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Abstract: Contemporaneous development of improved immune cell-based therapies, and powerful
imaging tools, has prompted growth in technologies for immune cell tracking in vivo. Over the past
couple of decades, imaging tools such as magnetic resonance imaging (MRI) and optical imaging have
successfully monitored the trafficking patterns of therapeutic immune cells and assisted the evaluation
of the success or failure of immunotherapy. Recent advancements in imaging technology have
made imaging an indispensable module of immune cell-based therapies. In this review, emerging
applications of non-radiation imaging modalities for the tracking of a range of immune cells are
discussed. Applications of MRI, NIR, and other imaging tools have demonstrated the potential of
non-invasively surveying the fate of both phagocytic and non-phagocytic immune cells in vivo.

Keywords: cellular imaging; image-tracking; immune cells; magnetic resonance imaging; optical
imaging

1. Introduction

Immune cells contribute to the pathogenesis or treatment of a wide variety of diseases, such as
autoimmune and infectious diseases, and immunotherapy-based treatments. Components of innate
immune systems include monocytes, dendritic cells (DCs), macrophages, granulocytes, natural killer
(NK) cells, and other cells. They represent the first line of defense and are less specific than the
cells of the adaptive immune system, predominantly comprising T cells and B cells. Each cell type
has a well-defined role in the cascade of events that occurs following encounter with a pathogen or
transformed cells. For example, (1) macrophages get rid of cell debris and pathogens; (2) DCs and
macrophages act as major antigen-presenting cells and direct the inflammatory response by secreting
cytokines, and other factors; and (3) T cells and NK cells directly kill virus-infected cells and cancer
cells [1]. Apart from these beneficial effects of immune cells, these cells are also known to have
unfavorable effects on the human body in certain conditions. For instance, immune cells might become
responsive to self-antigens, thereby causing auto-immune diseases such as rheumatoid arthritis, diabetes
mellitus type 1, inflammatory bowel disease, Graves’ disease, multiple sclerosis, and systemic lupus
erythematosus [2]. Furthermore, immune cells such as macrophages and regulatory T cells are known
to infiltrate tumor and facilitate tumor growth [3–5]. Immunosuppression is also required during
allograft transplantation for preventing graft vs. host reactions. As immune cells are indispensable
components of immunotherapeutic interventions and various pathophysiological conditions, tracking
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their presence inside the body can provide vital information. For decades, researchers have been looking
for novel approaches to track immune cells in their native environment. With the development of
immune cell-based therapies, it has become increasingly important to visualize the bio-distribution of
the injected cells. The success or failure of immune cell-based therapy can primarily be assessed by
tracking the presence of cells at the site of interest.

Non-invasive cell tracking can broadly be classified into two types: direct labeling of cells
with a contrast agent (CA) that is imaged using appropriate instruments; or indirect labeling of
cells, which includes reporter genes [6–8]. Direct labeling of immune cells with CAs can be either
in vivo or ex vivo as depicted in Figure 1. The various non-radiation based imaging tools being
used for immune cell tracking include magnetic resonance imaging (MRI), optical imaging, and
bioluminescence imaging [9,10] (Figure 2). While each of these methods have their own limitations
and advantages, biocompatibility and non-toxicity of CAs are essential for clinical translation of these
imaging approaches. Furthermore, researchers are aiming to improve the specificity of CAs for better
image resolution.
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Figure 1. Schematic representation of strategies for immune cell tracking by magnetic resonance
imaging (MRI) or optical imaging. (1) A T1 or T2 contrast agent is directly injected or (2) formulated
as or encapsulated in nanomaterials for (3) in situ labeling of immune cells and imaging by MRI or
optical imaging; (4) Immune cells can also be harvested and labeled ex vivo with (5) a contrast agent or
(6) nanoparticles before (7) injection and MRI-based tracking, distribution, and behavior of immune
cells in vivo.
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Figure 2. In vivo immune cell tracking by magnetic resonance and optical imaging modalities, for DCs
migrating in lymph node (left and middle), and macrophages (MΦ) infiltrated in myocardial infarction
(right). Adapted with permission from Kim et al. [11] (Copyright 2016 American Chemical Society)
and Kim et al. [12].
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2. Imaging Modalities

