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Abstract: Mesoporous silica nanoparticles are used as pesticide carries in plants, which has
been considered as a novel method to reduce the indiscriminate use of conventional pesticides.
In the present work, mesoporous silica nanoparticles with particle diameters of 200-300 nm
were synthesized in order to obtain pyrimethanil-loaded nanoparticles. The microstructure
of the nanoparticles was observed by scanning electron microscopy. The loading content of
pyrimethanil-loaded nanoparticles was investigated. After treatment on cucumber leaves, the
concentrations of pyrimethanil were determined in different parts of cucumber over a period of
48 days using high performance liquid chromatography tandem mass spectrometry. It was shown
that the pyrimethanil-loaded mesoporous silica nanoparticles might be more conducive to acropetal,
rather than basipetal, uptake, and the dosage had almost no effect on the distribution and dissipation
rate in cucumber plants. The application of the pesticide-loaded nanoparticles in leaves had a low
risk of pyrimethanil accumulating in the edible part of the plant.
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1. Introduction

Cucumber (Cucumis sativus L.), one of the most popular fruiting vegetables, has a wealth of
nutritional and health care value with a crisp taste [1]. Unlike the other vegetables, cucumbers,
which are used as fresh vegetables or made into pickles, are typically harvested in the exponential
phase of growth from the middle to the end, 7-14 days after pollination or about 14-21 days before
maturation [2]. According to Food and Agriculture Organization, in 2014, cucumber production
(including cucumbers and gherkins) was about 5.7, 1.8, 0.8 million tons in China, Russian, and USA,
respectively [3]. However, the insects and diseases attacking cucumbers can reduce the vegetable
quality, lower the yield, and shorten a life cycle, which causes serious loss of production to growers [4].
To ensure high-quality cucumber production, pesticides are applied by growers frequently during
the production. As the cucumber is a kind of fresh-eating product, consumers may be exposed to the
unsafe pesticide residues, thus posing a potential health risk. In 2016, to propose a ranking list for the
popular fresh fruits and vegetables, the pesticide residue levels in 48 popular fruits and vegetables
from the U.S. Department of Agriculture and Food and Drug Administration were investigated by the
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Environmental Working Group, an advocacy nonprofit. As a result, cucumber ranked 13 in all of the
48 items, which was listed from the worst to the best [5].

Due to various method of application and environmental conditions, only about 10% of pesticides
are used on crops, as most of them are lost to the air or run off during application, not only polluting
the environment but also raising production costs to growers [6]. Indiscriminate pesticide application
on cucumber plants may increase pest resistance and pathogens, diminish nitrogen fixation, and
reduce soil biodiversity, which leads to the destruction of habitats for non-target organisms and the
bioaccumulation of pesticides, and causes potential health risks to human beings [7]. Therefore, it is
important to reduce the excessive use of pesticides on cucumbers. Many studies have suggested that,
in pesticide delivery applications of nanotechnology is a relatively new method and still in its infancy,
which aims to reduce chemical pesticide abuse and guarantee their safety [8-12].

For many decades, nanotechnology has been applied in several areas, such as medicine, for both
practical applications and research [13]. After Mobil Crystalline Material 41 was discovered, more and
more researchers became interested in the research and application of mesoporous silica nanoparticles
(MSN ). As it is possible to make dispersible, uniform, porous nanoparticles with colloidal chemistry
and evaporation-induced self-assembly, MSNs were widely used to deliver proteins [14], genes [15,16],
reactors [17], and drugs [18-22] as “nanocarriers”. However, in the case of the field of agriculture, only
in recent years have researchers figured out the potential applications of nanotechnology. As it has
many unique properties, such as a large surface area, biocompatibility, a tunable pore size for high
loading capacity, a low cost, and an ability to control pesticide release, MSNs used as pesticide delivery
could have a beneficial effect on environmental protection and decrease non-target insect exposure to
pesticide [23-25].

