysis of
oleuropein in olive leaves revealed that green leaves presented higher levels of oleuropein than
green-yellowish leaves and these presented higher content than yellow leaves [37]. A study developed
by Ortega-García et al. [31,38] using the Picual variety reported that oleuropein decreases in fruits
while increases in leaves over olive ripening process.

Table 2. Concentration of oleuropein in different parts of the olive plant or in different products.

Part of the Plant/Product Variety Concentration Units References

Leaves

n.a. 22,640 mg/kg [39]

n.a. 0.21–5.06 g/kg·DW * [33]

n.a. n.d.-173 mg/100 g [40]

Chemlali 4.32 g/100 g·DW [41]

Leccino 1.05 mg/g leaves

[42]

Frantoio 3.19 mg/g leaves
Moraiolo 14.35 mg/g leaves

N2 7.06 mg/g leaves
N3 (Don Carlo) 8.39 mg/g leaves

Coratina 6.1 mg/g leaves
Kalamata 2.86 mg/g leaves
Nociara 3.7 mg/g leaves

I-77 3.03 mg/g leaves

Dritta 0.95–3.21 g/kg FW

[37]

Leccino 0.80–2.44 g/kg FW
Caroleo 0.78–2.36 g/kg FW
Coratina 1.42–4.43 g/kg FW

Castiglionese 2.81–7.29 g/kg FW
Nebbio 3.27–8.61 g/kg FW

Grossa di Cassano 3.08–8.10 g/kg FW

n.a. 1685 mg/100g extract [32]

Stem
Picual 523–651 (cortex stem) mg/100g·FW [43]

Picual 320 mg/100 g·FW [44]
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Table 2. Cont.

Part of the Plant/Product Variety Concentration Units References

Fruits

Arbequina 9.74–392 a,**
3.63–475 b,** µmol/g dry pulp

[21]

Arbequina 12–246 a,**
18–320 b,** µmol/g dry pulp

Leccino 4.25 mg/g fruit

[42]

Frantoio 3.48 mg/g fruit
Moraiolo 2.32 mg/g fruit

N2 2.26 mg/g fruit
N3 (Don Carlo) 5.78 mg/g fruit

Coratina 1.98 mg/g fruit
Kalamata 5.26 mg/g fruit
Nociara 9.96 mg/g fruit

I-77 6.83 mg/g fruit

Fruits—flesh (pepper stuffed) Manzanilla 147 mg/kg

[45]

Fruits—flesh (anchovy stuffed) Manzanilla 104 mg/kg
Fruits—whole by-product (pepper stuffed) Manzanilla 148 mg/kg
Fruits—whole by-product (pepper stuffed) Manzanilla 199 mg/kg
Stone (without seed) Manzanilla 750 mg/kg
Seed Manzanilla 569 mg/kg

Roots Picual 140 mg/100g·FW [44]

Virgin olive oil La Pepa 140 mg/kg

[46]
Severini 120 mg/kg

Olive oil pomace La Pepa 83 mg/kg
Severini 82 mg/kg

Diettary supplements (Bonoolive®) 100 mg/one dosage
unit [34]

a Organic farming; b conventional farming; * depends on irradiation and hot water blanched treatments; ** depends
on the time of the year; DW, Dry weight; FW, Fresh weight; n.a., data not available, n.d., not detected.

4. Biosynthesis and Bioavailability

In Olea europaea, biosynthesis of Oleuropein is complex and still not very well elucidated.
Moreover, it may vary according to the species and the season of the year [21]. It is believed that
oleuropein is biosynthesized from mevalonic acid through intricate metabolic pathways. It involves
the formation of carbocyclic iridoid precursors (deoxyloganic acid, 7-ketologanin, 7-epi-loganic acid,
and 7-ketologanic acid) although their order may vary according to the species and season of the year.

According to Damtoft et al. [47,48], 7-ketologanin is a previous intermediate of the
oleoside-11-methyl ester and its transformation is more likely to occur in a single-step process by
a Baeyer-Villiger type intermediate, although other processes may be possible. The final stages
of the synthesis of oleuropein could be due to the direct transformation of 7-ketologanin into
oleoside-11-methyl ester and the subsequent conversion to 7-β-1-D-glucopyranosyl-11-methyl oleoside
that is esterified with tyrosol to give ligstroside. A hydroxylation reaction occurs, leading to
oleuropein formation.

