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Abstract: Photochemical carbosilylation of Lu3N@Ih-C80 was performed using siliranes
(silacyclopropanes) to afford the corresponding [5,6]- and [6,6]-adducts. Electrochemical studies
indicated that the redox potentials of the carbosilylated derivatives were shifted cathodically in
comparison with those of the [5,6]-pyrrolidino adducts. The electronic effect of the silirane addends
on Lu3N@Ih-C80 was verified on the basis of density functional theory calculations.
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1. Introduction

Endohedral metallofullerenes (EMFs) [1–12] have attracted much interest because of their
fascinating structural and electronic properties. On the basis of the encapsulated metals, the properties
and reactivities of EMFs are significantly different from those of empty fullerenes. For the last few
decades, trimetallic nitride template endohedral metallofullerenes (TNT EMFs), M3N@Ih-C80 (M = Sc,
Lu, Y, and Gd), have been extensively studied as representatives of cluster fullerenes, for which
potential applications have been explored in the fields of molecular electronics, nanomaterials, and
biochemistry [1–14]. For example, Lu3N@Ih-C80 is an attractive compound from a practical viewpoint.
The reduction potential of Lu3N@Ih-C80 is lower than those of the other trimetallic nitride template
(TNT) EMFs, M3N@Ih-C80 (M = Sc, Y, etc.), C60, and C70. This property of Lu3N@Ih-C80 is expected
to be advantageous with respect to its use as an acceptor in organic photovoltaic (OPV) devices.
Previously, OPV devices using some Lu3N@Ih-C80 derivatives with lower reduction potentials were
reported to show higher power conversion efficiency than that of C60-based analogous devices [15–17].

Meanwhile, the exohedral functionalization of EMFs has been studied extensively as an effective
method for modifying the properties of EMFs for many applications [1–12]. As a part of our
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study of the chemical derivatization of EMFs, we reported the addition reactions of Lu3N@Ih-C80

with disilirane, silylene, and digermirane to afford the corresponding silylated and germylated
adducts [18–20]. The redox potentials of these derivatives were shifted cathodically relative to that
of pristine Lu3N@Ih-C80, as expected from the electron-donating effect of silyl and germyl groups.
These results prompted us to apply alternative silylation methods to Lu3N@Ih-C80, which will enable
fine-tuning of its electronic properties. More recently, we reported the photochemical addition of
Sc3N@Ih-C80 and silirane (silacyclopropane) 1 to afford three isomeric carbosilylated derivatives
of Sc3N@Ih-C80 [21]. Spectroscopic measurements indicated that the addition of 1 occurred at the
[5,6] (a pentagon and a hexagon), and the [6,6] (two hexagons) ring junctions. In addition, the
oxidation potentials of the carbosilylated adducts were shifted moderately compared to that of
pristine Sc3N@Ih-C80. Herein, we report the carbosilylation of Lu3N@Ih-C80 via photoreactions using
siliranes 1 [21] and 2 [22] to afford the corresponding [5,6]- and [6,6]-adducts. The electronic effect of
silirane addition on Lu3N@Ih-C80 is discussed in comparison with that of the 1,3-dipolar addition of
azomethine ylides [23,24].

2. Results and Discussion

2.1. Preparation and Structural Analysis of the Carbosilylated Derivatives of Lu3N@Ih-C80

A toluene solution of Lu3N@Ih-C80 and 1 was photo-irradiated using two 500 W halogen
lamps (cutoff < 400 nm) (Scheme 1). After photolysis for 60 h, preparative high performance liquid
chromatography (HPLC) of the reaction mixture was performed to separate three compounds 3a, 3b,
and 3c (Figures S1 and S2, in the Supporting Information). Matrix-assisted laser desorption ionization
time-of-flight (MALDI-TOF) mass spectrometry of 3a, 3b, and 3c exhibited molecular ion peaks at m/z
2009 (M−), as expected for 1:1 adducts of Lu3N@Ih-C80 and 1 (Figure S3). The spectra also show base
peaks at m/z 1499 for the fragment ion Lu3N@Ih-C80

−. Similarly, photoreaction of Lu3N@Ih-C80 and 2
provided three isomeric adducts 4a, 4b, and 4c. The yields of 3a, 3b, 4a, and 4b were calculated to be
30%, 7%, 26% and 16%, respectively, whereas those of 3c and 4c were not determined because they
contained inseparable impurities.
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Scheme 1. Photoreactions of Lu3N@Ih-C80 with siliranes 1 and 2.