2.1. MRI (T1, T2)

The human body predominantly consists of water. In the presence of an external magnetic
field, hydrogen nuclei (1H or proton) in the water molecules align with the magnetic field. Signals
from fluorinated molecules (19F) can also be used for MRI. 1H or 19F nuclei are disturbed from this
equilibrium by pulsed radio frequency radiation. After the removal of the radio frequency radiation,
nuclei reach the equilibrium and induce a short-lived voltage in a receiver antenna; this transient
voltage is the nuclear magnetic resonance (NMR) signal. MRI is a powerful technique for non-invasive
molecular imaging that provides soft tissue contrast with high anatomical resolution without the use
of potential toxic radiation [11]. T1 or T2 is the time that it takes for the longitudinal or transverse
magnetization to decay to 63% or 37% of its original value. These values are characteristics of specific
tissues, depending on the main magnetic field strength in a measuring system. Contrast-enhanced MRI
using positive (T1) or negative (T2) CAs supports the diagnosis of diseases and follow-up evaluations
of treatments with detailed tissue contrast. MR CA-based delivery systems for the diagnosis and
therapy of cancers have been widely studied, and various CA modifications have been developed for
specific cancers [13,14].

With recent developments in the field of cancer immunotherapy, there is increasing interest
in MRI-based in vivo cell tracking techniques [10,15,16]. Magnetic nanoparticle (MNP)-labeled
immune cells have been used to track cell behaviors in deep tissue areas in vivo to elucidate cellular
immunological processes within diseased tissue environments and draining lymph nodes [17,18].
Wu et al. have monitored migration of MNP-labeled DCs into lymph nodes by in vivo T2-weighted
MRI [18]. MNP labeling of phagocytic immune cells has been successfully performed by controlling
their surface characteristics or the addition of transfection agents [6,10,19,20]. Efficient tracking of
labeled cells, enabling long-term, sensitive detection in vivo, depends on the magnetic properties of
MNPs. Superparamagnetic iron oxide (SPIO) nanoparticles as T2 CAs have been extensively studied
in labeling and image-tracking of immune cells, and are a useful tool for medical applications [9,21,22].
Mou et al. have reported SPIO-enhanced green fluorescent protein-labeled DCs homing to the draining
lymph nodes by in vivo MRI [22]. Moreover, gadolinium chelating T1 CA demonstrates intense
positive signals over background tissues [11]. Meanwhile, non-phagocytic cells such as NK cells are
difficult to label with particulate CAs, and therefore require additional treatments such as labeling
with cationic materials or electrostatic forces in cellular environments [23,24].

2.2. Optical Imaging

Optical imaging (OI) methods have been widely used for visualizing cells and soft tissues in
various biomedical fields. Using visible light (400–700 nm), OI easily distinguishes specific cells or
intracellular living organisms simultaneously, along with the selectivity of imaging colors. OI methods
include fluorescence and bioluminescence imaging (BLI), which are non-invasive and has reduced
damaging effects from radiations by using non-ionization radiation. It enables long-term tracking of
cells with sensitive detections, but its limitations are a low penetration depth of only 1–2 mm, and low
spatial resolution by scattered lights generated within tissues. In this regard, use of near-infrared (NIR)
region (700–1000 nm) in OI is preferred to increase detection sensitivity [25–27].

Organic fluorophores for fluorescence imaging are generally used for staining of nuclei, lysosomes,
cell membrane, and various proteins in cellular organisms. For the tracking of immune cells, especially
non-phagocytic cells, lipophilic fluorescent dyes have been widely used due to their efficient staining
process and tolerable cytotoxic levels [28]. Tavri et al. have reported image-tracking of lipophilic dye,
DiD(1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine)-labeled, tumor-targeted NK cells to
human prostate cancer xenografts with in vivo fluorescence imaging [28]. However, their usefulness
in supplying quantitative information for the tracking cells is limited owing to photo-bleaching or
biodegradation after in vivo administration.
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BLI is an indirect cell labeling with reporter genes, based on the detection of the light generated
from various luciferase enzymes, such as firefly luciferase (FLuc), Renilla luciferase (Rluc) or bacterial
luciferase [29,30]. BLI of immune cells was successfully performed by labeling cells with fluorescent
proteins or luciferase reporter genes by transfection, which supports the photo stability of fluorescent
signals compared to organic fluorophores [9,30]. BLI can provide images of higher sensitivity compared
to fluorescence imaging, by detection of emitting light from specific substrates without the auto
fluorescence generated by excitation light.

