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Abstract: This present mini-review covers recently published results on Cu(I) and Cu(II) complexes
immobilized on polystyrene carriers, which are used as heterogeneous, eco-friendly reusable catalysts
applied for carbon–carbon and carbon–nitrogen forming reactions. Recent advances and trends
in this area are demonstrated in the examples of oxidative homocoupling of terminal alkynes,
the synthesis of propargylamines, nitroaldolization reactions, azide alkyne cycloaddition, N-arylation
of nitrogen containing compounds, aza-Michael additions, asymmetric Friedel–Crafts reactions,
asymmetric Mukaiyama aldol reactions, and asymmetric 1,3-dipolar cycloaddition of azomethine
ylides. The type of polystyrene matrix used for the immobilization of complexes is discussed in this
paper, and particularly, the efficiency of the catalysts from the point of view of the overall reaction
yield, and possible enantioselectivity and potential reusing, is reviewed.

Keywords: copper complexes; C–C bond forming reaction; C–N bond forming reaction; polystyrene;
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1. Introduction

Preservation of the current standard of living for the human population is not further possible
without the development of ecologically sustainable chemical processes and technologies [1,2]. One of
the methods for contributing to responsible handling with raw materials and energy resources is the
utilization of recyclable catalysts [1–5]. The strategy of how to obtain recyclable catalysts belongs
the immobilization of known homogeneous catalysts to the solid carriers [3–5]. Organic polymers,
especially commercially available cross-linked pearl-like copolymers of styrene e.g., Merrifield
resin™ [6] and JandaJel resin™ [7] belong among the most relevant carriers. The remarkable advantage
of polymer-supported catalysts lies in their simple separation and reusability, their low price, and also
in the possibility of their usage in selective continuous-flow procedures [5,7]. The immobilization of
the catalyst can be performed by the reaction of ligands or catalysts with suitably chemically activated
polystyrene (post-modification strategy) [7]. Another possibility is the grafting of the ligand or catalyst
containing a double bond from the reaction, with monomers generating the scaffold of the polymeric
carrier (copolymerization strategy) [7]. The convenience of one or other strategies cannot be generally
stated—it depends on many factors for each concrete case. Nowadays, there are many examples in
chemical databases of recyclable catalysts based on complex compounds immobilized on different
polymers. This review is focused on the area of highly efficient recyclable catalysts based on Cu(I)
and Cu(II) complexes immobilized on polystyrene carriers. The aim of this review was to summarize,
discuss and evaluate recently published results of catalysts, which were designed particularly for
reactions, where new carbon–carbon respective carbon–nitrogen bonds are formed.
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2. Carbon–Carbon Forming Reactions

2.1. Oxidative Homocoupling of Terminal Alkynes

Carbon–carbon bond forming reactions are essential tools for building the carbon skeleton
of organic compounds, and therefore they represent an elemental content of organic synthesis.
Copper-catalysed oxidative homocoupling of terminal alkynes known also as Glaser coupling [8]
introduce a suitable method for the preparation of 1,3-diynes, which are needful basic building blocks
in the synthesis of many natural and pharmaceutical products, as well as some advanced functional
materials [9]. A successful application of the heterogeneous catalyst intended for this reaction can
be documented on the example of recyclable catalyst 1, which is based on the complex consisting of
N,N,N′,N′-tetraethyldiethylenetriamine and CuSO4, anchored on polystyrene cross-linked with 1%
divinylbenzene (DVB) (Scheme 1) [10].
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The efficiency of catalyst 1 was confirmed from the syntheses of 20 substituted symmetrical
1,3-diynes, where high yields of isolated products were achieved (58–99%). During the reuse of catalyst 1,
release of small amount of Cu(II) ions was observed, however this did not affect significantly the yield of
1,4-diphenylbutane-1,3-diyne, even after nine cycles [10]. Another recently published successful
heterogeneous catalyst [11] for Glaser coupling was based on the Cu(II) complex of copolymer
N-(1,10-phenanthroline-5-yl)acrylamide and DVB. This catalyst was also used for Huisgen 1,3-dipolar
cycloaddition [11]. For oxidative C–C homocoupling of acetylenes, a heterogeneous catalyst based on
copper nanoparticles (3–9 nm), stabilized onto nitro functionalized polystyrene resin, was prepared.
This catalyst was tested in the synthesis of seven 1,4-disubstituted-1,3-diynes (92–95%) [12].