Assuming 1,2-addition of 1 and 2 to Lu3N@Ih-C80, four structures A–D are possible for the
addition sites (Figure 1). To obtain an insight into their addition patterns, visible-near-infrared
(vis-NIR) spectroscopy was conducted for the adducts (Figure 2). Previous studies indicate that
the vis-NIR spectra of the [5,6]- and [6,6]-pyrrolidino derivatives of Lu3N@Ih-C80 exhibit absorption
maxima at approximately 870 and 820 nm, respectively [24,25]. The vis-NIR spectra of 3a, 3b, 4a,
and 4b show absorption maxima around 880 nm, which are similar to those of the [5,6]-pyrrolidino
derivatives [24,25] (Figure 2). Meanwhile, the vis-NIR spectra of 3c and 4c show broad absorption
maxima at 811 and 803 nm, which resemble those of the [6,6]-pyrrolidino derivatives [24,25]. Therefore,
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3a, 3b, 4a, and 4b are assignable to the [5,6]-adducts A and B. On the other hand, 3c and 4c are probably
the [6,6]-adducts C and/or D (See also Figure 3).
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In the 1H-NMR spectrum of 3a, signals for four methyl groups and three tert-butyl groups, as
well as aromatic protons were observed (Figure S5). The ring protons of the silacyclopentane addend
of 3a constitute an ABX spin system at 3.66, 2.85, and 1.84 ppm as double doublets. Meanwhile,
the 13C-NMR spectrum of 3a exhibited 86 quaternary and six tertiary sp2 carbon signals, as well
as two sp3 carbon signals of the Ih-C80 cage (Figure S7). The carbon signals of the methylene and
methine of the silacyclopentane ring, the three tert-butyl and four methyl groups were also shown
in the spectrum. These spectral data are consistent with the structure of 3a as the [5,6]-adduct with
C1 symmetry. The 1H-NMR spectrum of 3b is very similar to that of 3a (Figure S6). On the basis of
the vis-NIR and 1H-NMR spectra, 3a and 3b were determined to be a pair of diastereomers A and B,
although the absolute configurations of 4-tert-butylphenyl (denoted as tBp) groups remain unknown.

The 13C-NMR spectrum of 4a, the main product obtained from 2, is similar to that of 3a, showing
86 sp2 carbon atom signals (Figure S10). The carbon signals of the silirane addend and two sp3 carbon
signals of the Ih-C80 cage were also observed. The 1H-NMR spectra of 4a and 4b also indicate the
structures of the silirane addends as for the case of 3a and 3b (Figures S8 and S9). As shown in the
vis-NIR spectra, it is suggested that 4a and 4b are a pair of diastereomers of the [5,6]-adducts. On the
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other hand, spectroscopic studies of 3c and 4c have hitherto been unsuccessful because of their low
yields and impurities.

