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Abstract: Despite the great contribution of natural products in the history of successful drug
discovery, there are significant limitations that persuade the pharmaceutical industry to evade natural
products in drug discovery research. The extreme scarcity as well as structural complexity of natural
products renders their practical synthetic access and further modifications extremely challenging.
Although other alternative technologies, particularly combinatorial chemistry, were embraced by
the pharmaceutical industry to get quick access to a large number of small molecules with simple
frameworks that often lack three-dimensional complexity, hardly any success was achieved in the
discovery of lead molecules. To acquire chemotypes beholding structural features of natural products,
for instance high sp® character, the synthesis of compound collections based on core-scaffolds of
natural products presents a promising strategy. Here, we report a natural product inspired synthesis
of six different chemotypes and their derivatives for drug discovery research. These bicyclic hetero-
and carbocyclic scaffolds are highly novel, rich in sp® features and with ideal physicochemical
properties to display drug likeness. The functional groups on the scaffolds were exploited further to
generate corresponding compound collections. Synthesis of two of these collections exemplified with
ca. 350 compounds are each also presented. The whole compound library is being exposed to various
biological screenings within the European Lead Factory consortium.

Keywords: natural products; drug discovery; scaffolds; Aza-heterocycles; European Lead Factory

1. Introduction

Natural products (NPs) have been a rich source of bioactive small molecules that fuel the drug
discovery processes [1-4]. To a large extent, NPs owe this success, in addition to their enormous
structural and chemical diversity, to their amazingly drug-like molecular properties [5-7]. A detailed
analysis of new medicines approved by the FDA in the past three decades revealed that one third of
small molecule medicines were based on either NPs or their derivatives [8]. In addition, the majority
of the molecules that have entered into clinical trials, in particular the anticancer and antimicrobial
agents, are based on NPs [9,10]. However, there are few significant challenges in engaging NPs
in drug discovery and development process. While the extremely low abundance of NPs remains
critical for their isolation, the highly complex structures of NPs pose a formidable challenge to their
practical synthesis and further modifications to generate a decent sized compound collection for
screening platforms [11-13]. To tackle these problems, structural simplification of NPs and generation
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of compound collections around the core-scaffolds of the NPs present a promising strategy to gain
access to biologically relevant chemical space [14-19]. The Joint European Compound Library (JECL)
is a key component of the European Lead Factory (ELF) [20,21] that holds drug-like and lead-like
compounds for ELF’s screening facility [22-24]. In order to enrich this collection with small molecules
rich in sp® features, chiral centers as well as drug-like molecular properties, different academic groups
and small and medium enterprises (SMEs) are collaborating in library synthesis programs [25-34].
With this perspective and along with our continuing interest in the synthesis of natural product
inspired compound collections for biological studies [34-42], we report here our synthesis efforts to
build a compound library that is represented by six highly sp®-rich, novel and distinct hetero- and
carbocyclic scaffolds that are found as core-structures in biologically active NPs, as depicted in Figure 1.
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Figure 1. Biologically active natural products.

2. Results and Discussion

Design and synthesis of novel and medicinally relevant chemical entities is one of the key
objectives in drug discovery. In the ELF syntheses programs, we aim to generate a small molecule
library around complex molecular frameworks with acceptable molecular properties and thereby
facilitate the identification of lead candidates for further drug discovery campaigns. Although
molecular complexity is a subjective term, we refer to a scaffold complex when it is rich in sp
features, has a three-dimensionally complex framework supporting a number of chiral centers,
and structural features that are reminiscent of NP structures [43-45]. With these desired structural
features, six scaffolds were chosen as targets (1-6, Figure 2) for our synthetic planning. The scaffolds
1-6 represent the structural blueprints of biologically active NPs and we hope that a collection of
small molecules based on these chemotypes could provide interesting hit and lead molecules in
ELF campaigns.

2.1. Synthesis of Aza-Bicyclic Scaffolds

Scaffold 1 is a bridged bicyclic system with four chiral centers and three points of diversification
and is based on an immunosuppressant natural product FR901483 [46].

