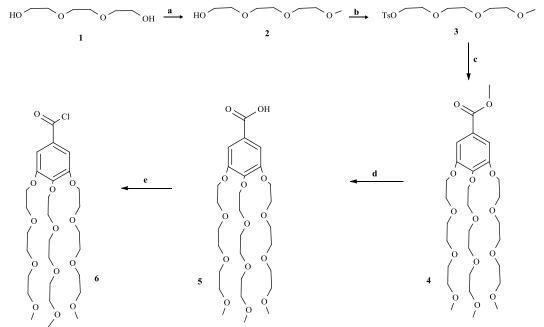
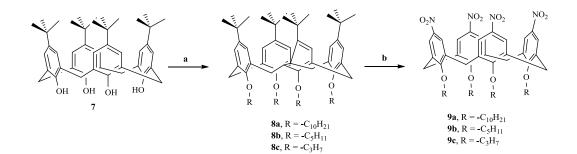
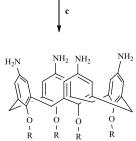
Supporting information


Inclusion Complexes of a New Family of Non-Ionic Amphiphilic Dendrocalix[4]arene and Poorly Water-Soluble Drugs Naproxen and Ibuprofen

Khalid Khan 1,*, Syed Lal Badshah 1, Nasir Ahmad 1, Haroon Ur Rashid 2 and Yahia Mabkhot 3,*

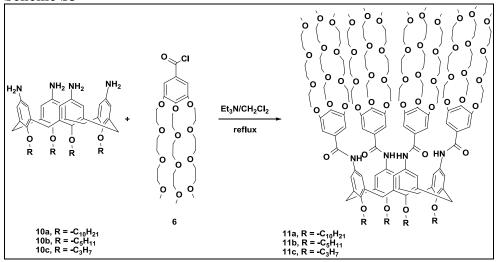
- ¹ Department of Chemistry, Islamia College University, Peshawar 25120, Khyber Pukhtunkhwa, Pakistan; shahbiochemist@gmail.com (S.L.B.); nasirshah121@yahoo.com (N.A.)
- ² Department of Chemistry, Sarhad University of Science and Technology, Peshawar 25120, Khyber Pukhtunkhwa, Pakistan; haroongold@gmail.com
- ³ Department of Chemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- * Correspondence: drkhalidchem@yahoo.com (K.K.); yahia@ksu.edu.sa (Y.M.); Tel.: +92-312-772-2787 (K.K.); +966-11-467-5898 (Y.M.)

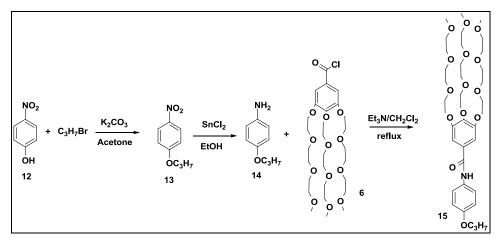

Note: The below synthesis part was published in the article "Khan, K.; Huang, H.; Zheng, Y.-S. Design, Synthesis, and Transport Potential of a New Family of Nonionic Amphiphilic Dendro-calix[4]arene. *Curr. Org. Chem.* **2012**, *16*, 2745–2751." But here we add it again so that it is available to the general public as "Molecule" is an open source journal on the request of reviewers and editor.


Scheme S1

Scheme S1. Synthesis of architecture 6 (3,4,5-TMEE benzoyl chloride). (a) (CH₃)₂SO₄, NaOH, 120 °C; (b) NaOH aq, TsCl, THF, 0 °C; (c) C₇H₈O₅, KI, K₂CO₃, Acetone, reflux; (d) NaOH, H₂O, reflux; (e) SOCl₂, reflux.

Scheme S2




Scheme S2. Synthesis of 10a–c. (a) RBr, NaH, DMF, 85 °C; (b) HNO3, CHCOOH, CH₂Cl₂, 0 °C; (c) 10%Pd/C, CH₂Cl₂, Ethanol, reflux.

Scheme S3. Synthesis of compounds 11a-c (Compounds 1a-c in original article).

Scheme S4

Scheme S4. Synthesis of compound 15 (Compound 2 in original article).

Synthesis of Surfactants

General procedure of synthesis of compounds 11a–c (Compounds 1a–c in Original article): To a solution of **6** (1.0 g, 1.6 mmol) in CH₂Cl₂ (10 mL) cooled with an ice bath was dropped the solution of **10a– c** (0.3 g, 0.29 mmol) and redistilled triethylene amine (Et3N) (0.3 mL, 2.2 mmol) in CH₂Cl₂ (15 mL). After finished addition, the ice bath was removed and the mixture was refluxed for about 3.0 h. The mixture was evaporated to dryness using a rotary evaporator under reduced pressure. The residue was purified by flash column chromatography (silica gel, CHCl₃/CH₃OH 80:1).