2.2. Sonogashira Cross-Coupling Reaction

Sonogashira cross-coupling of ten substituted iodobenzenes with phenylacetylene catalysed
by polystyrene-supported Cu(II) complex 2 was described by Mandapati et al. [13] (Scheme 2).
Heterogeneous catalyst 2 was prepared by the reaction of commercial chloromethylated
polystyrene (5.5% DVB) with N,N-dimethylethylenediamine and subsequent complexing with
CuBr2. Cross-coupling reactions proceeded in aqueous media in the presence of K2CO3 and
cetyltrimethylammonium bromide (CTAB) at 110 ◦C for 10 h. The yields of substituted acetylenes
ranged between 66–85%. Reusability of the catalyst was tested for the reaction of iodobenzene with
phenylacetylene (Cycle 1: 85%; Cycle 2: 83%; Cycle 3: 82%; Cycle 4: 77%) (Scheme 2).
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The main advantage of this system lies in easy preparation of the catalyst from inexpensive and
commercially available starting materials. Moreover, a significant benefit is the possibility of reusing
of the catalyst, and the eco-friendly performance of the reaction in aqueous media [13].

2.3. Carbene Transfer Reaction

Reactions where carbenes were transferred onto unsaturated substrates (alkenes, alkynes, arenes,
imines, aldehydes etc.), have provided a number of useful products [14–19]. The mentioned carbenes can
be generated in situ from diazo compounds by the application of transition metal-based catalysis [14].
The most widespread example of such reaction implemented at large scale is copper-catalysed
cyclopropanation of substituted alkenes with alkyl diazoacetates. Therefore, many homogeneous
as well as heterogeneous catalytic systems have been developed for this reaction [14–20]. In the case of
Cu(I) complexes, bisoxazoline ligands [15–18] and azabisoxazoline ligands [19] were used, anchored
on pearl-like polystyrenes. For the immobilization of ligands either a copolymerization strategy
(catalysts 3 and 4) or post-modification strategy (catalysts 5–7) was utilized. The catalysts were generated
in situ by the coordination of copper(II) triflate and consequent reduction with phenylhydrazine
(Scheme 3) [15–20].
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Catalyst 3 was prepared by copolymerization of corresponding bisoxazoline-bearing styrene
(4%) with styrene (42%) and DVB (54%), which gave a highly cross-linked polymer having a compact
structure (<5 m2 g−1) [15,16]. Cyclopropanation catalysed by 3 was tested on the reaction of ethyl
diazoacetate with styrene (60%, trans/cis: 67/33, 93% enantioselective excess (ee)) (Scheme 3);
with 1,1-diphenylethene (97%, 98% ee) and with 2-methylpropene (92%, 97% ee) [16]. Catalyst 3
was fivefold reused in the reaction of styrene with ethyl diazoacetate without any significant decrease
in yield and enantioselectivity. Modification in the preparation of catalyst 3 by performing of
copolymerization in different ratios of bisoxazoline-bearing styrene (6%) with styrene (92%) and
DVB (2%) did not affect either the isolated yield (67%), or the diastereoselectivity (67/33) and
enantioselectivity of cyclopropanation (92% ee) [16]. Likewise, a change of strategy of preparation
for catalyst 3 (post-modification of Merrifield resin™) did not lead to any significant impact on
the catalyst′s efficiency [16]. Poor enantioselectivity found for catalysts 4 (36%, trans/cis: 37/63,
78% ee) [17] and 5 (18%, trans/cis: 66/34, 26% ee) [17], and 6 (60%, trans/cis: 64/36, 65% ee) [18],
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was explained by lower binding affinity towards copper, caused by the change of geometry of the
ligand as a consequence of the replacement of the gem-dimethyl substitution box-bridge with sterically
large groups [19]. A notable improvement in binding affinity towards copper was achieved by using of
azabisoxazoline ligand; moreover, it also led to an increase of the catalyst 7’s efficiency (94%, trans/cis:
74/26, 99% ee) [19]. An improvement in enantioselectivity (79% ee, cis)—explained by the effect of
the “chiral-cavity” of the rigid polymer—was later achieved for the highly-crosslinked catalyst 4,
which was prepared according to the copolymerization strategy [20]. Even in this case, the influence of
post-modification strategy or copolymerization strategy was not significant. On the other hand, testing
confirmed that the Merrifield resin™ used in catalyst 7 was a much better support than TentaGel™
(35%, trans/cis: 64/34, 47% ee) [19].