The scaffold synthesis began with mono-ketal 7 of cyclohexane 1,4-dione, which on sequential
reductive amination reactions using amino-acetal 8, and then with benzaldehyde using sodium
triacetoxyborohydride, provided the corresponding amino-acetal 9 at an excellent yield (Scheme 1).
The reactions were performed on a multigram scale to provide a sufficient amount of material for
library synthesis. The key intramolecular aldol reaction between the ketone function and aldehyde
(formed after acetal-deprotection) was performed with high diastereoselectivity (>20:1) in the presence
of 10% aq. HCl [47]. Subsequent acylation of alcohol offered the ketone moiety in 10 as a handle for
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reductive amination reactions with a variety of aryl-ethyl amines—for instance, delivering secondary
amines (11a-b) at a good yield and with very good diastereoselectivity. N-debenzylation of the major
diastereomer under hydrogenolysis with 10% palladium on carbon gave the amines 12a and 12b,
and the compounds 12a and 12b were successively converted into corresponding sulfonamide 13b and
amide 14a (Scheme 1). As a representative case of another reductive amination with benzaldehyde,
11a was also synthesized at a very good yield, thereby demonstrating the potential of the highly
functionalized scaffold in compound collection synthesis. The relative stereochemistry of the major
diastereomer was predicted based on an nOe experiment (see Supplementary Materials).
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Figure 2. Natural product inspired bicyclic scaffolds.
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Scheme 1. Synthesis optimization of an Immunosuppressant FR901483 based scaffold.
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Scaffold 2 is based on natural product Elaeokanidine A [48] and is characterized by
a 1,6-Naphthyridine framework with a quaternary carbon at the ring junction and two chiral centers.
The scaffold holds three sites for diversification to make a compound collection. The synthesis
in this case began with the inexpensive and commercial 3-keto-ester 15 that was alkylated using
1-bromo-propylpthalimide 16 in the presence of sodium hydride at a very good yield (Scheme 2).
The phthalimide group in 17 was removed under aminolysis conditions using 30% MeNH; solution
in ethanol followed by stereoselective reductive amination using a bulky hydride source i.e., sodium
tri(2-ethylhexanoyloxy)borohydride (NaBH(OEh)3) [49] leading to the formation of bicyclic amine 18
at a good yield and with high stereoselectivity (dr: 10:1). The secondary amine in 18 was converted
into sulfonamide at a very good yield using p-toluenesulfonylchloride with the presence of pyridine as
a base. In addition, the ester group was reduced to alcohol (19). Alkylation of the later with methyl
iodide in the presence of sodium hydride afforded the corresponding ether at a good yield (Scheme 2).

Finally, the N-benzyl group was removed under hydrogenolysis conditions with 10% palladium
on carbon to give the corresponding free secondary amine 20, which was successively converted into
the corresponding amide 21 and tert-amine 22 using propionic acid and benzaldehyde, respectively
(Scheme 2).
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Scheme 2. Stereoselective synthesis of 1,6-decahydronaphthyridine scaffold.

A similar strategy was used with other inexpensive and commercially available keto-esters 23
and leading to bicyclic scaffolds 25, which is the core-structure of the lycoposerramine natural product
(Scheme 3) [50-54]. With this synthesis design and following standard diversification reactions as
depicted in Scheme 2, the final small molecules (25-30) were obtained with high stereoselectivity
(25a:(6:1); 25b:(10:1) Scheme 3). The diastereomers were purified by flash column chromatography
and the major diastereomer was employed in the further reaction sequence (Scheme 3).
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Scheme 3. A lycoposerramine-R alkaloid inspired scaffold synthesis.

One of the important sources of three-dimensional complexity in small molecules is the commercial
chiral pool. To exploit the potential of this source, we chose (S)-carvon (31) as 3D-rich starting material
and subjected it to 1,3-dipolar cycloaddition reaction with an in situ generated azomethine ylide from
commercially available N-(Methoxymethyl)-N-(trimethyl- silylmethyl)-benzylamine (NMNTB) hoping
to achieve further molecular complexity by a [3 + 2]-cycloaddition reaction [55]. Unfortunately, all the
reported reaction conditions for such a cycloaddition reaction failed to give the desired product, and,
instead, decomposition of the ylide precursor was observed. We reasoned that the o-methyl group of
the carvone 31 has a negative steric influence on the reactivity of the ylide. In addition, it reduces the
electrophilicity of the o-f3-unsaturated ketone and thereby further resists the cycloaddition reaction.
Therefore, a des-methyl carvone 32 was synthesized according to the literature report with excellent
enantioselectivity and employed in the desired cycloaddition reaction [56].