During the process of maturation, crushing, malaxing, and manipulation of olives, oleuropein
may undergo biotransformation in its respective aglycon by endogeneous β-glucosidades [29].
The hydrolysis of oleuropein aglycone can give rise to many forms of elenolic acid and hydroxytyrosol
characterised for their radical scavenging capability [42]. During the milling and kneading, endogenous
oxidoreductases (e.g., polyphenoloxidase, PPO, peroxidase, and POX) are also suggested to have a
distinct role in the olive oil extraction procedure via favouring phenolic oxidation [49].

According to a study by Vissers et al. [50,51] on bioavailability of olive oil phenols in humans,
their absorption rate is more than 55–66 mol % and elimination rate is at least 5% in the urine as
hydroxytyrosol and tyrosol. Studies performed with animals indicate that phenol-rich olive oil reduces
the oxidizability of low density lipoproteins (LDL) ex vivo or decreases urine markers of oxidative
processes in the body [51]. However, many nutritional studies in humans have failed to demonstrate
the observed in vitro results due to the lack of knowledge of the molecular targets and/or pathways
implicated, and due to reduced bioavailability.
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5. Epidemiological and Clinical Studies

Several epidemiological reports have evidenced that the Mediterranean diet is characterized by
the lower prevalence of coronary heart diseases, neurological disorders and some types of cancer [52].
These therapeutic effects are results of high consumption of olive oil, culinary herbs and red wine.
A systematic review and a meta-analysis including 23,340 controls and 13,800 patients concluded
that olive oil intake exerts a protective role on cancer risk. However, the authors indicate that it
remains unclear which components of olive oil are responsible for the beneficial effects [53]. Although
epidemiological studies suggest beneficial effects derived from intake of characteristic foods of the
Mediterranean diet on the occurrence of cancer, clinical trials focused on oleuropein do not yet exist.
A first randomized trial (The Lyon Diet Heart Study) with 605 patients following a Mediterranean diet
evidenced a decreased cancer risk after four-year follow up [54]. The PREDIMED was randomized,
single-blind, controlled field trial (ISRCTN35739639) comprising 4282 women aged 60 to 80 years who
were randomly allocated to a Mediterranean diet containing extra-virgin olive oil, with mixed nuts, or
a control diet focused on reduce dietary fat [55]. After a 4.8 years follow-up, the intervention group
treated with extra-virgin olive oil reported to have significant preventive effects against breast cancer.

6. Preclinical In Vivo Studies

Highly compelling evidence from experimental model indicated that oral administration of
oleuropein induced completely regressed tumors in 9–12 days in mice [56]. There was a significant
development of skin cancer at week 17 in mice upon chronic exposure to ultraviolet B irradiation.
Tumor volume of mice treated both with extract of olive leaves (300 and 1000 mg/kg body weight)
and oleuropein (25 mg/kg body weight) reduced notably in weeks 25 to 30 [57].
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Figure 2. Various anticancer molecular mechanisms of oleuropein. (A) HER2 is proteolytically
processed that is inhibited by oleuropein. Deacetoxyoleuropein aglycone inhibits activation of HER2.
Malonyl-coenzyme A (CoA) plays a role in transcriptional repression of ERBB2 by facilitating entry
of PEA3 in the nucleus. PEA3 binding sites are present within the promoter region of ERBB2. ERBB2
overexpressing breast cancer cells had lower levels of PEA3. As a result of oleuropein aglycone and
oleuropein glycoside-mediated inhibition of FASN, higher levels of malonyl–CoA continue to be
generated. Cytosolic accumulation of higher levels of malonyl-CoA triggered an increase and entry of
PEA3 in the nucleus, where it occupied the PEA3 binding site and transcriptionally repressed ERBB2;
(B) Hypoxia-inducible factor (HIFα) enters into the nucleus and transcriptionally represses miR-519d.
miR-519d is involved in negative regulation of PDRG1 in cancer cells. However, treatment of cancer
cells with oleuropein inhibits HIFα-mediated transcriptional repression of miR-519d and consequently
miR-519d quantitatively inhibits PDRG1.
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p53 and DNA damage-regulated protein 1 (PDRG1), an oncogene frequently overexpressed
in different cancers, can be regulated by miRNA [58]. MiR-519d has been reported to
post-transcriptionally modulate 3′-UTR of PDRG1 mRNA in nasopharyngeal carcinoma cells. Mutated
3′-UTR of PDRG1 transfected into miR-519d expressing cells revealed that mutant PDRG1 was not
inhibited by miR-519d as evidenced by higher luciferase activity of mutated PDRG1 3′-UTR reporter.
Hypoxia inducing factor (HIF1α) is involved in transcriptional downregulation of miR-519d by binding
to hypoxia response elements (HRE) present in promoter region of miR-519d (Figure 2) [58]. Oleuropein
inhibits the binding of HIF1α to miR19d promoter and consequently the expression if this microRNA
is enhanced. It has been described that microRNA-519d inhibits the expression of PDRG1 [58].