The next reusable catalyst 8 was prepared by coordination of [Cu(MeCN)4][PF6] on tris(triazolyl)
methane anchored on commercial Merrifield resin™ (Scheme 4) [20]. Reactions of catalyst 8 with
ethyl diazoacetate led to formation of carbene (:CHCO2Et), which was used for six reactions
with following substrates: cyclohexane (C–H insertion), tetrahydrofuran (THF) (C–H insertion),
ethanol (O–H insertion), aniline (N–H insertion), phenylacetylene (cyclopropenation), and benzene
(cyclopropanation/ring expansion). In the case of the usage of benzene as substrate, this was the first
representative of the Büchner reaction performed under the conditions of heterogeneous catalysis
(Scheme 4) [21].
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The reactions were performed both in batch and, for the first time, also in continuous flow.
In the first variant, the reaction proceeded in a Schlenk flask under an inert atmosphere. Minor
by-products were detected—only diethyl fumarate and diethyl maleate. Products of the Cu-catalysed
carbene transfer addition or insert reaction 8a–f were obtained with high yields (8a: 98%; 8b: 82%;
8c: 99%; 8d: 97%; 8e: 98%; 8f: 88%). Moreover, the yields were still satisfactory during experiments
with catalyst recycling and its reuse; e.g., after the fifth cycle the results were as follows—8b: 89%;
8c: 99%; 8d: 86%; 8e: 94%; 8f: 82%. A significant decrease of yield was observed with product
8a (67%), which was explained by the lower reactivity of cyclohexane during insertion into the
C–H bond [21]. In the continuous flow arrangement, a vertically mounted and fritted low-pressure
Omnifit column loaded with catalyst 8 was used. Very stable flow was afforded after two hours
with the following results—8a: 0.94 mmol; 41%; 4 mmolproduct·mmolCu

−1 h−1; 8b: 2.53 mmol; 56%;
10.8 mmolproduct·mmolCu

−1 h−1; 8d: 3.91 mmol; 89%; 16.7 mmolproduct·mmolCu
−1 h−1; 8e: 0.54 mmol,

70%; 2.3 mmolproduct·mmolCu
−1 h−1; 8c: (after 48 h) 12.5 g; 17.1 mmolproduct·mmolCu

−1 h−1; turnover
number (TON) = 820. From the given results, catalyst 8 represents a highly efficient catalytic system
for carbene transfer reactions to various types of substrates both in batch and in continuous flow [21].
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2.4. Addition of Alkynes on Double Bond Carbon–Nitrogen

Propargylamines—which represent important intermediates for the synthesis of significant
pharmaceutical polyfunctional substances—can be synthesized by the addition of alkynes on the
imine bond (Schemes 5 and 6) [22–26]. Propargylamines had been traditionally prepared by nucleophilic
addition of magnesium or lithium acetylides on imines or their derivatives [22]. The disadvantage
of such synthesis consists in the necessity of use of stoichiometric amounts of acetylides under
very strict reaction conditions and absolute moisture exclusion. Simplification of this reaction
brought the utilization of transition metal complexes—especially Cu(I) complexes [22]. Unfortunately,
the isolation of these homogeneous complexes from the reaction mixture as well as their recycling
is unfeasible. Further facilitation started with the application of Cu(II) complexes immobilized on
pearl-like polystyrene and with the reaction performed as a one-pot multi-component reaction [23–26].
Catalyst 9 was prepared by the reaction of L-proline with chloroacetylated pearl-like polystyrene
and subsequent complexation with CuI (Scheme 5) [23]. The reaction of all three components
(alkyne/aldehyde/amine: 1/2/1.25; 5 mol % Cu) catalysed by 9 proceeded under laboratory
conditions [Dimethyl sulfoxide (DMSO), 2 h or 12 h at room temperature] with high yields of isolated
propargylamines (48–99%). Formaldehyde and aliphatic aldehydes provided higher yields (78–99%)
than aromatic aldehydes (e.g., Ph-C≡CH/4-MeO-C6H4CH=O/piperidine: 48%). For the reaction of
phenylacetylene, formaldehyde and piperidine catalysed by catalyst 9, several solvents were tested:
water (0%), methanol (25%), toluene (30%), THF (42%), MeCN (87%), DMSO (99%). For the same reaction
in DMSO, the recovery and reuse of catalyst 9 was tested, when only slight decrease in yields for each
cycle was observed: 99%, 99%, 98%, 95%, 90%, 90% (Scheme 5) [23]. Corresponding polymer complexes
with CuBr, CuCl and CuSO4 were also studied; however, they were less efficient [23].