2.2. Electrochemical Studies

The electrochemical properties of 3a, 3b, 4a, and 4b were measured using cyclic voltammetry
(CV) and differential pulse voltammetry (DPV). The redox potentials of the related compounds
are summarized in Table 1. As shown in Figures S11 and S12, the oxidation of 3a, 3b, 4a, and
4b resulted in the removal of the silirane addends during the electrochemical analyses, affording
pristine Lu3N@Ih-C80. The first oxidation (Eox

1) potentials of 3a, 3b, 4a, and 4b are lower than that
of Lu3N@Ih-C80 within the range of 360–400 mV. These remarkable cathodic shifts of the oxidation
potentials are commonly observed for silylated fullerenes because of the electron-donating properties
of the silyl groups [18–21]. Meanwhile, the values of the first reduction (Ered

1) potentials of 3a, 3b, 4a,
and 4b are close to that of Lu3N@Ih-C80. These redox data are compared to those of 5 [23] and 6 [24] as
the [5,6]-pyrrolidino adducts of Lu3N@Ih-C80. The first reduction potentials of 5 and 6 are −1.13 and
−1.14 V, respectively. According to the reported voltammograms, the Eox

1 potentials of 5 and 6 are both
about +0.34 V, respectively, although the exact Eox

1 values are not given in the literature [23,24]. As a
result, the redox potentials of 3a, 3b, 4a, and 4b shift cathodically compared to those of 5 and 6. These
effects of silyl functional groups are also observed for carbosilylated derivatives of Sc3N@Ih-C80 [21].

Table 1. Redox potentials (V) a of 3a, 3b, 4a, 4b, and related compounds.

compound Eox
1 Ered

1 Ered
2

Lu3N@Ih-C80
b +0.61 –1.39 –1.83

3a +0.23 c –1.38 –1.73
3b +0.25 c –1.35 –1.71
4a +0.22 c –1.37 –1.75
4b +0.21 c –1.41 –1.77
5 d –1.13 –1.64
6 e –1.14

a Values obtained by DPV are in volts relative to the ferrocene/ferrocenium couple. b Data from ref. [18]. c

Irreversible. d Data from ref. [23]. e Data from ref. [24].

The Ered
1 potentials of 3a, 3b, 4a, and 4b are interesting from the viewpoints of Lu3N@Ih-C80-based

OPV acceptors, for which optimization of the lowest unoccupied molecular orbital (LUMO) levels
is an important factor in improving the open circuit voltages of the corresponding solar cells [15,16].
The Ered

1 potentials of the [5,6]-pyrrolidino adducts 5 [23] and 6 [24] are shifted positively relative
to that of Lu3N@Ih-C80. In contrast, 3a, 3b, 4a, and 4b maintain the low reduction potential of
pristine Lu3N@Ih-C80. Although the functions of 3a, 3b, 4a, and 4b as OPV acceptors are unknown,
carbosilylation would be an effective method to adjust the electronic properties of fullerenes for
electronic functional materials.

2.3. Theoretical Calculations

To obtain an insight into the structural and electronic properties of 3a, 3b, 4a, and 4b, isomers of
[5,6]-carbosilylated Lu3N@Ih-C80 were calculated by the density functional theory using the B3LYP
method [26–28]. The partial structures of the calculated molecules are shown in Figure 4 with the
relative energies. The optimized structures of these molecules are also shown in Figures S13–S16.
These structures were calculated with a few different orientations of the Lu3N cluster. As for
the configurations of the silirane addend, 3A-I, 3A-II, 3A-III, 4A-I, 4A-II, and 4A-III are calculated
molecules for the diastereomer A in Figure 1, while 3B-I, 3B-II, 3B-III, 4B-I, 4B-II, and 4B-III correspond
to B. These structures are grouped into four configurations: (3A-I, 3A-II, 3A-III); (3B-I, 3B-II, 3B-III);
(4A-I, 4A-II, 4A-III); and (4B-I, 4B-II, 4B-III). Each of the structural groups has three orientations of the
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Lu3N cluster, as shown in Figure 4. As expected, the relative energies of the adducts vary depending
on the orientations of the Lu3N cluster and the configurations of the silirane addends. Among these
isomers, 3A-I, 4A-I, 3B-I, and 4B-I, in which the Y-shaped Lu3N clusters straddle the addition sites,
have relatively lower energies. These calculations indicate that the orientations of the Lu3N clusters in
3a, 3b, 4a, and 4b should be somewhat restricted. As a result, we regard 3A-I, 3B-I, 4A-I, and 4B-I as
the most preferable optimized structures for 3a, 3b, 4a, and 4b, although the absolute configurations
of the tBp groups remain unclear.
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In addition, the redox properties of carbosilylated Lu3N@Ih-C80 are consistent with the calculated
energies of the highest occupied molecular orbital (HOMO) and LUMO levels of the optimized
structures. As shown in Table 2, the HOMOs of 3A-I, 3B-I, 4A-I, and 4B-I are higher within the range of
0.45–0.53 eV compared with that of pristine Lu3N@Ih-C80. In contrast, the LUMO energies of 3A-I, 3B-I,
4A-I, and 4B-I are almost the same as that of pristine Lu3N@Ih-C80. These results are fully consistent
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with the experimental redox properties of 3a, 3b, 4a, and 4b. Therefore, the carbosilylated structures
were verified given the electron-donating properties of the silyl groups.