[11a=1a]: Colorless or light yellow, yield: (0.45 g, 46%) ¹H-NMR (400 MHz, CDCl₃) δ 8.26 (s, 4H. CONH), 7.20=7.0 (br s, 16H, ArH), 4.49 (d, *J* = 13.2 Hz, 4H, ArCH₂Ar), 4.20–3.40 (m, 152H,CH₂O), 3.36, 3.31 (2s, 36H, OCH₃), 3.21 (D, *J* = 13.2 Hz, 4H, ArCH₂Ar), 1.96 (s, 8H, ArOCH₂CH₂CH₂), 1.45–1.20 (m, 56H, OCH₂CH₂(CH₂)₇CH₃), 0.89 (t, *J* = 6.4 Hz, 12H, CH₂CH₃); ¹³C-NMR (100 MHz, CDCl₃) δ 165.1, 153.5, 152.4, 141.7, 135.2, 132.4, 129.8, 121.3, 107.6, 75.5, 72.4, 72.0, 71.9, 70.68, 70.66, 70.60, 70.56, 70.4, 69.8, 69.2, 59.0, 58.9, 32.0, 31.4, 30.3, 30.0, 29.8, 29.5, 26.4, 22.7, 14.1); IR (KBr) *v* 3308, 2925, 1663, 1584, 1536, 1495, 1468, 1426 cm⁻¹; +TOF HRMS *m*/*z* calcd for (C₁₈₀H₂₉₄N₄O₅₆)/2 1704.0140 [M + 2H⁺]^{2+/}/2, found [M + 2H⁺]^{2+/}/2 1704.0179.

[11b=1b]: Colorless or light yellow, yield: (0.65 g, 53%) ¹H-NMR (400 MHz, CDCl₃) δ 8.41(s, 4H. CONH), 7.20=7.0 (br s, 16H, ArH), 4.50 (d, *J* = 13.2 Hz, 4H, ArCH₂Ar), 4.20–3.40 (m, 152H, CH₂O), 3.36, 3.30 (2s, 36H, OCH₃), 3.22 (D, *J* = 13.2 Hz, 4H, ArCH₂Ar), 1.97 (s, 8H, ArOCH₂CH₂CH₂), 1.41–1.20 (m, 16H, OCH₂CH₂(CH₂)₂CH₃), 0.96 (t, *J* = 6.4 Hz, 12H, CH₂CH₃); ¹³C-NMR (100 MHz, CDCl₃) δ 165.0, 153.4, 152.2, 141.4, 135.1, 132.4, 129.8, 121.2, 107.4, 75.4, 72.3, 71.9, 71.8, 70.61, 70.59, 70.54, 70.46, 70.31, 69.69, 69.03, 59.0, 58.84, 31.34, 30.91, 22.81, 14.18; IR (KBr) v 3488, 2927, 1650, 1588, 1543, 1472, 1468, 1427cm⁻¹; +TOF HRMS *m/z* calcd for (C₁₆₀H₂₅₂N₄O₅₆)/2 1562.8497 [M + 2H⁺]²⁺/2, found [M + 2H⁺]²⁺/2 1562.1490.

[11c=1c]: Colorless or light yellow, yield: (0.60 g, 42%) ¹H-NMR (400 MHz, CDCl₃) δ 8.31 (s, 4H. CONH), 7.3=7.1 (br s, 16H, ArH), 4.51 (d, *J* = 13.2 Hz, 4H, ArCH₂Ar), 4.22–3.44 (m, 152H, CH₂O), 3.37–3.35 (2s, 36H, OCH₃), 3.29 (D, *J* = 13.2 Hz, 4H, ArCH₂Ar), 1.98 (s, 8H, ArOCH₂CH₂CH₃), 0.98 (t, *J* = 6.4 Hz, 12H, CH₂CH₃); ¹³C-NMR (100 MHz, CDCl₃) δ 164.7, 153.0, 152.0, 140.35, 135.0, 133.0, 121.26, 107.0, 77.83, 77.2, 76.8, 72.05, 71.63, 70.28, 70.18, 70.09, 70.0, 68.5, 60.10, 58.71, 58.63, 31.11, 14.03 ; IR (KBr) v 3443, 2925, 1648, 1588, 1542, 1468, 1427 cm⁻¹; +TOF HRMS *m/z* calcd for (C1₅2H₂₃₆N₄O₅₆)/2 1506.7870 [M + 2H⁺]^{2+/}/2, found [M + 2H⁺]^{2+/}/2 1506.0871.

3.2. Synthesis of Compound 13 (Compound 15=2 in Original Aricle)

Reaction conditions and workup were the same as described above for the **11a–c**, while had different molar ratio with **6** (2.5 g, 4 mmol) and **12** (0.50 g, 3.3 mmol). Light yellow, yield: (2 g, 80%) ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H. CONH), 7.57 (d, *J* = 8.8 Hz, 2H, ArH), 7.28=7.20 (br s, 2H, Ar), 6.8 (d, *J* = 8.8 Hz, 2H, ArH), 4.19–3.90 (m, 38H, CH₂O), 3.37–3.32 (2s, 9H, OCH₃), 1.8 (s, 2H, ArOCH₂CH₂CH₃), 1.03 (t, *J* = 7.2 Hz, 3H, CH₂CH₃); ¹³C-NMR (100 MHz, CDCl₃) δ

165.29, 155.96, 152.47, 141.65, 131.33, 130.23, 122.22, 114.71, 107.67, 77.07, 76.75, 72.36, 71.93, 71.88, 70.61, 70.55, 70.50, 70.43, 69.78, 69.13, 58.98, 58.91, 22.60, 10.50; IR (KBr) v 3478, 2928, 1650, 1587, 1508, 1460, 1427 ; +TOF HRMS *m/z* calcd for (C₃₇H₅₉NO₁₄)/2 370.93133 [M + 2H⁺]^{2+/}/2, found [M + 2H⁺]^{2+/}/2 370.69678.