In recent years, many studies have been reported about the uptake, absorption, and translocation
of MSNss as pesticide carries by plants. For example, Hussain et al. reported the uptake by Arabidopsis,
wheat, and lupin of MSNs functionalized with amine cross-linked fluorescein isothiocyanate and
proposed that MSN's could be used to carry some small molecules in plants [26]; Chang et al. delivered
foreign DNA into intact Arabidopsis thaliana roots using functionalized MSNs as carriers without
the aid of mechanical force [15]; in our previous work, quaternized chitosan-capped MSNs were
synthesized as nanocarriers for controlled pesticide release [27]. Nevertheless, in order to apply
nanotechnology to the pesticide delivery systems, more systematic research results are important for the
transport routes of pesticide-loaded MSNs. For instance, in which tissues or organs pesticide-loading
MSNSs tend to accumulate, how the distribution regulation of pesticide in plants will be after delivered
by MSNSs, and if pesticides tend to accumulate in the edible part of plant. Those kinds of studies are
important in the case of using pesticide-loading MSNs in plants and could clarify the enrichment
possibilities of the pesticides in grains or fruits and acquire a better understanding of the function
of nanoparticle carriers on the translocation of pesticides in plants when they enter further into the
food chain.

In the present work, pesticide-loaded MSNs were applied to plants to figure out its distribution
and dissipation in cucumber plants. Pyrimethanil was chosen as the template pesticide, since it
was widely used to control gray mold disease in cucumbers. MSNs with diameters of 200-300 nm
were synthesized in order to obtain pyrimethanil-loaded MSNs (Py-MSNs). After treatment of
pyrimethanil-loaded MSNs on cucumber leaves, the concentrations of pyrimethanil were determined
in different parts of cucumber over a period of 48 days. Moreover, the final residue level of pyrimethanil
in cucumber fruits was also explored to provide experimental evidence for the safety evaluation of
pesticide-loaded MSNs in cucumbers.

2. Results and Discussions

2.1. Preparation and Characterization of MSNs and Py-MSNs

In this study, the liquid crystal templating mechanism was used to prepare MSNs with TEOS as
the silica precursor and CTAB as the surfactant in basic conditions. Pesticide molecules were loaded
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into MSNs by simple immersion in a concentrated toluene solution of pyrimethanil. The morphology
of the MSNs and Py-MSNs was observed using SEM and TEM. As shown in Figure 1, SEM images
showed that there was no obvious difference between the MSNs and Py-MSNss, since both of them had
average diameters of 200-300 nm and a monodispersed spherical structure. In order to evaluate the
mesoporous structure of nanoparticles before and after pesticide-loading, TEM was used to observe
their physical characteristics confirming the MSN framework. In Figure 2a,c, it can be seen that MSNs
and Py-MSNs have similar structures, average diameters, and dispersion, which verified the results in
the SEM image. It can be seen in Figure 2b that there is a highly ordered mesoporous structure, one of
the typical structures of MSNs, on the surface of the MSNs before pyrimethanil loading. However, for
Py-MSNSs, the mesoporous structures are not obvious in Figure 2d. This suggests that pyrimethanil
was successfully loaded onto the MSNs without destroying the structure of the nanoparticles, and
most of the mesoporous structures were blocked by pyrimethanil.
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Figure 1. SEM images: (a) MSNss; (b) pyrimethanil-loaded MSNs.
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Figure 2. SEM images: (a,b) MSNs; (¢,d) pyrimethanil-loaded MSNs.

In practical applications, it is important to obtain relatively high loading concentrations of
pesticide in controlled and sustained formulations during plant protection. The mesoporous structure,
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surface area, and pore size of MSNs would have a great effect on the release and uptake behaviors of
the loaded compounds [28]. In our study, the solvent would change the pesticide loading. In order to
obtain high loading concentrations, three solvents—chloroform, toluene, and hexane—were used to
dissolve pyrimethanil for its loading, and the loading content levels were 3.92%, 29.77% and 20.56%,
respectively. Therefore, toluene was used as the solvent for Py-MSN preparation.