Table 2. Calculated HOMO/LUMO levels (eV) of Lu3N@Ih-C80, 3A-I, 3B-I, 4A-I, and 4B-I.

compound HOMO LUMO

Lu3N@Ih-C80 –5.47 –2.90
3A-I –4.98 –2.90
3B-I –4.99 –2.91
4A-I –5.01 –2.92
4B-I –5.02 –2.95

3. Materials and Methods

3.1. General

All chemicals were reagent grade, purchased from Wako Pure Chemical Industries Ltd
(Osaka, Japan). Lu3N@Ih-C80 was purchased from Luna Innovations Inc. (Danville, CA, USA).
1,2-dichlorobenzene (ODCB) was distilled from P2O5 under vacuum before use. Toluene was
distilled from benzophenone sodium ketyl under dry N2 prior to use. Reagents were used as
purchased unless otherwise specified. HPLC was performed on an LC-908 apparatus (Japan Analytical
Industry Co. Ltd., Tokyo, Japan) monitored using a UV3702 detector. Analytical HPLC was
performed on a PU-1586 pump with a UV-1575 detector (JASCO Corp., Tokyo, Japan). Buckyprep
(i.d. 20 mm × 250 mm, 4.6 mm × 250 mm), Buckyprep-M (i.d. 10 mm × 250 mm, 4.6 mm × 250 mm),
and 5PBB (i.d. 10 mm × 250 mm, 4.6 mm × 250 mm) columns (Nacalai Tesque Inc., Kyoto,
Japan) were used for HPLC separation. Toluene was used as the eluent for HPLC. The 1H and
13C-NMR measurements were conducted on a JEOL ECA-500 spectrometer (JEOL Ltd., Tokyo, Japan).
MALDI-TOF mass experiments were performed (Autoflex III Smartbeam, Bruker Daltonics, Billerica,
MA, USA) with 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) as the matrix in both positive and negative
ion modes. Absorption spectra were measured using a UV spectrophotometer (UV-3150, Shimadzu
Corp., Kyoto, Japan). Cyclic voltammograms and differential pulse voltammograms were recorded
on an electrochemical analyzer (BAS CV50W, BAS Inc., Tokyo, Japan). The reference electrode was
a saturated calomel reference electrode (SCE). The glassy carbon electrode was used as the working
electrode, and a platinum wire was used as the counter electrode. All potentials are referenced to the
ferrocene/ferrocenium couple (Fc/Fc+) as the standard. (n-Bu)4NPF6 (0.1 M) in ODCB was used as
the supporting electrolyte solution.