7. In Vitro Anticancer Effects of Oleuropein

7.1. Effects on Human Epidermal Growth Factor Receptor (HER2 and HER1) Signaling

An abundance of experimental evidence emphasized on the potential involvement of
HER2-induced signaling in cancer development and progression. HER2 is suggested to exist in
functionally active form that interacts with the ligand-activated HER receptors. HER2 receptor is
frequently overexpressed in breast cancer and drives activation of the phosphatidylinositol 3-kinase
(PI3K)/Akt and/or mitogen-activated protein kinase (MAPK) pathways. In addition, HER2 interacts
with other HER, such as HER1 (Erbb2, EGFR). HER2 is an effective therapeutic target for design and
development of rationally designed drugs. Anti-HER2 monoclonal antibodies, such as trastuzumab,
had attracted much attention of clinicians since HER2 is overexpressed in breast cancer patients.
However, circumstantial evidence revealed that HER2-overexpressing breast cancer (BCa) cells
developed resistance against trastuzumab. Different approaches are currently being tested to
efficiently inhibit HER2 activation. Oleuropein aglycone (OA) is a remarkable candidate in this
context [59]. It has been described that OA synergizes with trastusumab-sensitive breast cancer cell
lines. The mechanism seems to be related to its role in the inhibition of the proteolytic processing
of HER2 [59]. Trastuzumab (10 µg/mL) together with oleuropein aglycone (50 µM) downregulated
HER2 up to 84% in serum-starved SKBR3 cells [59]. OA impressively improved trastuzumab efficacy
>1000 times in BCa cells which had trastuzumab resistant phenotype. There is evidence which
highlights upregulated expression of HER2 after treatment with high concentration of Trastuzumab.
“HER2 super-expression” in BCa cells treated with trastuzumab was markedly suppressed oleuropein
aglycone (100 µg/mL) [59] (Table 3).

Table 3. Anticancer effects of Oleuropein and its derivatives.

Bioactive Ingredient Mechanisms Cancer Cells Reference

Oleuropein aglycone HER2 proteolytic processing Breast cancer cells [59]

Deacetoxyoleuropein
aglycone HER2 kinase inhibition Breast cancer cells [59]

Oleuropein glycoside
Oleuropein aglycone

Decrease in fatty acid synthase (FASN);
Increase in malonyl–CoA Breast cancer cells [60]

Oleuropein Increase in phosphorylated JNK level HeLa [61]

Oleuropein
hydroxytyrosol Inhibited activation of ERK1/2 MCF-7 [62]

Oleuropein Increase in Bax, cytochrome c HeLa [61]

Oleuropein
hydroxytyrosol

Reduce Bcl-2Activate
GPER/GPR30-dependent pathways SKBR3 breast cancer cells [63]

Oleuropein Reduce phosphorylated AKT Thyroid cancer cells [56]

Oleuropein Suppress NF-κB and cyclin D1 ER-negative breast cancer cells [64]

Deacetoxyoleuropein aglycone (DAOA) acts as a tyrosine kinase inhibitor. Time-dependent
decrease in HER2 tyrosine kinase activity was observed in DAOA-treated cancerous cells (Figure 2) [60].
In addition, cancer cells frequently present an increase of de novo synthesis of fatty acids. In order to
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sustain bioenergetics and structural demands in rapidly proliferating cells. OA and aglycone have
been demonstrated to inhibit FASN and to increase the accumulation of malonyl-CoA that indirectly
has been shown to inhibit transcription of Erbb2 (HER1) (Figure 2) [60].

7.2. Effects on MAPK Signaling

The MAPKs belong to a serine/threonine family of kinases which transduce the signals by
post-translational modifications of different downstream effectors and transcription factors [65].
There has been a paradigm shift in the understanding of the MAPK pathway and it is now well
recognized that these enzymes are able to respond to an array of stimuli to produce characteristically
unique cellular outcomes [66]. These responses depend on the kinetics of their inactivation and
activation, nuclear or cytosolic localization of the kinases, the complexes in which they are assembled,
and the availability of substrates.