In order to evaluate the pyrimethanil-loading potential, Brunauer-Emmett-Teller (BET) surface
area analysis and Barrett-Joyner—-Halenda (BJH) pore size and volume analysis were used to confirm
the mesoporous structure of the nanoparticles. After pyrimethanil-loading on the MSNs, the BET
specific surface area of the nanoparticles decreased sharply from 808.90 to 9.47 m?/g. As shown in
Figure 3, the type IV isotherm curve of MSNs increased gradually from 0 to 0.3 of P/Py, and Py-MSNs
showed an obvious reduction in adsorption capacity and surface area since the mesoporous was totally
blocked by pyrimethanil.
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Figure 3. Nitrogen adsorption—desorption isotherms of MSNs and Py-MSNs.

2.2. In Vitro Release of Pymethanil

To simulate the environment of the pesticide delivery process, three different phosphate buffers
(pH 6.13, 6.93, and 8.06) were used as the respective release medium for the cucumbers, roots, and
leaves, respectively. As shown in Figure 4, from 0 to 30 h, the percentages of released pyrimethanil
associated with the three pH values were similar and gradually increased to about 56%. Then, after the
30th hour, when the pH value was 6.13, more pyrimethanil was released than those with pH values
of 6.93 and 8.06. Finally, 99% of pyrimethanil was released after 60 h when the pH of the release
medium was 6.13, and it then kept a release balance. In the case with pH values of 6.93 and 8.06, the
pesticide-loading nanoparticles released 93% and 91% of pyrimethanil after 80 h, respectively. This
indicated that pyrimethanil in the nanoparticles would release faster than that in cucumber leaves and
roots, and it would release the slowest in leaves.

2.3. Analytical Method Validation

As EU guidelines recommend [29], to exclude any results produced by matrix effects,
matrix-matched calibration solutions were used to test the linearity of the method for more accurate
results. Matrix-matched calibration solutions was obtained from blank extracts with pyrimethanil in
the range of 2-200, 2200, and 0.2-20 ug/L for leaves, root, and cucumber respectively. The quantitative
results of the analysis method were mainly dependent on linearity. As shown in Table 1, a good linearity
was obtained for pyrimethanil with coefficients of determination (R?) better than 0.995.

In this study, recovery was the amount measured as a percentage of the amount of pyrimethanil
originally spiked to the blank root or leaves samples. The repeatability of the proposed method was
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expressed as a relative standard deviation (RSD, %, n = 5). The precision and accuracy data of the
proposed method was investigated for pyrimethanil spiked at three fortified levels of 0.01, 0.1, and
1 mg/kg in the blank leaf and root samples; 0.001, 0.01, and 0.1 mg/kg in blank cucumber samples.
For each concentration, five spiked tests were repeated for each matrix (n = 5). Limits of quantification
(LOQs), average recoveries, and relative standard deviations are shown in Table 1. The recoveries of
pyrimethanil were in the range 78-85% for cucumber leaves, 87-99% for roots, 74-90% for cucumbers,
and RSDs were no more than 10% for all cases. LOQs were determined as the concentration of
pyrimethanil, giving a signal to noise ratio (S/N) of 10 for the target ion, which was calculated with
Agilent Mass Hunter Qualitative Analysis software.
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Figure 4. Release rates of pyrimethanil from Py-MSNs in pH 6.13, 6.93, and 8.06 at room temperature.

Table 1. Average recoveries, RSDs (n = 5), LOQs, linear equation, and determination coefficients (R?)
of pyrimethanil in leaves, roots, and cucumber.

Fortified Level =~ Average Recoveries = RSD LOQ . . 2
Sample (mg/kg) (%) (%) (mg/kg) Linear Equation R