3.2. Photoreaction of Lu3N@Ih-C80 with 1

A Pyrex tube (7 mm i.d.) containing Lu3N@Ih-C80 (0.7 mg, 4.7 × 10−4 mmol), 1 (11.5 mg,
2.3 × 10−2 mmol), and toluene (3.0 mL) was prepared and degassed using freeze-pump-thaw cycles
under reduced pressure. Subsequently, the solution was irradiated for 60 h with a 500 W halogen
lamp using an aqueous sodium nitrite filter solution (cutoff < 400 nm) under an argon atmosphere.
The resulting reaction mixtures were separated using preparative HPLC with Buckyprep-M,
Buckyprep, and 5PBB columns to isolate 3a, 3b, and 3c.

3a: 1H-NMR (CD2Cl2) δ 7.49–7.32 (m, 4H), 7.28 (s, 1H), 7.04 (s, 1H), 7.02 (s, 1H), 6.95 (s, 1H), 3.66
(dd, 1H, J = 2.5 Hz, 15.0 Hz), 3.00 (s, 3H), 2.85 (dd, 1H, J = 13.5 Hz, 15.0 Hz), 2.73 (s, 3H), 2.43
(s, 3H), 2.11 (s, 3H), 1.84 (dd, 1H, J = 2.5 Hz, 13.5 Hz), 1.40 (s, 9H), 1.31 (s, 9H), 1.23 (s, 9H); 13C-NMR
(CDCl3:CS2 = 1:1) δ 156.88 (1C), 156.79 (1C), 155.84 (1C), 155.47 (1C), 153.73 (1C), 153.24 (1C), 153.11
(1C), 152.31 (1C), 151.08 (1C), 150.93 (1C), 148.85 (1C), 148.65 (1C), 148.34 (1C), 147.88 (1C), 147.56
(1C), 147.22 (2C), 146,66 (1C), 146.38 (1C), 144.88 (1C), 144.64 (1C), 144.34 (1C), 144.29 (1C), 144.20
(1C), 144.01 (1C), 143.57 (1C), 142.97 (1C), 142.58 (1C), 142.35 (1C), 142.32 (1C), 142.26 (1C), 142.13 (2C),
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142.06(1C), 141.90 (1C), 141.78 (1C), 141.64 (2C), 141.38 (1C), 141.03 (1C), 140.73 (2C), 140.59 (2C), 140.54
(1C), 140.28 (1C), 139.69 (1C), 139.53 (1C), 139.13 (1C), 138.95 (1C), 138.71 (1C), 138.68 (1C), 138.43
(1C), 138.20 (1C), 137.78 (1C), 137.71 (1C), 137.20 (1C), 137.11 (1C), 137.00 (1C), 136.82 (1C), 136.68
(1C), 136.37 (2C), 136.23 (1C), 136.15 (2C), 135.30 (1C), 135.24 (1C), 135.08 (1C), 135.04 (1C), 134.78
(1C), 134.57 (1C), 134.25 (1C), 134.07 (1C), 133.33 (1C), 132.27 (1C), 131.24 (1C), 130.39 (1C), 129.75
(1C), 129.70 (1C), 129.61 (1C), 126.85 (1C), 126.33 (1C), 126.07 (1C), 125.19 (1C), 124.98 (4C), 118.55 (1C),
109.94 (1C), 108.55 (1C), 103.31 (1C), 63.46 (1C), 59.36 (1C), 54.07 (1C), 34.62 (1C), 34.57 (1C), 34.23 (1C),
31.62 (3C), 31.46 (3C), 31.24 (3C), 30.13 (1C), 26.74 (1C), 26.05 (1C), 23.87 (1C), 20.70 (1C); vis-NIR (CS2)
λmax 874 nm; MALDI-TOF MS m/z 2009 (M−), 1499 (Lu3N@Ih-C80

−).