The des-methyl carvone 32 smoothly underwent 1,3-dipolar cycloaddition with azomethine ylide
generated from NMNTB in the presence of catalytic amount of trifluoroacetic acid (TFA) to give the
corresponding cycloadduct 33 as a single diastereomer at a good yield (Scheme 4). Subsequently,
the ketone moiety under the previously optimized stereoselective reductive amination conditions
afforded the corresponding secondary amines 33a and 33b. Furthermore, debenzylation of the bicyclic
compound 33a under hydrogenolysis conditions afforded the diamine 34b at a good yield. The diamine
as such was converted to corresponding fert-amine (35), amide (36) and sulphonamide (37) at a good
yield using the standard reaction conditions and thus demonstrating the amenability of the design to
build a compound collection (Scheme 4).

2.2. Synthesis Optimization of a Carbo-Bicyclic Scaffold

In the majority of previous scaffolds validated towards compound collection synthesis,
the piperidine ring was an integral part of the bicyclic framework. We intended to replace the
aza-ring with a carbocycle in the next scaffold. In our synthesis design, we realized that commercially
available chiral Hajos-Parrish ketone 38 was an excellent substrate to develop such a carbo-bicyclic
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scaffold. To this end, a chemoselective protection of diketone 38 was performed [56] yielding the
corresponding mono-ketal 39 at an excellent yield (Scheme 5). A diastereoselective hydrogenation
of the enone moiety using 10% palladium on carbon led to a saturated ketone at an excellent yield.
The ketone was reduced to a secondary alcohol 40 using L-selectride in tetrahydrofuran (THF) at
—78 °C with excellent stereoselectivity (dr: >20:1; please see supporting information). The secondary
alcohol moiety was then utilized as the first diversity point by converting it to the corresponding
carbamates (41-42) and ethers (44) using isocyanates and alkyl halides, respectively. Deprotection
of the ketal to release the ketone function in 41-42 and 44 offered another site for diversification via
stereoselective reductive amination with various aliphatic and aromatic primary amines to give the
final compound (43 and 45) at a very good yield and selectivity (Scheme 5).
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Scheme 4. A (—)-des-methyl-Carvone derived compound collection.

2.3. Representative Compound Collection Synthesis around Bicyclic Scaffolds

The academic and SME partners in ELF consortium work together on a library synthesis design
and its execution. While the academic partner validates the synthesis of the scaffold that is decorated
with functional groups or sites for modifications during library synthesis, the real compound collection
is actually built up by the SME partner. Understandably, this requires a very sound collaboration
between the two and a facile transfer of knowledge for executing the synthesis design to realize
a compound library. To showcase this pragmatic and resourceful tactic [57], we exemplify the upscale
and production of two compound collections based on bicyclic scaffolds 2 and 4-5 (Scheme 1).

In the case of scaffold 2, the first steps of the validation reaction sequence were optimized to obtain
18 with an overall yield of 60% after three steps from 15 in an 80 g scale operation. The critical point in
this sequence was the purification of 18, solved by the precipitation of the corresponding hydrochloride
salt that was recovered by filtration with a 98% yield. Sulphonylation reactions performed using
aryl and alkyl sulphonyl chlorides in more than 25 g scale provided clean products 46a—c (Scheme 6).
To exploit another diversity handle required the deprotection of the N-benzyl group on the fused
piperidine. Interestingly, the palladium catalyzed standard debenzylation protocol did not work in the
presence of ester moiety (vide infra). All three of the sulphonylated scaffolds 46a—c failed to undergo
hydrogenolysis to offer a secondary amine (Table 1). Pleasingly, reaction of these bicyclic molecules
with 1-chloroethylchloroformate in dichloromethane (DCM) afforded the desired products with good
yields (47a—c). At this stage, three different blocks for the parallel synthesis and employing a 24 position
Mettler Toledo block equipped with 15 mL reaction tubes were used for three different reaction types
with secondary amine 47 i.e., amide synthesis, reductive amination and the sulphonylation reactions
to yield a compound collection 48'-48ii! (Scheme 6). Notably, in the production phase, exchanging the
base pyridine with triethylamine facilitated the workup of the reaction.