Leaf 0.01 78 8 0.004 y = 3,964,048x + 9802 0.993
0.1 82 9
1 85 6

Root 0.01 87 5 0.001 y =5,007,122x + 3234 0.998
0.1 94 7
1 99 8

Cucumber 0.001 74 10 0.001 y =4,817,122x + 1329 0.996
0.01 90 7
0.1 87 8

2.4. Distribution of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles in Cucumber Plant

The results of the study revealed that treatment of Py-MSNs on cucumber leaves resulted in
acropetal and basipetal uptake, and the distribution and translocation of the chemical to different
cucumber plant parts, i.e., the roots and the upper, lower, and treated leaves. It could be seen in
Figure 2a,b that, three days after treatment of Py-MSNs on cucumber plants, the concentration of
pyrimethanil increased to 0.210 and 0.422 mg/kg in the upper leaves, and then declined gradually to
0.011 and 0.013 mg/kg when 0.5 and 2 mg/mL of Py-MSNs were used, respectively. Similarly, in the
lower leaves and roots, the concentration of pyrimethanil increased first and then descended, which is
shown in Figure 2c—f. In general, it was higher in the upper leaves than in the lower leaves and roots.
As long as seven days after treatment, the highest concentration of pyrimethanil was reached in the
roots, and compared to upper and lower leaves, the concentrations of pyrimethanil in the roots were
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the lowest. This shows that Py-MSNs might be more conducive to acropetal, rather than basipetal,
uptake in cucumber plants.

In this study, two dosages of 0.5 and 2 mg/mL of Py-MSNs were chosen to explain the distribution
of pyrimethanil in cucumber plant. As can be seen in Figure 5, generally, the concentrations of the
chemical were higher when 2 mg/mL of Py-MSNs was used compared to 0.5 mg/mL of Py-MSNs.
However, there were no obvious differences in the distribution of pesticides between 0.5 and 2 mg/mL,
which showed that the dosage had no effect on the distribution of Py-MSNs in cucumber plants.
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Figure 5. Distribution of Py-MSNs in cucumber plant: (a) upper leaves with 0.5 mg/mL treatment;
(b) upper leaves with 2 mg/mL treatment; (c) lower leaves with 0.5 mg/mL treatment; (d) lower leaves
with 2 mg/mL treatment; (e) roots with 0.5 mg/mL treatment; (f) roots with 2 mg/mL treatment;
(g) treated leaves with 0.5 mg/mL treatment; (h) treated leaves with 2 mg/mL treatment.
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2.5. Dissipation of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles in Different Parts of
Cucumber Plants

The half-lives and decline regression equations of pyrimethanil from Py-MSNs are summarized in
Table 2. The dissipation curves of pyrimethanil were carried out in upper, lower, and treated leaves and
roots for 3—48, 5-48, 1-48, and 7—48 days, respectively, which followed the first-order kinetic reaction.
As shown in Table 2, the decline of pyrimethanil in the treated leaves was drastic as compared to
that in the upper or lower leaves or the roots, as the half-lives were the shortest as 6.5 and 7.0 days
at low and high dosage levels, respectively. Most Py-MSNs were dropped onto the treated leaves,
and their pyrimethanil concentrations were far higher than those of the other leaves, as shown in
Figure 2g,h. The cucumber plant could absorb and transport only a limited amount of the pesticide
solution and left most of pyrimethanil on the surface of the treated leaves. The pyrimethanil that are
not absorbed by cucumbers would degrade rapidly in the environment as time went on. In the case of
roots, the half-life of pyrimethanil was 20.6 and 21.7 days for the low and high dosages, respectively,
which is longer than that of the upper, lower or treated leaves. This shows that Py-MSNs had the
slowest dissipation rate in cucumber roots instead of the leaves. Moreover, the half-life in the four
parts of the cucumber plant did not show any obvious differences between the low and high dosages
of treatment. This illustrates that the dissipation rate of Py-MSNs might not change by variation of the
treatment dosage.

Table 2. The half-life and other statistical parameters for the dissipation of pyrimethanil-loaded MSNs
in cucumber plants.

Part Da Dosage Regression Equation Determination Half-life
Y (mg/mL) & 9 Coefficient (R?) (Days)

Upper leaves ~ 3-48 0.5 y = 0.1243¢0064(x = 3) 0.7277 13.8
2 y = 0.1934e0073(x = 3) 0.7484 125
Lower leaves 5-48 0.5 y= 0.0540e ~0-059(r —5) 0.9484 16.7
2 y = 0.2417e0068(x = 5) 0.8671 15.2
Root 7-48 0.5 y = 0.0757¢~0051(x = 7) 0.8703 20.6
2 y = 0.052¢ 0047 =7) 0.8893 21.7
Treated leaves ~ 1-48 0.5 y = 42.407¢0106x 0.9582 6.5
2 y = 68.458e 009 0.9916 7.0