Catalyst 10 was prepared by the reaction of β-alanine with polystyrene containing the –CH=O
group and by subsequent complexation with CuI (Scheme 5) [24]. The reaction catalysed by
catalyst 10 was performed under reflux in water (6–16 h) with the following ratio of educts:
alkyne/aldehyde/amine: 1/1/1.2 (2 mol % Cu), while the obtained yields of isolated propargylamines
ranged between 48–99%. For the reaction of phenylacetylene, benzaldehyde and piperidine catalysed
by 10 also different solvents were tested: dichloromethane (DCM) (15%), toluene (58%), MeCN (62%),
THF (68%), water (95%). Furthermore, the recovery and reuse of catalyst 10 was studied for the same
reaction in water, where a slight decrease in yields was observed: Cycle 1: 95%; Cycle 5: 93%; Cycle 10:
88%. Besides, the authors monitored the copper content in catalyst 10, which remained unchanged in
all of the cycles (Scheme 5) [24].
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Catalyst 2 (Scheme 2) was also used by the same authors [13] for the synthesis of substituted
propargylamines (Scheme 6) [25]. The reaction of all three components (alkyne/aldehyde/amine:
1.1/1/1.1; 1 mol % Cu) catalysed by catalyst 2 proceeded in toluene (6 h, 110 ◦C) with yields of
isolated propargylamines in the range of 64–95% (Scheme 6). Also in this case, different solvents were
tested for the reaction of phenylacetylene, benzaldehyde and piperidine catalysed by catalyst 2: water
(trace), methanol (trace), ethanol (trace), THF (22%), MeCN (36%), dimethylformamide (DMF) (48%),
dichloroethane (DCE) (46%), DMSO (50%) and toluene (85%). The recovery and reusing of catalyst 2
was studied for the same reaction, again with only slight decrease in yields: Cycle 1: 85%; Cycle 5: 83%
(Scheme 6) [25]. Catalyst 11 was prepared by the reaction of commercial chloromethylated polystyrene
with N-phenyl piperazine and subsequent complexation with CuBr2 (Scheme 6) [26]. The reaction of
all three components (alkyne/ketone/amine: 1/1/1; 0.7 mol % Cu) catalysed by 11 was performed
under solvent free conditions (6 h, 110 ◦C) with the yields of isolated propargylamines in the range
of 88–95%. The recovery and reusing of catalyst 11 was tested for the reaction of phenylacetylene,
cyclohexanone and piperidine, while only negligible decrease in yields was also observed: Cycle 1:
94%; Cycle 5: 92% (Scheme 6) [26].
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From the presented results, the prepared heterogeneous catalysts 2, 9–11 represent highly efficient
catalytic systems. Particularly, catalyst 11 showed itself to be an eco-friendly variant that allowed
the synthesis of propargylamines in aqueous media. From the chemical structure of catalyst 9,
it contains a defined stereogenic centre. However, the eventual optical purity of chiral propargylamines
prepared with the use of this catalyst was not discussed in the cited paper [23]. Elsewhere, e.g.,
in [27–30], several enantioselective homogeneous catalysts based on Cu(II) complexes designed for
the synthesis of optically pure propargylamines were described. For the heterogeneous variant of
enantioselective synthesis of propargylamines, only a version of a Cu(I) pybox complex anchored on
magnetic nanoparticles (Fe3O4@SiO2) have been described so far [31].

2.5. Nitroaldolization Reaction

The nitroaldolization (Henry) reaction catalysed by chiral optically pure catalysts is important
among reactions; it involves the formation of a new carbon–carbon bond [32–39]. This reaction occurs in
the synthesis of substituted 2-nitroalcohols used e.g., for the preparation of biologically active compounds
and medicinal drugs [34]. A recently published comprehensive paper [35] covers works concerning
catalysts based on supported transition metal complexes aimed for an asymmetric variant of the Henry
reaction. Three recent works were not covered in the above mentioned review [36,38,39]. The first
work [39] included a study of a library of substituted polystyrylsulfonyl-imidazoline-aminophenol
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copper complexes as solid supported catalysts for the Henry reaction. The selected complex of
copper(II) acetate, based on (S,S)-diphenylethylenediamine-derived imidazoline, (S)-phenylethylamine,
and dibromophenol, was highly efficient and provided the products of the reaction (nitromethane with
substituted aldehydes) in high yields (76–99%) and high enantioselectivity (75–95% ee). The same
ligand as a complex with copper(II) triflate was examined in the Friedel–Crafts alkylation of indole by
substituted nitroalkenes, to give the adducts in high yields (86–99%) and high enantioselectivity—up to
83% ee [39]. The second variant of immobilization represented recyclable the heterogeneous catalyst
12 (Scheme 7), containing imidazolidine-4-one covalently bound on swellable pearl-like polystyrene
having an –SH group (200–800 µm) [36]. Covalent anchoring of the ligand was performed by radical
thiol-alkene click reaction, initiated thermally (azobisisobutyronitrile (AIBN), toluene, reflux 24 h), as well
as photochemically (2,2-dimethoxy-2-phenylacetophenone, λmax = 365 nm, 40 W, DCM, 25 ◦C, 24 h).
For the subsequent reaction of the copolymer with copper(II) acetate, heterogeneous catalyst 12 was
prepared, and was characterized by elemental microanalysis and Raman spectroscopy [36]. Henry
reactions proceeded in the polymeric matrix of swellable catalyst 12 with a rate comparable with the
use of catalyst 13 in homogeneous media [37]. The corresponding substituted (R)-2-nitroethanols were
produced in high yields (65–99%) and with high enantioselectivity (up to 92% ee) comparable with
the homogeneous catalyst 13 (up to 96% ee). The reuse of catalyst 12 was studied for the reaction
of pivalaldehyde with nitromethane. After five-fold recovery and reuse of heterogeneous catalyst 12,
a decrease in yield of about 24% occurred; on the other hand, the decrease in enantioselectivity was
negligible (3% ee) (Scheme 7) [36].
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The third variant represented heterogeneous catalysts 14a,b based on Cu(II) complexes of
substituted imidazolidine-4-thiones immobilized by means of sulfur atoms on different types of
polystyrene carriers (polystyrene-co-4-vinylbenzyl chloride-co-tetra(ethylene glycol)-bis(4-vinylbenzyl)
ether), Merrifield resin™ and JandaJel resin™ (Scheme 8) [38]. It was found, that catalysts 14a,b catalyse
the Henry reaction with high yields and high enantioselectivity, regardless of the polymeric carrier used
(up to 98% ee). The obtained yields and enantioselectivities were comparable with the individual cases
of reactions catalysed by analogical homogeneous catalysts 15a,b (Scheme 8). Beside monitoring the
yields and enantioselectivity, the possibility of recovery and reusing of catalysts 14a,b was also studied.
For instance, in the reaction of 2-methoxybenzaldehyde with nitromethane, the catalyst was reused
more than 10 times without any decrease in enantioselectivity (81% ee) (Scheme 8) [38].
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2.6. Asymmetric Friedel–Crafts Reaction