Another emerging technique for OI is Cerenkov luminescence imaging (CLI), which is based on
the detection of visible photons emitted by Cerenkov radiation and provides great potential for rapid
application into clinical practice [31].

Image-tracking of immune cells by OI techniques enables in vivo real-time monitoring of
therapeutic effects for immune cell-based therapy. For clinical applications, in vivo OI methods
could allow easy optimizations of therapeutic immune cells from several candidates of specifically
engineered cells.

2.3. Miscellaneous: Upconversion Nanoparticles and Quantum Dots

As an alternative to OI materials, nanocrystal-structured nanomaterials such as quantum dots
(QDs) have been developed to improve photo-stability during cell tracking; they possess unique
luminescent characteristics and electronic energy properties such as broad absorption spectrum and
narrow emission levels, showing high photostability for various biological applications. However,
their high cytotoxicity remained a concern for in vivo applications [32]. Recently, upconversion
nanoparticles (UCNPs) have attracted increasing attention in the field of immune cell labeling and
tracking because of their high resistance to photobleaching and quantitative sensitive detections [33,34].
UCNPs enable NIR-to-NIR imaging by absorbing NIR excitation light and emitting NIR luminescence
by an upconversion energy transfer process, which improves signal-to-noise ratio with absence of auto
fluorescence [33,35,36]. UCNPs are also useful for multicolor imaging by controlling dopant ions and
multimodal imaging with MR, single-photon emission computed tomography (SPECT), or computed
tomography (CT) imaging [37,38]. Recent studies on immune cell tracking, depending on imaging
modalities, cell types, applications, and CAs, are summarized in Table 1.
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Table 1. Recent studies on in vivo immune cell tracking by MR and optical imaging modalities.

Imaging
Modality Type Labeled Cell Type Contrast

Agent
Animal
Model Applications (Target) Tracking

Time Administration Ref.

MR T2 T cell SPIO Tumor B16 melanoma cell 36 h i.p. [39]
MR T2 Dendritic cell SPIO Immunized Lymph node mapping 72 h footpad [18]
MR T2 NK-92-scFv(MOC31)-zeta cells SPIO Tumor EpCAM-positive DU145 prostate cancer cell 24 h i.v. [24]
MR T2 Novel NK cell line (KHYG-1) USPIO Tumor PC-3M human prostate cancer cell 4 days i.v., i.p., s.c. [40]

MR/Optical T2/BLI Macrophage/monocyte SPIO Stroke Brain imaging 72 h i.v. [29]
MR/Optical T1/FL Dendritic cell Gd Normal Lymph node mapping 24 h footpad [11]

Optical FL NK-92-scFv(MOC31)-zeta cells DiD Tumor EpCAM-positive DU145 prostate cancer cell 24 h i.v. [28]
Optical FL NK92MI QD tumor MeWo human melanoma cell 24 h i.t. [41]
Optical PL Mouse mesenchymal stem cell UCNP Normal Biodistribution 24 h s.c. [34]
Optical PL Dendritic cell UCNP Immunized Lymph node mapping 48 h footpad [33]

MR: magnetic resonance; BLI: bioluminescence imaging; FL: fluorescence; PL: photoluminescence; Gd: gadolinium; NK: natural killer; DiD: 1,1′-dioctadecyl-3,3,3′,3′-
tetramethylindodicarbocyanine; EpCAM: epithelial cell adhesion molecule; SPIO: superparamagnetic iron oxide; QD: quantum dot; UCNP: upconversion nanoparticle; USPIO:
ultra-small superparamagnetic iron oxide; i.v.: intravenous; i.p.: intratumoral; s.c.: subcutaneous.
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3. Applications of Imaging Immune Cells

3.1. Macrophages/Monocytes

3.1.1. Tumor-Associated Macrophages and Immunotherapy

Tumor microenvironments are heterogeneous with a variety of infiltrated cells including
macrophages. Macrophages that reside inside or in close proximity to tumors and assist tumor
progression are primarily classified as tumor-associated macrophages (TAMs). They facilitate formation
of tumors by secreting pro-angiogenic factors and tumor immune evasion, promoting metastasis and
neoplastic transformation. TAMs are present in various types of human tumors such as glioblastoma,
and lymphoma, breast, prostate, thyroid, and ovarian tumors leading to rapid cancer progression
and a decrease in patient survival [5,42]. Labeling TAMs with an appropriate CA for imaging in a
non-invasive manner can also help in guiding biopsies. The number of TAMs present in tumor tissue
also helps in envisaging the efficiency of therapeutic intervention.

Ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) were used for MRI of TAMs
in breast cancer [43]. After intravenous injection of the Food and Drug Administration (FDA) approved
iron oxide nanoparticle compound ferumoxytol (Feraheme™) it was found to be preferentially taken up
by TAMs rather than by breast cancer cells, thus making it a clinically applicable approach. In another
study, USPIO were compared with per-fluorocarbon (PFC) agents for imaging TAMs present in breast
cancer [44]. While imaging post-USPIO suffered signal loss, 19F imaging provided better information
about spatial distribution and density of TAMs.

Magneto-fluorescent particles (dextran-coated iron oxide core nanoparticles coupled with
fluorochrome VT680) were used for non-invasive tracking of TAMs, at different resolutions and using
various imaging modalities, e.g., fluorescence molecular tomography (FMT), MRI, and multiphoton
and confocal intravital microscopy [45]. Both mesoscopic and macroscopic imaging modalities,
e.g., FMT, MRI, and FMT-MRI fusion imaging, were tested for studying the in vivo distribution
of AMTA680-labeled TAMs at the whole tumor (or body) level. Using FMT reconstruction and
quantification of three-dimensional maps of AMTA680 was possible along with visualization of
well-delimited signal foci within the tumor. MRI allowed identification of foci of hyposignal (black) on
T2-weighted images at submillimeter levels. Signal co-localization was illustrated after fusion of FMT
and MRI data sets. These nanoparticles enabled the estimation of cellular activity and biodistribution
of TAMs.

3.1.2. Cardiovascular Diseases: Myocarditis, Myocardial Infarction, and Aneurysm

Cardiovascular magnetic resonance (CMR) imaging with magneto-fluorescent nanoparticles
exemplified a better evaluation of level of inflammation in rats with experimental autoimmune
myocarditis (EAM) as compared to conventional CMR [17]. MNP uptake by infiltrating inflammatory
cells lead to altered myocardial T2 effect.

The heart undergoes a wound healing process after ischemia or myocardial infarction, which is
initiated by cells of the innate immune system. These cells mainly comprise macrophages that are
recruited at the site of injury for phagocytosis of necrotic tissues. Visualization of these recruited
macrophages provides important diagnostic information for preventing irreparable heart failure.
Gadolinium-loaded liposomes were used as T1 shortening CA for labeling and imaging of monocytes
and/or macrophages [46]. Images of the labeled mice, provided information on the spatiotemporal
distribution of macrophages post-myocardial infarction, compared to that of unlabeled mice. MRI for
monitoring of cardiovascular pathology has also been tested in humans. A clinical trial investigated
the potential of CMR imaging using ferumoxytol, a USPION, for comprehensive characterization of
infarct pathology and compared it with gadolinium-based imaging in patients with acute myocardial
infarction [47]. It was found that in humans, USPIO-based CAs detected infiltrated macrophages
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in myocardial infarct, which subsequently provided a more detailed characterization of myocardial
infarct pathology.

3.1.3. Inflammation and Ischemia

SPIONs were used for labeling and tracking of intravenously administered macrophages in renal
ischemia-reperfusion mouse models [48]. MRI of macrophages homing to a damaged kidney may
enable timely investigation of the pathogenesis of acute kidney injury and provide cues for determining
a treatment for acute renal failure. In another study, MRI was combined with NIR fluorescence imaging
for tracking of macrophage migration to the site of inflammation [49]. The multimodal imaging
nanoparticles offered non-invasive imaging in a living organism, owing to their biocompatibility due
to the presence of silica-coated MNPs encapsulating NIR fluorescence dye within the silica shell and
magnetic core. The migration of primary macrophages in living mice with acute inflammation induced
by an injection of carrageen solution into the footpad was successfully tracked using both MRI and NIR
imaging. Moreover, the impact of dexamethasone, a potent steroid hormone with anti-inflammatory
effects, on the migration of macrophages to inflammatory lesions was effectively visualized. Several
cases on in vivo MR imaging of macrophages are shown in Figure 3.
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3.2. T Cells

Antigen-specific T-lymphocytes have received considerable attention as a novel modality for
cancer therapy [50,51]; however, to better understand the in vivo fate of therapeutic cells including
their bio distribution, homing and migration to the target site, there is a need to track these cells
non-invasively. A major impediment for a detailed estimation of antitumor efficacy has been the
inability to track T lymphocytes in vivo at desirable spatio-temporal resolutions. The existing
strategies involve bulk distribution study of radiolabeled cells or bioluminescence imaging of
luciferase-transfected cells [52].