Several evidences propose that extracellular signal-regulated kinase (ERK), N-terminal kinase
c-Jun (JNK), and p38 are the major trajectories of the MAPK signaling axis. For receptors with intrinsic
tyrosine kinase activities (RTKs) and G protein–coupled receptors (GPCRs), the activation of MAPK
cascade is triggered either through small GTP-binding proteins or adaptor proteins which transmit
signal/s to MAP3Ks [66]. Keeping in view the fact that MAPKs are hierarchially assembled, MAP3Ks
transfer the signals to downstream effector kinases via MAP2Ks which consequently activate of
MAPK [66].

An increased level of phosphorylated JNK has evidenced to positively regulate apoptosis in
HeLa cells. Oleuropein treatment increased apoptosis in HeLa cells through a mitochondrial apoptotic
cascade derived from JNK activation [61] (Figure 3, Table 3).
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Figure 3. Pro-apoptotic molecular mechanisms of oleuropein in cancer cells. (a) Oleuropein mediated
reduction of p-AKT levels. (b) Oleuropein enhanced p-JNK levels and reduced ERK1/2.

G-protein-coupled estrogen receptor 1 (GPER) transduces the signals intracellularly by activating
ERK1/2 in active cells. Ligand-binding and docking simulation techniques showed that oleuropein and
hydroxytyrosol acted as agonists for GPER. Both compounds reduced SKBR3 cell growth and induced
apoptotic processes via GPER-mediated activation of ERK1/2. Activation of ERK1/2 pathway was not
observed in oleuropein-treated GPER silenced cells [63]. In addition, oleuropein and hydroxytyrosol
also impaired 17b-estradiol-induced activation of ERK1/2 in breast MCF-7 cell line [62].

7.3. Oleuropein as an Apoptosis Inducer

The development of resistance against a wide ranging therapeutics and the loss of apoptosis
underlie cancer progression. Apoptotic cell death is an extensively investigated aspect in molecular
oncology. It is now well established that extrinsic (death receptor-mediated) or intrinsic pathway
(mitochondrial) modulate apoptosis. Extrinsic signals, including tumor necrosis factor (TNF)-related
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apoptosis-inducing ligand (TRAIL), tumor necrosis factor-α (TNFα), and FasL, transduce the signals
intracellularly through death receptors (DR4/DR5, TNFR, and Fas) and activate initiator caspases,
such as caspase-8. These Cys-dependent aspartyl-specific proteases are centrally modulate apoptosis.
Irradiation or chemotherapeutic agents initialized the mitochondrial pathway by activating BH3-only
motif proteins such as BID. BID is proteolytically processed by caspase-8 and enters into mitochondria
that facilitated the release of cytochrome c. B-cell lymphoma 2 (BCL-2)-associated X protein (BAX)
and BCL-2 antagonist/killer (BAK) are pro-apoptotic proteins positioned at the outer mitochondrial
membrane. tBID interacted with BAX and BAK and triggered their oligomerization [67].

Oleuropein is able to increase the levels of both BAX and cytochrome c in HeLa cells.
Phosphorylated JNK was found to be necessary to induce apoptosis in HeLa cells. Oleuropein
treatment induced an upregulation of p-JNK in HeLa cells. Accordingly, inhibition of JNK abrogated
oleuropein-mediated apoptotic cell death in HeLa cells [61]. Expression levels of BAX and p53
(positive regulator of apoptosis) were increased in oleuropein-treated MCF-7 cells. Furthermore, Bcl2
(anti-apoptotic protein) was found to be reduced in oleuropein-treated cancer cells [68]. Oleuropein
increased BAX and simultaneously suppressed Bcl2 in oleuropein-treated ER-negative breast cancer
cells (SKBR3) [63] (Table 3).

Much more data will be forthcoming in the coming years with regard to oleuropein-mediated
effects on expression of death receptors in different cancers. Moreover, combinatorial strategies using
different other natural products or chemotherapeutic drugs may prove to be effective in restoring
apoptosis in drug resistant cancer cell lines.

7.4. Effects on PI3K/AKT Signaling Axis

PI3K/AKT efficiently transmits the messages in the form of signals to downstream effectors.
Accumulation of PIP3 facilitates the location of pleckstrin homology (PH) domain-containing proteins.
Phosphoinositide-dependent kinase 1 (PDK1) and AKT protein kinase B (PKB) are proteins containing
the PH domain.