Beletskaya et al. [40] studied asymmetric Friedel–Crafts alkylation of indole and its derivatives
in the presence of complex of Cu(OTf)2 with chiral isopropyl bis(oxazoline) ligand immobilized on
Merrifield resin™ according to the “click” procedure 16. The target products were obtained with
a yield of up to 99% and up to 97% ee. Catalyst 16 ensured high yield and enantioselectivity even after
five-fold reuse (Scheme 9) [40].
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The heterogeneous catalyst 16 was also tested in the alkylation of N-methylindole by methyl
(E)-2-oxo-4-phenylbut-3-enoate with yields of 22–94% and lower enantioselectivity (49% ee) [40].

2.7. Asymmetric Mukaiyama Aldol Reaction

The enantioselective Mukaiyama aldol reaction of methyl pyruvate with silylated ketene
thioacetal was tested with a heterogeneous polystyrene copper complex catalyst based on chiral
bis(oxazoline) [41] (Scheme 10).
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The highly-crosslinked polymer 3 was prepared by a copolymerization strategy in the presence
of toluene as a porogen agent [41]. The heterogeneous catalyst 3/Cu(OTf)2 was less active than the
analogous homogeneous catalysts, and aldol products were formed after a longer time; however,
high overall yield (90%) and with an enantiomeric excess comparable to those obtained with the
soluble ligands (90% ee), was obtained. Moreover, the catalyst based on polymer complex 3 was
easily recovered by simple filtration and was reused several times without any loss of activity or
stereoselectivity (Scheme 10) [41]. In the second work, the azabis(oxazoline) complexes 17 bonded to
Merrifield resin™ were confirmed for the aldol reaction of different α-ketoesters with silylated ketone
enolates [42]. The catalysis results showed that these heterogeneous complexes 17 accomplished
enantioselectivities only slightly lower than those obtained in solution. Catalyst recovery depends on
the ligand, so whereas polymers (R3: Ph) and (R3: i-Pr) were recovered with the same unsatisfactory
results (51%, 38–39% ee), the recovered catalyst coming from (R3: t-Bu) led to even slightly lower
yields (25%) but with the higher enantioselectivity (85% ee) (Scheme 10) [42].

3. Carbon–Nitrogen Forming Reactions

3.1. Copper(I)-Catalysed Azide Alkyne Cycloaddition

Beside the reactions leading to carbon–carbon bond formation, the reactions providing new
carbon–nitrogen bond also play a relevant role in organic synthesis. Particularly, this includes
the Huisgen 1,3-dipolar cycloaddition of alkynes with azides providing 1,4- and 1,5- isomers of
1,2,3-triazole [43]. Copper(I)-catalysed azide alkyne cycloaddition (CuAAC) represents a current
variant, which converse to the original thermic version, proceeds quickly, regiospecifically (1,4-),
and with high yields [44,45]. These properties rank this reaction among the most significant
“near-perfect” bond-forming reactions known as “click” reactions [46]. The importance of this
reaction consists not only in the efficient preparation of substituted 1,2,3-triazoles, but especially
in the possibility for connecting different molecules and macromolecules, or to functionalize surfaces
in a controlled way. The first polystyrene-supported copper(I) catalyst for CuAAC was based on
the Amberlyst A21–CuI complex and was published in 2006 [47]. This and many further papers are
discussed in a recently published review concerning immobilized copper complexes anchored on
polystyrene and other heterogeneous carriers [48]. Also, two other papers deal with CuAAC [49,50].