3b: 1H-NMR (CD2Cl2:CS2 = 1:1) δ 7.40 (d, 2H, J = 7.5 Hz), 7.29 (d, 2H, J = 7.5 Hz), 7.25 (s, 1H), 6.95 (s,
1H), 6.82 (s, 1H), 6.75 (s, 1H), 3.66 (dd, 1H, J = 2.5 Hz, 15.0 Hz), 3.38 (s, 3H), 2.59 (dd, 1H, J = 13.5 Hz,
15.0 Hz), 2.58 (s, 3H), 2.50 (s, 3H), 2.29 (s, 3H), 1.74 (dd, 1H, J = 2.5 Hz, 13.5 Hz), 1.36 (s, 9H), 1.30 (s,
9H), 1.17 (s, 9H); vis-NIR (CS2) λmax 879 nm; MALDI-TOF MS m/z 2009 (M−), 1499 (Lu3N@Ih-C80

−).

3c: vis-NIR (CS2) λmax 811 nm; MALDI-TOF MS m/z 2009 (M−), 1499 (Lu3N@Ih-C80
−).

3.3. Photoreaction of Lu3N@Ih-C80 with 2

A Pyrex tube (20 mm i.d.) containing Lu3N@Ih-C80 (1.1 mg, 7.3 × 10−4 mmol), 2 (49.4 mg,
1.1 × 10−1 mmol), and toluene (20 mL) was prepared and degassed using freeze-pump-thaw cycles
under reduced pressure. These solutions were irradiated for 20 h under the same conditions.
The reaction mixture was separated using preparative HPLC with Buckyprep-M and Buckyprep
columns to isolate 4a, 4b, and 4c.

4a: 1H-NMR (CDCl3:CS2 = 1:1) δ 7.50 (t, 1H, J = 7.5 Hz), 7.47–7.42 (m, 2H), 7.40 (d, 1H, J = 7.5 Hz),
7.38–7.34 (m, 2H), 7.23 (t, 1H, J = 7.5 Hz), 7.12 (d, 1H, J = 7.5 Hz), 7.05 (d, 1H, J = 7.5 Hz), 6.99
(d, 1H, J = 7.5 Hz), 3.69 (dd, 1H, J = 2.5 Hz, 15.5 Hz), 3.51 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 3.44 (dq, 1H,
J = 7.5 Hz, 15.0 Hz), 3.14 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 3.03 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 2.89 (dd, 1H,
J = 13.5 Hz, 15.5 Hz), 2.84 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 2.76 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 2.53 (dq, 1H,
J = 7.5 Hz, 15.0 Hz), 2.52 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 1.84 (dd, 1H, J = 2.5 Hz, 13.5 Hz), 1.66 (t, 3H,
J = 7.5 Hz), 1.34 (s, 9H), 1.22 (t, 3H, J = 7.5 Hz), 0.64 (t, 3H, J = 7.5 Hz), 0.31 (t, 3H, J = 7.5 Hz); 13C-NMR
(CDCl3) δ 157.35 (1C), 156.99 (1C), 156.81 (1C), 155.88 (1C), 155.56 (1C), 155.53 (1C), 154.44 (1C), 154.39
(1C), 153.31 (1C), 153.14 (1C), 151.45 (1C), 151.29 (1C), 150.51 (1C), 149.14 (1C), 148.84 (1C), 148.67 (1C),
148.17 (1C), 147.93 (1C), 147.48 (1C), 147.35 (1C), 147.14 (1C), 146.85 (1C), 146.66 (1C), 146.38 (1C), 144.81
(1C), 144.76 (1C), 144.63 (1C), 144.42 (1C), 144.32 (1C), 144.23 (1C), 143.90 (1C), 142.90 (1C), 142.64
(1C), 142.31 (1C), 142.19 (1C), 142.12 (1C), 141.99 (1C), 141.82 (1C), 141.42 (1C), 140.94 (1C), 140.85
(1C), 140.64 (1C), 140.34 (1C), 139.57 (1C), 139.43 (1C), 139.34 (1C), 138.79 (1C), 138.73 (1C), 138.49
(1C), 138.02 (1C), 137.63 (1C), 137.06 (1C), 137.00 (1C), 136.72 (1C), 136.41 (1C), 136.27 (1C), 136.15
(1C), 136.02 (1C), 135.31 (1C), 135.23 (1C), 135.17 (1C), 135.09 (1C), 135.05 (1C), 134.84 (1C), 134.59
(1C), 134.13 (1C), 131.56 (1C), 130.99 (1C), 130.64 (1C), 130.26 (1C), 129.84 (1C), 129.45 (1C), 129.14
(1C), 128.90 (1C), 128.34 (1C), 127.81 (1C), 127.29 (1C), 127.17 (1C), 126.03 (1C), 125.34 (1C), 124.90 (2C),
118.00 (1C), 110.10 (1C), 109.34 (1C), 103.64 (1C), 63.34 (1C), 58.45 (1C), 55.24 (1C), 34.68 (1C), 34.15
(1C), 33.56 (1C), 31.55 (1C), 30.27 (1C), 29.53 (1C), 21.62 (1C), 15.19 (1C), 15.09 (1C), 15.01 (1C), 14.83
(1C); vis-NIR (CS2) λmax 879 nm; MALDI-TOF MS m/z 1952 (M−), 1499 (Lu3N@Ih-C80