Molecules 2017, 22, 827 7 of 12

4.0 g scale 3.0 g scale

e} o/ﬁ
ethylene glycol o 1. Ha Pd/IC, MeOH 0
MED, PTSA, MS rt, 18h, 99% =
—_—
0 O : \ B

rt, 2h, 88% 2. L-Selectride, THF HO A
o, 0,
38 39 0°C, 2h, 87% 20
1.0 g scale R'™HN__o RIHN_ o
1. R'NCO, Et3;N, DCM

i, 18h BnNH,, NaBH(OEh);

»
o

2. PPTS, Acetone-H,0O

65 °C, 3h
M Ri= %@om 43 R'= %@o,\,{e
42 %@Noz (dr: >20:1)

DCM, rt, 3 days, 70%

0.5 g scale
NHBn
o/\\ 1. R2l, NaH, THF:DMF O BnNH,,
o) 0 °C-rt, 18h NaBH(OEh);

> > A B

RZ\ v B 0, O\ L

Ho S 2. PPTS, Acetone-H,0 0 = DCM, rt, 48h, 70% 7 H
H 65 °C, 3h 45a (dr: 10:1)

40 44a; R? = Me (41%)

44b; R? = nBu (56%)

Scheme 5. Synthesis of a carbocyclic scaffold for library synthesis using Hajas—Parrish Ketone.

o O B R1SO,CI, Bn\N H o 1-Chloroethyl- HN H
OMe 3 steps DCM < _R' chloroformate, N
. o) DCE, i, 48h O N
NH —> R
N -
N (Scheme 2) ) EtsN, 1t OMe OMe
n e -
overall 60% (60g) 23N 46a R = SO,Ph (279, 75%) 47a; R" = SO,Ph (59, 60%)
15 18 46b; R' = SO,-3-Py (27, 70%)  47b; R" = SO,-3-Py (59, 81%)
46¢c; R' = SO,Me (359, 30% 47¢; R' = SO,Me (59, 99%)
2 g
LiAH,, THF, i) R2COCI, EtsN, THF, rt, 3h
Bn 0°C, 4h ii) RZCHO, NaBH(OAc)s, 2h BLOCKS
N &Nco AcOH, DCE, rt
H EtN, By iii) RZS0,Cl, Et3N, THF, rt, 2h
N \[ro " DCM, 1t, 12h oH g
\ o N-R' N
0 HO
50a; R = SO,Ph (3g, 45%) 49a; R' = SO,Ph (10g, 72%)
50b; R' = SO,Me (3g. 95%) 49b; R" = SO,-3-Py (15g, quan.)
Pd-C 10%,
AcOEt:MeOH (1:1 i 4giil
nc18h ORI ) Recoc, EtN, THE, i, 3n 48'- 48"
ii) RRCHO, NaBH(OAC)3, R2
" AcOH, DCE, rt, 2h N
CrN iiiy RZS0,Cl, EtsN, THF, rt, 2h N o
BLOCKS 0O o N—R!'
521 - 52iii

51a; R' = SO,Ph (3g, 96%)
51c; R' = SO,Me (1g. 28%)

Scheme 6. Production of a compound collection based on bicyclic scaffold 2.

The methyl ester on a quaternary carbon was not an easy handle for parallel reactions. Therefore,
it was reduced to alcohol 49 using LiAlH,. Although O-alkylation was successfully performed, the next
N-debenzylation again did not work effectively (data not shown), probably due to the formation of
a quaternary salt so another approach was used by the formation of a carbamate 50 by the reaction
of isocyanates with primary alcohol 49. Removal of N-benzyl function under palladium catalyzed
the hydrogenolysis condition (Table 1) in 50 again provided a site in 51 for parallel synthesis that was
performed as described above using three different blocks to give a compound collection 52i-521ii
(Scheme 6). The choice of reagents employed was dictated by the desired drug-like molecular properties



Molecules 2017, 22, 827 8 of 12

in the compound collection. After high performance liquid chromatography/mass spectrometry
(HPLC/MS)-based analysis and purification, this improved synthetic protocol yielded a total of
354 compounds with an overall success rate of 80% with sufficient quantity (>5 umol) and a median
purity (LC-MS) of 99%.

Table 1. Optimization of the N-debenzylation of 46 and 51.