Serine/threonine kinase mechanistic target of rapamycin (mTOR) exists as 2 multi-components
nano-machineries, mTORC1 and mTORC2. mTORC2 promotes the AKT activity and stability in cancer
cells. AKT is post-translationally modified by mTORC2 and PDK-1. Inhibition of AKT was noted
to be an important step to induce apoptosis. Therefore, different research groups have used various
natural products to inhibit AKT in cancer cells. There was a dose-dependent induction of apoptosis
in oleuropein treated HepG2 human hepatoma cells. Oleuropein is reportedly involved in induction
of pro-survival signals in cancerous cells that overexpressed AKT/PKB. AKT/PKB inhibition was
essential to maximize oleuropein-mediated apoptosis (Figure 3) [69].

Combining oleuropein with AKT inhibitors will prove to be more useful in increasing apoptotic
rate in tested cancer cell lines. Basal levels of phosphorylated ERK and phosphorylated AKT were
found to be downregulated in thyroid cancer cells upon treatment with oleuropein [56]. Levels of
phosphorylated AKT at 308th and 473th serine residues were considerably suppressed in prostate
cancer cells (Figure 3) [70].

7.5. Regulation of Reactive Oxygen Species (ROS) Production

Oxidative stress is a comprehensively explored mechanism and has a vital role in regulation of
different cellular functions. ROS can interact with and modify biological macromolecules such as
lipids, proteins and DNA.

There was a dose-dependent reduction in endogenously generated ROS level in BCPAP and TPC-1
(thyroid cancer cells) upon treatment with oleuropein [56] (Table 3). On the contrary, ROS-modulatory
effects exerted by oleuropein were different in prostate cancer cells (DU145). ROS production was
markedly enhanced in DU145 cells after treatment with oleuropein. Oleuropein has also been isolated
from Zanthoxylum heitzii. Co-treatment of HL-60 cells with bark extracts and fruits of Z. heitzii
generated ROS that consequently induced apoptosis and cell death. Extracts of bark of Z. heitzii have
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been reported to induce a greater ROS production as compared to fruit extracts in HL-60 cells [58].
Nuclear factor-κB (NF-κB) and its main oncogenic target cyclin D1 were downregulated in ER-negative
breast cancer cells upon treatment with oleuropein [64] (Table 3).

Future studies must focus on detection of in vivo redox status in multiple cancerous cells
at different stage/s and in the non-transformed cells present in tumor micro-environment.
This information will be helpful in development of small molecules that can locally target specific
biochemical nodes.

7.6. Epigenetic Effects

Epigenetics refers to alterations in gene expression and chromatin organization, mainly derived
from DNA methylation and histone modification but without changes in DNA sequence. Although
it has been observed that extra virgin olive oils rich in secoiridoid can affect the acetylation and
methylation state of histones, no study specifically analyzes the epigenetic effects of oleuropein. In one
study, the treatment with extra virgin olive oils rich in secoiridoids allowed histones to remain in
hyperacetylated states and derived from these processes may affect the expression of genes, leading to
inhibition of cell cycle and notable decrease in viability of breast cancer cells [71]. Another investigation
reported the stimulatory effect of extra virgin olive oil on type 1 cannabinoid receptor expression
which was inversely correlated to DNA methylation at cannabinoid receptor type 1 gene promoter in
Caco-2 cells but also in a rat model of colon cancer [72].

8. Conclusions

Oleuropein is a phenolic secoiridoid glycoside and one of the most abundant bioactive
components contained in Olea europaea, which is known to modulate several oncogenic signalling
pathways. The present review presents information from published literature about its anticarcinogenic
and onco-suppressive effects, with an emphasis on molecular mechanisms implicated in cancer
chemoprevention as well as therapeutic effects. Current research has shown that oleuropein acts as an
anticancer agent by several major mechanisms, including targeting HER2, epigenetic modifications,
interfering with MAPK pathway, modulation of apoptosis and PI3K/AKT signalling axis as well
as by reducing ROS production in different cell types. Moreover, highly compelling evidence from
preclinical studies has shown that oleuropein effectively induced complete regressed tumors mice
experimental model. Regulation of microRNAs by oleuropein is also an insufficiently studied area that
needs detailed research. How oleuropein modulates oncogenic and tumor suppressor miRNAs will be
helpful in identifying potential targets of oleuropein. Deregulated intracellular signalling cascades
have contributory role in cancer development and progression. However, breakthroughs related to
oleuropein-mediated targeting of dysregulated signal transduction cascades have yet to be witnessed.
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