−).

4b: 1H-NMR (CDCl3:CS2 = 1:1) δ 7.32 (d, 2H, J = 8.0 Hz), 7.37 (d, 2H, J = 4.5 Hz), 7.31 (d, 2H, J = 8.0 Hz),
7.10 (t, 1H, J = 7.5 Hz), 7.02 (t, 1H, J = 4.5 Hz), 6.92 (d, 1H, J = 7.5 Hz), 6.86 (d, 1H, J = 7.5 Hz), 3.79 (dd, 1H,
J = 2.5 Hz, 15.5 Hz), 3.74 (q, 2H, J = 7.5 Hz), 3.29 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 3.02 (dq, 1H, J = 7.5 Hz,
15.0 Hz), 2.99 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 2.84 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 2.72 (dq, 1H, J = 7.5 Hz,
15.0 Hz), 2.69 (dq, 1H, J = 7.5 Hz, 15.0 Hz), 2.64 (dd, 1H, J = 13.5 Hz, 15.5 Hz), 1.84 (t, 3H, J = 7.5 Hz),



Molecules 2017, 22, 850 8 of 10

1.75 (dd, 1H, J = 2.5 Hz, 13.5 Hz), 1.26 (s, 9H), 1.21 (t, 3H, J = 7.5 Hz), 0.56 (t, 3H, J = 7.5 Hz), 0.55 (t, 3H,
J = 7.5 Hz); vis-NIR (CS2) λmax 882 nm; MALDI-TOF MS m/z 1952 (M−), 1499 (Lu3N@Ih-C80

−).

4c: vis-NIR (CS2) λmax 803 nm; MALDI-TOF MS m/z 1952 (M−), 1499 (Lu3N@Ih-C80
−).

3.4. Computational Method

All calculations were conducted using the Gaussian09 [29] program. The optimized geometries
were calculated at the B3LYP [26–28] level of theory using basis sets of 6-31G(d) [30] for C, H, N, Si
atoms, and SDD [31] for Lu atoms.

4. Conclusions

In summary, the photochemical addition of siliranes 1 and 2 to Lu3N@Ih-C80 afforded the
corresponding [5,6]- and [6,6]-adducts. The [5,6]-adducts 3a, 3b, 4a, and 4b were characterized on the
basis of spectroscopic and electrochemical studies and theoretical calculations. The electron-donating
effect of carbosilylation on Lu3N@Ih-C80 was confirmed by the redox properties of 3a, 3b, 4a, and
4b, which showed remarkably low first oxidation potentials. The carbosilylation also resulted in
cathodic shifts of the first reduction potentials compared to those of the [5,6]-pyrrolidino adducts.
Such functional groups with various electronic effects will contribute to the utilization of EMFs for
future applications. Further studies of novel functionalizing methods based on organosilanes are
now underway.

Supplementary Materials: Supplementary materials are available online.
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