The authors [49] prepared the catalyst 18 based on copper(I) iodide complex with cryptand-22
immobilized on commercial chloromethylated polystyrene (1% DVB) (Scheme 11). This heterogeneous
heat- and air-stable catalyst 18 was used for a two-component CuAAC reaction of substituted organic
azides with substituted alkynes, and this provided excellent yields of 1,4-disubstituted 1,2,3-triazoles
(78–99%). The second three-component variant of this reaction involving organic halides, sodium
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azide and alkynes, also resulted in the production of 1,4-disubstituted 1,2,3-triazoles with good yields
(45–99%). Both variants of the reaction were performed under eco-friendly conditions (0.6 mol % Cu,
aerobic, water, room temperature). The reusing of catalyst 18 was successfully tested for the reaction
of benzyl azide with phenylacetylene (Cycle 1: 99%; Cycle 4: 87%) and for the variant of the reaction
of benzyl bromide, sodium azide and phenylacetylene (Cycle 1: 99%; Cycle 4: 70%) (Scheme 11) [49].
The catalyst 18 was also successfully used for the formation of aryl–sulphur bonds in aqueous
media [50]. In the next work [51], the heterogeneous catalyst 19 based on a copper(II) complex
of 1,2-bis(4-pyridylthio)ethane anchored on chloromethylated polystyrene was prepared (Scheme 12).
Catalyst 19 was tested for three-component reaction of organic halides, sodium azide and alkynes,
which was performed in the presence of sodium ascorbate as a reduction agent in poly(ethylene glycol)
(PEG-400), (0.2 mol % Cu), at 65 ◦C, 10–25 min. The yields of isolated 1,4-disubstituted 1,2,3-triazoles
were excellent, ranging from 87–99%. For the reaction of 4-bromobenzylbromide, sodium azide and
phenylacetylene catalysed by 19 were further tested different solvents (0.1–0.3 mol % Cu, 15–30 min):
water (78%), methanol (70%), toluene (40%), DMF (65%), MeCN (28%), PEG–water 1:1 (89%),
ethanol–water 1:1 (75%).
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The recovery and reuse of catalyst 19 was successfully confirmed with the same three-component
reaction (Cycle 1: 99%; Cycle 4: 95%; Cycle 7: 93%) (Scheme 12). This catalytic system also showed
excellent activity for the synthesis of bis-1,4-disubstituted 1,2,3-triazoles (66–88%) [51].
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3.2. Other Ring-Formation Reactions

Carretero et al. [52] studied the Cu(I)-catalysed asymmetric 1,3-dipolar cycloaddition of azomethine
ylides generated from substituted arylimines derived from glycine esters with N-phenylmaleimide or
dimethyl fumarate (Scheme 13). Except for the homogeneous variant, cycloaddition was studied in the
heterogeneous system with the use of in situ prepared complexes Cu(MeCN)4ClO4 with Fesulfos-based
chiral ligands immobilized on Merrifield′s peptide resin (1% cross-linked, 200–400 mesh, 2 mmol Cl/g)
20 or on trichloroacetimidate Wang resin (copoly(styrene-1% DVB), 200–400 mesh, 0.6–1.00 mmol
trichloroacetimidate/g resin) 21.
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Interestingly, 20 showed much better catalytic performance than 21 (in all cases from 91 to
>99% ee). Furthermore, the polystyrene-supported Fesulphos ligand 20 were recovered and reused in
successive catalytic 1,3-dipolar cycloadditions without further addition of Cu(I), maintaining excellent
enantioselectivity in up to three runs (Scheme 13) [52].

Halligudi et al. studied biomimetic oxidative coupling of 2-aminophenol to phenoxazine-2-one
catalysed by bis(2′-[2-hydroxyethyl]benzimidazolato)copper(II) complex anchored onto chloromethylated
polystyrene [53]. The kinetics and the effects of the catalyst concentration, substrate concentration,
air pressure and temperature on the reaction course were studied. 2-Aminophenol in the presence of
air (70 ◦C, 800 psig, DMF, 8 h) gave 62% conversion and the immobilized catalyst was more stable and
more active than its homogeneous analogue. The catalyst recycling study demonstrated that the anchored
catalyst did not leach out the metal complex during the reaction, and thus its catalytic activity was
reproducible [53].