A biocompatible, dextran coated SPIO particle was derivatized with a peptide sequence from
the HIV-tat protein to improve intracellular magnetic labeling of T lymphocytes [39]. It was found
that these nanoparticles exposed the three-dimensional spatial heterogeneity of T-cell recruitment to
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tumors and verified the temporal regulation of T-cell recruitment within the tumor. The recruitment
of cytotoxic T lymphocytes to tumors over longer times was studied using MRI and it revealed a
time-dependent heterogeneity and detection limits. A signal reduction was observed at 48 h after
administration, but the same animal showed no signal reduction by MRI and returned to baseline signal
intensity at 60 h after adoptive transfer. Distribution of activated PFC-labeled ovalbumin-specific T
cells from the T cell receptor-transgenic line OT-1 was determined in vivo by 19F-MRI/MRS (magnetic
resonance spectroscopy) [53].

3.3. Dendritic Cells

Immunotherapeutic DCs are being engineered to stimulate helper or killer T cells in vivo.
Monitoring in vivo behavior and interaction of DCs is crucial, and various imaging modalities
have been reported, including MRI, reporter gene based imaging, gamma scintigraphy with In-111,
fluorescence imaging, bioluminescence imaging, QD and positron emission tomography (PET) with
18F. Immature DCs are known to regularly undergo endocytosis for sampling their surrounding
environment for potential foreign entities. After encountering any form of danger signal they are
expected to undergo activation and maturation, which induces downregulation of their endocytic
machinery. Therefore, for efficient labeling of DCs with adequate quantity of CAs, immature DCs
are superior to mature ones. Not only the maturation status, but also the timeline (sequential vs.
simultaneous) of antigen and contrast agent delivery must be taken in to consideration. Simultaneous
delivery of antigen and CA might interfere with antigen processing leading to inappropriate
presentation on MHC I (major histocompatibility complex I) and MHC II.

A dual imaging probe including gadolinium and the NIR fluorophore, aza-boron-dipyrromethene,
was used for tracking DCs in lymph nodes and subsequently could be used in the investigation
of advanced immunotherapy [11]. In another study, electrostatically assembled and crosslinked,
biocompatible polyelectrolyte-coated MNPs were used for bimodal imaging of DCs in lymph
nodes [12]. Bimodal imaging is advantageous as it exploits the complementary strengths of each
modality. In a report, iron oxide nanoparticles and indocyanine green in a poly(lactide-co-glycolide)
matrix were used for studying migration of DCs via lymphatic drainage in real time [54]. Not only is
the mapping of lymph nodes crucial, but the clearance and bio-distribution of CA is also important.
Recently, UCNPs were used for development of high-resolution images of mapping and clearance of
UCNPs [55].

Interestingly, an MRI reporter gene, human ferritin heavy chain (FTH), was introduced in the
DC2.4 cell line using a lentivirus, and was found to be a useful technique for longitudinal monitoring
of DCs and estimating their therapeutic efficacy [7]. FTH-DC did not influence the migration,
proliferation, and co-stimulatory marker upregulation capacity, which is critical for development
of effective DC-based vaccines.

3.4. Natural Killer Cells

Autologous and NK cell line-based immunotherapeutic approaches have drawn significant
attention as a powerful strategy for treatment and management of cancer. However, there are
only limited reports on in vivo imaging of NK cells, primarily because of difficulties in labeling
NK cells with imaging probes. Genetically modified therapeutic NK cells that are capable of targeting
tumor-associated antigens need to be monitored in real time in vivo in a non-invasive manner for
determining their tumor-homing capacity.