Pyrimethanil has been widely used to control gray mold disease on cucumbers all over the world.
Many studies about the dissipation of pyrimethanil in classical formulations on plants have been
carried out. For example, Malhat et al. found that the half-life of wettable pyrimethanil powder on
cucumbers was 2.19 days [30], and Liu et al. showed that the half-lives of emulsifiable pyrimethanil
concentrates on tomato were 1.8-4.2 days [31]. Compared to these references, the dissipation of
pyrimethanil was much slower when Py-MSNs was used. According to the release test in vitro, 91% of
pyrimethanil was released after 80 h on leaves. As pyrimethanil was held in MSNs, the mesoporous
structure controlled its release to the environment.

2.6. Final Residues of Pyrimethanil in Cucumber

The final residue results showed that, in the fruiting stage, the concentrations of pyrimethanil
in cucumbers were 0.003, 0.002, and 0.002 mg/kg with a low dosage level of 0.5 mg/mL, and 0.004,
0.005, and 0.003 mg/kg with the high dosage level of 2 mg/mL. The maximum residue limit (MRL)
established by Codex, United States, Europe Union, China, and Japan for pyrimethanil in cucumber is
0.7,1.5,0.7, 2, and 2 mg/kg, respectively. It was obvious that the concentration levels of pyrimethanil
in cucumber fruit was much lower than the international MRL value after the leaves were treated by
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pyrimethanil-loaded MSNSs. It is predicted that the application of Py-MSNs in leaves has a low risk of
pyrimethanil accumulating in the edible part of the plant.

3. Materials and Methods

3.1. Materials

Cetyltrimethylammonium bromide (CTAB, 99%) and tetraethyl orthosilicate (TEOS) were
purchased from J&K Scientific Ltd., Beijing, China, and Fluorochem Ltd., Hadfield, UK, respectively.
The template pesticide, pyrimethanil (98.0%), was supplied by Jiangsu Weunite Fine Chemical Co., Ltd.
Acetonitrile of HPLC grade was purchased from Fisher Scientific (Geel, Belguim). Deionized water
was obtained from a Milli-Q water purification system from Millipore, USA. Graphitized carbon black
(GCB) and primary secondary amine (PSA) were purchased from Agela Technologies, Tianjin (China).

3.2. Synthesis of Mesoporous Silica Nanoparticles

Mesoporous silicas nanoparticles were first successfully synthesized and published by the groups
of Cai [32], Mann [33], and Ostafin [34]. After that, various synthesis methods were published to
prepare nanoparticles in good dispersion and mesoporous silica nanoparticles with various structures
and tunable dimensions from a handful to hundreds of nanometers [35,36]. In order to synthesize
MSNs, in basic conditions, TEOS and CTAB were used as the silica source and structure-directing
agent, respectively, referring to Radu [37]. Four hundred eighty milliliters of deionized water was
used to dissolve 1.0 g of CTAB. Then, under constant stirring, 3.5 mL of sodium hydroxide (2.0 M) was
added into the CTAB solution at room temperature. After the mixture was heated to 70 °C in an oil
bath, 5.0 mL of TEOS was introduced drop by drop at the rate of 1.0 mL/min, and it was then stirred
vigorously at 80 °C for 6 h. During the procedure, MSNs were formed as a white solid, which was
washed by ethanol and deionized in water three times and freeze-dried under vacuum. In order to
remove the surfactant completely, the synthesized MSNs was then calcined at 550 °C for 6 h. Electron
microscopic studies were carried out by a scanning electron microscopy (SEM) (SU8000, Hitachi, Ltd.,
Tokyo, Japan) and transmission electron microscopy (TEM) (JEM-200CX, Jeol Ltd., Tokyo, Japan) to
study the internal structure of Py-MSNs and MSNs.

