Supporting Information

Quasi-Living Polymerization of Propene with an Isotactic-Specific Zirconocene Catalyst

Kei Nishii¹, Miyuki Murase² and Takeshi Shiono^{3,*}

- ¹ Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806 Japan; k.nishii@oyama-ct.ac.jp
- ² Japan Polypropylene Corporation Polymerization Technical Center 1 Toho-cho, Yokkaichi, Mie, 510-0848, Japan (present affiliation)
- ³ Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan; tshiono@hiroshima-u.ac.jp

*Correspondence: tshiono@hiroshima-u.ac.jp; Tel.: +81-(0)82-424-7730

We roughly evaluated the rate constants of propagation (k_p) and chain transfer (k_t) by eq. (4) reported by Keii et al. using the data in **Table 3**, although [M] is not constant in our conditions: Keii, T.; Terano, M.; Kimura, K.; Ishii, K. Makromol. Chem., Rapid Commun. 1987, 8, 583-587. b Keii, T.; Terano, M.; Kimura, K.; Ishii, K. In Transition Metals and Organometallics as Catalysts for Olefins Polymerization; Kaminsky, W., Sinn, H., Eds.; Springer-Verlag: Berlin, 1988; pp 3-12.

$$M_{\rm n} = \frac{M_{0}k_{\rm p}[{\rm M}][{\rm C}^{*}]t}{[{\rm C}^{*}] + k_{\rm tr}[{\rm C}^{*}]t} \quad (1)$$

$$\frac{M_{0}}{M_{\rm n}} = \frac{k_{\rm tr}}{k_{\rm p}[{\rm M}]} + \frac{1}{k_{\rm p}[{\rm M}]} \times \frac{1}{\rm t} \quad (2)$$

$$P_{\rm n} = \frac{M_{\rm n}}{M_{0}} \quad (3)$$

$$\frac{1}{P_{\rm n}} = \frac{k_{\rm tr}}{k_{\rm p}[{\rm M}]} + \frac{1}{k_{\rm p}[{\rm M}]} \times \frac{1}{{\rm t}}$$
(4)

where P_n is the number-average degree of polymerization, M_0 the molar mass of the monomer, [C*] number of active species, *t* polymerization time, [M] the monomer concentration, k_p the propagation rate constant, and k_{tr} the chain transfer rate constant.

By applying eq 4 to the data of **Table 3** (**Figure S1 and S2**), we obtained the k_p and k_{tr} values as shown in **Table S1**. Busico et al. reported a quasi-living propene polymerization using a N^N-chelating bis(phenoxy)Zr complex, where $k_p = 0.045$ L⁻¹· mol⁻¹· s⁻¹ and $k_{tr} = 6 \times 10^{-4}$ s⁻¹ (Busico, V.; Cipullo, R.; Fraldi, N.; Ronca, S.; Togrou, M. *Macromolecules* **2003**, *36*, 3806–3808.).

The $k_{\rm tr}$ values (10×10^{-7} s⁻¹ and 13×10^{-7} s⁻¹) of the present system are three orders of magnitude smaller than that of Busico's system. In addition, the $k_{\rm P}$ values (22 L⁻¹· mol⁻¹· s⁻¹ and 9.5 L⁻¹· mol⁻¹· s⁻¹) are three orders of magnitude greater than that of Busico's system.

Figure S1. Plots of $1/P_n$ vs 1/t on Table 3 (heptane, [Al]/[Zr] = 300).

Figure S2. Plots of $1/P_n$ vs 1/t on Table 3 (toluene, [A1]/[Zr] = 300).

runs	Solvent, [Al]/[Zr]	$k_{\mathrm{P}}^{\mathrm{a}}$ (L ⁻¹ · mol ⁻¹ · s ⁻¹)	ktr ^a (×10 ⁻⁷ , s ⁻¹)
13	Heptane, 300	9.5	10
46	Toluene, 300	22	13

Table S1. The kinetic results obtained at various polymerization conditions.

^a Approximate values obtained by means of Eq. (4).