3.3. N-Arylation of Amines, Amides and Nitrogen Containing Heterocycles

Aryl–nitrogen bonds formed via cross-coupling reactions represent a powerful tool for the
production of a number of compounds with practical uses [54]. The original variant of the Ullmann
reaction is still utilized for this purpose [55]. However, this method of performing of the reaction
is constrained by several disadvantages, e.g., it needs high temperature (150–200 ◦C) and the use
of stoichiometric amounts of copper [54,55]. A remarkable simplification was achieved by the use
of substituted phenylboronic acids for N-arylation of imidazole catalysed by copper(II) salts [56].
The next facilitation was the utilization of heterogeneous catalyst 22 (Scheme 14) [57]. Catalyst 22
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was prepared from commercial chloromethylated polystyrene (5.5% DVB), on which β-alanine was
attached through the oxygen atom, and copper(II) acetate was coordinated. Less efficient variants of
this catalyst were prepared by the coordination with CuCl2 and CuI. Catalyst 22 was successfully tested
for the reaction of substituted phenylboronic acids with nitrogen containing heterocycles (imidazole,
benzimidazole; 65–98%) and with amides (phthalimide, benzamide, benzenesulfonamide; 37–98%)
under very mild conditions (methanol, 40 ◦C, 10–20 h). The reaction with amines was performed in
DMSO in the presence of K2CO3 at 140 ◦C (aniline, benzylamine; 58–91%) (Scheme 14) [57].
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Scheme 14. N-Arylation of N-nucleophiles by substituted phenylboronic acids catalysed by polystyrene
supported complex 22.

The recovery and reuse of catalyst 22 was studied for the reaction of phenylboronic acid with
imidazole (Cycle 1: 98%; Cycle 6: 90%) and aniline (Cycle 1: 86%; Cycle 4: 82%). In both cases,
only a slight decrease in yields was observed (Scheme 14) [57]. Under comparable conditions as
in [57] (catalyst 22), the same authors achieved analogical N-arylations of N(H)-heterocycles with
aryl halogenides and arylboronic acids with good or excellent results with the use of heterogeneous
catalysts based on complexes of polystyrene–Schiff bases (PS-4-C6H4N=CH-2-pyridyl Cu(OAc)2) [58],
or (PS-4-C6H4N=CH-2-furyl Cu(OAc)2) [59].

Another variant of this reaction is the N-arylation of imidazole, pyrazole, 1,2,4-triazole,
benzylamine and substituted anilines with substituted iodobenzenes catalysed by catalyst 23
(Scheme 15) [60].
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supported complex 23.

Catalyst 23 was prepared from commercial chloromethylated polystyrene (2% DVB), on which
5-phenyl-1H-tetrazole was attached, and CuCl2 was coordinated (Scheme 15). The reactions were
performed in DMSO at 120 ◦C for 12–16 h in the presence of K2CO3 (N-heterocycles; 67–95%), or in the
presence of KOH (amines; 67–85%). In different solvents (THF, MeCN, DME, N-methylpyrrolidone
(NMP), DMF) and under different conditions (Cs2CO3, NaHCO3, K3PO4, TEA; 80 ◦C, 130 ◦C)
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N-arylation of 1H-imidazole with iodobenzene occurred with lower yields than the reaction in DMSO.
The recovery and reusing of catalyst 23 was tested with success for the reaction of imidazole with
iodobenzene (Cycle 1: 94%; Cycle 6: 89%). The N-arylation of amides and lactams with substituted
iodobenzenes, bromobenzene, 2-bromopyridine or 2-iodopyridine catalysed by 24 was also successful
(Scheme 16) [61].
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supported complex 24.