3.3. Loading of Pyrimethanil into Mesoporous Silica Nanoparticles

Thirty milligrams of synthesized MSNs was added into the pyrimethanil-toluene solution
(6.0 mg/mL, 5.0 mL). The mixture was magnetic stirred for 6 h, and the supernatant was then removed
by centrifugation at 10,000 rpm for 10 min. The pyrimethanil-loaded MSNs was dried at 50 °C for 5 h
to remove the supernatant completely.

The pyrimethanil loading efficiency of the proposed method was determined by high performance
liquid chromatography (HPLC, 1200-DAD (Diode Array Detector), Agilent, Santa Clara, CA, USA).
In brief, 10.0 mg of Py-MSNs were dissolved in 25.0 mL of methanol under sonication for 2 h. This
process was repeated several times, and the methanol solution was combined for HPLC analysis, until
the concentration level of pyrimethanil in the solution lower than the limit of detection.

For the HPLC analysis, Venusil XBP-C18 column (Bonna-Agela Technologies Inc., Tianjin,
China) (2.5 mm X 4.6 mm, 5 pm) was used to separate the target compound from others at 30 °C.
Methanol /water (80/20) was used as mobile phase at a flow rate of 1.0 mL/min. DAD signals was
used as 275 nm. Loading efficiency (%) = (weight of pesticide in nanoparticles/weight of nanoparticles)
x 100%. In this study, the loading efficiency of MSNs was 29.77%.

The nitrogen adsorption of MSNs and Py-MSNs was studied to show the typical pore
characteristics using a surface area and pore size analyzer (TriStarIl 3020, Micromeritics Instruments
Corp, Norcross, GA, USA) at 196 °C. Samples were degassed at 80 °C for 12 h prior to analysis.
The characteristics of mesoporous structure were analyzed by the BET and BJH procedures from the
adsorption branches of the isotherms.
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3.4. Pyrimethanil Release

Twenty milligrams of Py-MSNs were dispersed in 250 mL of phosphate buffer (pH 6.13, 6.93, 8.06)
with 0.1% Tween-80 emulsifier, which was used as the release medium. A D-800LS dissolution tester
(Tianjin University, Tianjin, China) was used for the release test at a stirring speed of 120 rpm. In order
to verify the sustained release property of Py-MSNs, the cumulative release rate of pyrimethanil from
the nanoparticles was calculated with its concentration in the release medium. For HPLC analysis,
0.8 mL of the release medium was withdrawn at given time intervals, and the same volume of fresh
buffer solution was supplied to ensure the volume of release medium. The determination was repeated
twice. The accumulative release was calculated as followed:

Ve X G+ VoG

E, =
r MP

x 100% (1)

E;: the accumulative release (%) of pyrimethanil from the nanoparticles;

V,: the volume of the release medium taken in a time interval (Ve = 0.8 mL);
C;: the pyrimethanil concentration in release medium;

i: release time

V: the volume of release medium (250 mL);

n: the sample number;

M,: the total amount of pesticide enwrapped in the particles.

3.5. Greenhouse Study

For the study, non-stained cucumber seedlings were used, which were produced by the Institution
of Plant Protection, Chinese Academy of Agricultural Sciences. Cucumber plants were cultivated in
plastic pots with potting soil. The Py-MSNs were dispersed in sterile distilled water prior to exposure.
Two concentration levels of pyrimethanil were used for the distribution study: 0.5 and 2 mg mL .
When the cucumber seedlings had five to six leaves, 0.5 mL of Py-MSNs with two concentrations
aqueous solution was added on one of the middle leaves from cucumber plant drop by drop using
a pipette to stop the droplets from running off, shown in Figure 6. In order to figure out the residue
behavior of pyrimethanil in cucumber plants during different growth durations, representative samples
were collected 1, 3, 5,7, 10, 14, 21, 28, 30, and 48 days after Py-MSNs treatment on cucumber plants.
Each treatment was repeated three times. As shown in Figure 7, the concentrations of pyrimethanil
were measured in four parts of cucumber plant, i.e., the roots and leaves (upper, middle and lower),
over a period of 48 days using high performance liquid chromatography tandem mass spectrometry
(HPLC-MS/MS). Moreover, the concentration levels of pyrimethanil in cucumber fruits were also
determined during the fruiting stage.