Entry Product R! Reagent Reaction Time (h)  Yield (%)
1 47a SO,Ph Pd/C 10% (0.3 Eqv.), Hy (1 atm) 96 0
2 47a SO,Ph 1-Cholorethylchloroformate (2.5 Eqv.) 96 58
3 47b SO,-3-Py 1-Cholorethylchloroformate (2.5 Eqv.) 48 81
4 47¢ SO,Me Pd/C 10% (0.3 Eqv.), Hy (1 atm) 48 0
5 47¢ SO,Me 1-Cholorethylchloroformate (2.5 Eqv.) 48 99
6 51a SO,-Ph Pd/C 10% (0.3 Eqv.), Hy (1 atm) 48 96
7 51c SO,Me Pd/C 10% (0.3 Eqv.), Hy (1 atm) 96 28

Encouraged by the successful production of a compound collection based on scaffold 2, a similar
strategy and optimization was followed for the production of a library based on scaffolds 4 and 5.
The desired intermediates 25a and 25b were obtained from commercially available ketoesters 23 on
a 40 g scale. At this scale, prolonged reaction times were required for completion of the reaction, which
afforded crude products of relatively lower purity (compared to the scaffold validation synthesis).
However, the desired products 25a and 25b could still be obtained with very high purity by simple
precipitation as hydrochloride salts, affording a global yield of 40% and 31%, respectively, after
three steps. Furthermore, the stereoselectivity of the last step was completely reproducible at a large
scale (Scheme 7). These intermediates were diversified in parallel fashion with three typical diversity
reactions i.e., acylation, reductive amination and sulfonylation using three blocks for parallel synthesis
and producing a collection 53'-53ii! (Scheme 7). Benzyl protection and ester reduction in 25 produced
the corresponding alcohols 26a and 26b (up to 15 g scale) with similar yields as in the scaffold
validation (Scheme 3). Furthermore, carbamate formation with cyclopentyl- and phenylisocyanate
was performed to give intermediates carbamates, which, after debenzylation, yielded the four final
intermediates 27a—d in good yields on a 5 g scale. A compound collection using 27 was generated
using combinatorial chemistry protocols for two diversity reactions (i.e., sulfonylation and acylation)
yielding the final compounds 28'-281 of 35-75%. In this case, urea formation was avoided as final
urea compounds were shown to be instable in the validation process. After HPLC/MS-based analysis
and purification, a total of 333 compounds with an overall success rate of 82% with sufficient quantity
(>5 umol) and a median purity (LC-MS) of 99% were isolated.
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Scheme 7. Production and diversification scaffolds 4-5.
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Figures 3 and 4 depict the physicochemical properties (Calculated LogP (clogP) and molecular
weight (MW), JChem, ChemAxon 6.3.0) for the synthesized compounds in the two compound
collections (blue circles). The selected compounds marked as orange circles are representative members
of the complete compound collection synthesized (Schemes 6 and 7). As depicted in Figures 3 and 4,
all final compounds have “lead-like” properties (i.e., calculated LogP (CLogP) < 5 and Molecular
Weight (MW) < 500) [29,58].
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Figure 3. Production plot for scaffold 2.
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Figure 4. Production plot for scaffolds 5-6.

3. Conclusions

In conclusion, a synthesis planning targeting six sp3-rich scaffolds amenable to compound
collection synthesis was designed and executed successfully. The three-dimensional core structures
were inspired by natural products and were further modified using parallel synthesis platform and
in-house collection of final diversification reagents. To ensure the structural-variability and -richness
in the ensuing library members, at least three diversification points were explored with different
vectors of diversity. All the compounds are novel and have drug-like molecular properties. Moreover,
the synthetic routes were optimized to minimize the number of steps and establish a practical, robust
and efficient synthetic process both in the scale up (5-10 g) synthesis of the intermediates and in the
parallel synthesis at the final diversification point (5 pM). The purification of the final compounds by
preparative HPLC-MS was also optimized allowing the successful isolation of compounds even in
challenging cases like low yielding reactions or compounds devoid of UV absorbance with a median
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final purity of 99%. Finally, a well-established, integrated and efficient workflow was implemented.
The collection is a part of JECL and is being evaluated to identify modulators of different therapeutically
relevant protein targets in the screening portal of European Lead Factory [25-28,30-33].

Supplementary Materials: Supplementary materials are available online.
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