Catalyst 24 was prepared from commercial chloromethylated polystyrene, where the chloromethyl
group was transformed to an aldehydic group. Subsequent reaction with β-alanine led to the
production of an imine, which was then coordinated with Cu(II) acetate. N-arylations were performed
without a solvent and in the presence of K2CO3 at 120 ◦C, for 15–20 h, with yields in the range of 62–92%.
The recovery and reusing of catalyst 24 was successfully tested for the reaction of benzamide with
iodobenzene (Cycle 1: 92%; Cycle 8: 89%) (Scheme 16) [61]. Further examples of reactions proceeding
in aqueous media were N-arylation of substituted bromobenzenes with substituted anilines and
(cyclo)alkylamines, catalysed by catalyst 25 in the presence of tetrabutylammonium bromide (TBAB)
(Scheme 17) [62]. Catalyst 25 was prepared by the sequence of reactions from atactic polystyrene.
Firstly, polystyrene was nitrated, reduced to amine, diazotated, and reduced to hydrazine, which was
then acylated by 1H-pyrrole-2-carboxylic acid. The catalyst 25 itself was generated directly in the
reaction mixture from the functionalized polystyrene and Cu(I) iodide.
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The reaction of substituted bromobenzenes with benzylamine and substituted anilines (70 ◦C,
16 h) proceeded with very good yields of up to 82%. The lowest yield was attained in the reaction
of 4-bromonitrobenzene with benzylamine (44%), while the reaction with sterically demanding
2,4,6-trimethylaniline did not proceed. Analogical reactions with (cyclo)alkylamines (90 ◦C, 16 h)
provided yields of up to 93%, while the lowest yield was achieved in the reaction of 4-bromonitrobenzene
with butylamine (51%). Substituted bromopyridines provided products with yields of 33–85%.
The reactions of substituted iodobenzenes with imidazole (120 ◦C, 16 h) led to products with yields
ranging from 65% to 87%. The lowest yield was obtained for iodobenzene itself (65%), while the
reaction with 2-methoxyiodobenzene did not proceed. Catalyst 25 was also applied in the intramolecular
N-arylation of N-(2-iodophenyl)-1H-imidazole-2-carboxamide giving imidazo[1,2-a]quinoxaline. The
recovery and reusing of catalyst 25 was successfully tested for the reaction of 4-methoxyiodobenzene
with imidazole (Cycle 1: 79%; Cycle 5: 82%) (Scheme 17) [62].

3.4. Aza-Michael Addition

Nucleophilic addition of N-nucleophiles on activated multiple bonds (aza-Michael addition) is
a significant reaction in the synthesis of β-amino carbonyl compounds as crucial intermediates in the
synthesis of β-amino acids, β-lactam antibiotics, and chiral auxiliaries [63]. Simple, green and efficient
preparation of N-alkylated imidazoles was tested, with a reaction of substituted imidazoles with
different α,β-unsaturated compounds catalysed by polystyrene-supported CuI–imidazole complex
catalyst 26 (Scheme 18) [64]. Catalyst 26 was prepared via surfactant free emulsion polymerization with
4-VBC (4-vinylbenzylchloride) and DVB (2%), whereby uniform globular particles (400–500 nm) with
high Cl content (21.5%) were obtained initially. Afterwards, these particles were highly functionalized
by imidazole and coordinated by CuI.
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The efficiency of catalyst 26 was firstly confirmed for the addition of imidazole on acrylonitrile
(8.5 mol % Cu; 60 ◦C; 4–10 h); while the influence of the solvent was studied: methanol (58%); MeCN
(63%); DMSO (52%); DMF (71%); acetone (47%); THF (58%). The reactions were then performed in DMF
and the temperature optimized to 75 ◦C. The addition of substituted imidazoles on α,β-unsaturated
substrates proceeded with very good yields up to 74–84%. The lowest yield was achieved for the
addition of 4-nitro-1H-imidazole on acrylonitrile. Catalyst 26 was separated by filtration and was
further recycled for the reaction of imidazole with acrylonitrile (Cycle 1: 92%; Cycle 2: 91%; Cycle 5:
89%). The given results show that catalyst 26 represents an excellent reusable catalyst; which could be
potentially applied at an industrial scale [64].

4. Conclusions

In this mini-review, we focused on Cu(I) and Cu(II) complexes anchored on pearl-like polystyrenes.
The prepared heterogeneous catalysts were beneficially used for oxidative homocoupling of terminal
alkynes, synthesis of propargylamines, nitroaldolization reaction, azide alkyne cycloaddition,
N-arylation of nitrogen containing compounds, aza-Michael addition asymmetric Friedel–Crafts
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reactions, asymmetric Mukaiyama aldol reactions, and asymmetric 1,3-dipolar cycloaddition of
azomethine ylides. In several given examples, any difference between the efficiency of individual
catalysts was not found depending on the method of their preparation (copolymerization strategy or
post-modification strategy) [15–19]. In a prevalent number of examples, any significant decrease in
chemical yields was not observed in the comparison of heterogeneous catalysts with corresponding
homogeneous catalysts. The advantages of discussed heterogeneous catalysts consisted in their simple
preparation from inexpensive and easily available starting materials, their simple isolation, and the
possibility of reuse. Easy performance of the reaction in aqueous media brings great benefits in the
case of cross-coupling reactions [13], Huisgen cycloaddition [49], N-arylation [62], and solvent-free
N-arylation [61]. Most of the mentioned reactions possess high potential for industrial usage, hence
the catalytic systems presented in this review significantly contribute to further development of
ecologically sustainable chemical processes and technologies.
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