Figure 6. Treatment of Py-MSNs on leaves (a) Py-MSNs treatment using a pipette; (b) 2 h after treatment.
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Figure 7. Sampling for the study of pyrimethanil distribution in cucumbers.

3.6. Sample Preparation

In recent years, the QUEChERS (quick, easy, cheap, effective, rugged, and safe) method
was published by Anastassiades et al. in 2003 [38,39], which is now widely used as pesticide
analysis methods in fruit and vegetables by many governments and organization laboratories.
For sample preparation, a modified QUEChERS method was employed to analysis the concentration
of pyrimethanil in cucumbers. In brief, 2.0 g of homogenized samples were extracted with 10.0 mL
of acetonitrile, and 4.0 g of anhydrous magnesium sulfate and 1.0 g of sodium chloride was then
introduced for salting out. After that, the loose sorbents of 5 mg of GCB, 25 mg of PSA, and 150 mg of
MgSO, was used to clean up 1.0 mL of acetonitrile extract. For treated leaves, the acetonitrile extraction
was diluted 20 times before HPLC-MS/MS detection.

The concentration levels of pyrimethanil in different parts of the cucumber plants and fruits were
determined by an Agilent 1200 HPLC equipped with a reversed-phase column (ZORBAX SB-C18,
3.5 um, 2.1 mm X 50 mm, Agilent, Santa Clara, CA, USA) at 25 °C. Acetonitrile/water (80/20, v/v)
was used as a mobile phase at a flow rate of 0.3 mL/min~!. The injection volume was 5 uL. An Agilent
6410 Triple Quad LC/MS system was applied for mass spectrometric analysis. Electrospray ionization
source in positive ionization mode was used for pyrimethanil analysis. Nitrogen gas was used as
both the collision and nebulizer gas. The other parameters of mass spectrometry were as follows:
gas flow: 8 L min~!; gas temperature: 350 °C; capillary voltage: 4000 V; and nebulizer gas: 35 psi.
The multiple reaction monitoring mode was used to monitor the precursor to product ion transitions.
The retention time of pyrimethanil was 0.9 min. Two ion transitions were chosen: m/z 200—m/z
107 (quantification), and m/z 200—m/z 183 (confirmation). Agilent Mass Hunter Data Acquisition
and Qualitative Analysis and Quantitative Analysis software was used for method development and
data acquisition.

4. Conclusions

Nowadays mesoporous silica nanoparticles are used as pesticide carries in plants and have been
considered as a novel method to reduce the indiscriminate use of conventional pesticides. However,
more and more misgivings are the translocation, distribution, and dissipation of those nanoparticles
in plants, which limits their wide-scale applications. In this study, pyrimethanil-loading MSNs were
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synthesized and applied to cucumber leaves. It was shown that Py-MSNs might be more conducive
to acropetal, rather than basipetal, uptake in cucumber plants, and the dosage had almost no effect
on distribution and dissipation rate of Py-MSNs in cucumber plants. The application of Py-MSNs in
leaves would have a low risk of pyrimethanil accumulating in the edible part of the plant. The work of
this study supplied new information on the further understanding of the distribution and dissipation
of pesticide-loaded MSNs applied as foliar treatments. This information adds to our knowledge of
the uptake and translocation of pesticides in plants and helps to explain the effects of nanoparticle
carriers on the translocation of pesticides in plants. This research provides insight into the possibilities
of pesticide-loaded MSNs accumulating in fruits or grains for further entry into the food chain.
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Abbreviations

MSNs mesoporous silica nanoparticles

Py-MSNs pyrimethanil-loaded MSNs

CTAB cetyltrimethylammonium bromide

TEOS tetraethyl orthosilicate

PSA primary secondary amine

GCB graphitized carbon black

SEM scanning electron microscopy

DAD diode array detector

HPLC-MS/MS high performance liquid chromatography tandem mass spectrometry
QuEChERS quick, easy, cheap, effective, rugged and safe
RSDs relative standard deviations

LOQs limits of quantification

MRL maximum residue limit
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