The nonradioactive isotope 19F was optimized in a dose-dependent manner for non-invasively
labeling and tracking NK cells [56]. 19F was passively taken up by NK cells, and without affecting
viability, cytotoxicity, cytokine secretion and activation. In another report, KHYG-1 NK cells were
detected by MRI after subcutaneous injection, but not intravenous or intraperitoneal injection [39].
NK cells are non-phagocytic cells that are difficult to label by simple incubation. Both NK-92
and NK-92-scFv(FRP5)-zeta cells were successfully labeled with ferucarbotran and ferumoxides by
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lipofection and electroporation, but not by simple incubation [57]. Furthermore, accumulation of these
labeled cells with clinically applicable T2 CAs in murine tumors can be monitored in vivo with MRI.
In a similar study, NK-92-scFv(MOC31)-zeta cells, which express a chimeric antigen receptor (CAR)
specific for the tumor-associated EpCAM (epithelial cell adhesion molecule) antigen, were labeled with
SPIO ferumoxides and exhibited a progressive and a significant drop in contrast-to-noise-ratio data
at 1 h and 24 h post-injection [23]. SPIONs were used for quantitative visualization of transcatheter
intra-arterial delivered NK cells to hepatocellular carcinoma, and ∆T2* was found to be higher in the
tumors than in the normal liver tissue (p < 0.001) [58].

Human NK-92MI cells were labeled with an anti-CD56 antibody conjugated with QDs
(QD705) without compromising their viability, IFN-γ production, and cytolytic activity. In human
malignant melanoma (MeWo) xenografts in mice, the labeled NK cells could be tracked for
up to 12 days following intratumoral injection [41]. In another study, fluorophore DiD
(1,1’-dioctadecyl-3,3,3’,3’-tetramethylindodicarbocyanine)-labeled NK-92-scFv(MOC31)-zeta cells
targeting the EpCAM antigen on prostate cancer cells exhibited a substantial increase in tumor
fluorescence at 24 h post-injection [28]. Cy5.5-conjugated magnetic iron oxide (Fe3O4) nanoparticles
controlled the movement of human NK (NK-92MI) cells in vivo under the effect of an external magnetic
field and enabled in vivo monitoring using in vivo imaging system [59].

4. Limitations of Existing Cell Tracking Approaches and Future Prospects

For clinical application, an imaging method should be able to evaluate both cellular delivery and
therapeutic effectiveness in patients. Moreover, it must be non-invasive and nontoxic, and permit a
precise and quantitative assessment of the cell-based therapy. Owing to different membrane properties
and differential ability to phagocytose, direct labeling of immune cells ex vivo is a challenging task.
In addition, the ability to retain the CA in vivo is advantageous for terminally differentiated cells;
otherwise, the signal may be diluted or lost because of cell proliferation or death. 19F MRI has a
detection limit in vivo of approximately 104 cells per cm3, which prevents detection of cells after
migration to the tumors post-intravenous or percutaneous injections. Moreover, in cases of labeled cell
death, phagocytic cells such as macrophages and DC could take up cell debris and lead to false positive
signals. Immune cell therapies with T cells or NK cells in cancer have emerged as promising strategies.
One approach is to express CAR on the T cell or NK cell membrane (CAR-T or CAR-NK), which
has been widely used to confer a desired specificity as targeted therapy for cancer. However, there
are several concerns to address before its clinical applicability such as bio-distribution in the whole
body, when and how many transplanted cells infiltrate tumor tissue, cell survival, and anticancer
efficacy. To address these issues, multiplexed OI probes can be used for simultaneous in vivo tracking
of different cell phenotypes. Following intravenous administration of about 106 cells per mouse,
quantitative time/spatial information of the cells using in vivo MRI/OI may provide a systematic
selection of parameters for immunotherapy including cell dose, treatment time/interval, choice of
CAR, selection of cancer cell type, and combination therapy with chemical drugs or antibody.

5. Conclusions

Overall, for future clinical applications, multimodal imaging (MRI, NIR and UCNP) is anticipated
to be the most desirable technique for qualitatively and quantitatively tracking immune cells, by
visualization of signal co-localization. The in vivo kinetic behavior of immune cells is intricate
and poorly understood. Progress in immune cell-based therapies has encouraged the development
of imaging tools with single-cell precision and sensitivity, for guiding and conducting dynamic
monitoring of experimental therapies. The detailed understanding gained from the improved imaging
modalities will help enrich immune cell based therapeutic approaches, which is likely to provide
an impetus towards their clinical application. PFC, SPIO, and NIR-based immune cell imaging has
already reached clinical trials and further advancements are expected in time to come.
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