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Abstract: The genus Fritillaria belongs to the widely distributed Liliaceae. The bulbs of Fritillaria,
F. ussuriensis and F. cirrhosa are valuable herbaceous medicinal ingredients. However, they are
still used indiscriminately in herbal medicine. Identification and molecular phylogenic analysis
of Fritillaria species are therefore required. Here, we report the complete chloroplast (CP) genome
sequences of F. ussuriensis and F. cirrhosa. The two Fritillaria CP genomes were 151,524 and 151,083 bp
in length, respectively, and each included a pair of inverted repeated regions (52,678 and 52,156 bp)
that was separated by a large single copy region (81,732 and 81,390 bp), and a small single copy
region (17,114 and 17,537 bp). A total of 111 genes in F. ussuriensis and 112 in F. cirrhosa comprised
77 protein-coding regions in F. ussuriensis and 78 in F. cirrhosa, 30 transfer RNA (tRNA) genes, and
four ribosomal RNA (rRNA) genes. The gene order, content, and orientation of the two Fritillaria
CP genomes exhibited the general structure of flowering plants, and were similar to those of other
Fritillaria species. Comparison of the six Fritillaria species” CP genomes indicated seven highly
divergent regions in intergenic spacers and in the matK, rpoC1, rpoC2, ycf1, ycf2, ndhD, and ndhF coding
regions. We established the position of the six species through phylogenic analysis. The complete
chloroplast genome sequences of the two Fritillaria species and a comparison study are useful genomic
information for identifying and for studying the phylogenetic relationship among Fritillaria species
within the Liliaceae.

Keywords: Fritillaria ussuriensis; Fritillaria cirrhosa; chloroplast genome; comparative analysis; highly
divergent region

1. Introduction

The genus Fritillaria belongs to the Liliaceae, which consists of 140 known species. The bulbs
of several Fritillaria species (called “Pae-mo” in Korean and “Bei-mu” in Chinese) are important
ingredients in herbal drugs that are used in oriental medicine, and have great economic value in
Asian countries. Fritillaria species are distributed in temperate regions of the Northern hemisphere [1].
Fritillaria (F.) cirrhosa is mainly distributed in the alpine regions of Northwestern China (Gansu,
Qinghai, Sichuan, Xizang, and Yunnan provinces) at altitudes of 3200-4600 m, whereas F. ussuriensis is
distributed in the lowland regions (0-500 m altitude) of the northeastern and the far-eastern areas of
China, Russia, and Korea [2]. Fritillaria ussuriensis and F. cirrhosa display morphological differences in
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their floral bud, bract, stem, and capsule [2]. The stem length of F. ussuriensis is 50-60 cm (maximum:
100 cm); the stem length of F. cirrhosa is less than 60 cm. Fritillaria cirrhosa has three bracts per flower,
whereas F. ussuriensis has two. The tapals are yellow or yellowish green in F. cirrhosa; the petals are
purple in F. ussuriensis. The capsules of F. cirrhosa are narrowly winged; the capsules of F. ussuriensis
are wingless. While it is difficult to classify the plants according to the morphological characteristics
of their bulbs, the flowering plants can be easily distinguished. The bulbs are divided into two
and five types in the Korean Pharmacopoeia and the Chinese Pharmacopoeia, respectively [3,4].
The dried bulbs of Fritillaria ussuriensis Maxim. and Fritillaria cirrhosa D. Don are used in different
herbal medicines—namely, Fritillariae Ussuriensis Bulbus (Ping-bei-mu in Chinese) and Fritillariae
Cirrhosae Bulbus (Chuan-bei-mu in Chinese), respectively. Fritillariae Cirrhosae Bulbus and Fritillariae
Ussuriensis Bulbus have separately been used for clinical purposes in traditional Korean medicine.
In detail, the former has been used to treat cough due to deficiency of the lung, asthenia of the viscera,
and tidal fever, and the latter has mainly been used to treat cough due to exogenous dryness and
deficiency of Um (Yin; Chinese traditional medicine technical term). Furthermore, Fritillariae Cirrhosae
Bulbus and Fritillariae Ussuriensis Bulbus have been prescribed to treat pulmonary carbuncle and
bloody sputum, respectively [5]. Although the bulbs of Fritillaria have value in herbal medicine,
different Fritillaria species are still used indiscriminately because of their morphological similarity and
similar names [6]. Therefore, accurate identification of Fritillaria species (e.g., using molecular markers)
is required to identify medicinal plants and the drugs derived from them [6,7].

Chloroplasts play an important role in photosynthesis and carbon fixation as well as in the
biosynthesis of starch, fatty acids, and amino acids [8,9]. The chloroplast (CP) genome ranges from 120
to 180 kb in higher plants and has a quadripartite structure consisting of a large single copy (LSC) region,
a small single copy (SSC) region, and two copies of a larger inverted repeat (IR) [10,11]. The CP genome
encodes 110 to 130 genes with up to 80 unique protein-coding genes, four ribosomal RNAs (rRNAs),
and approximately 30 transfer RNAs (tRNAs). However, few parasitic plants have small chloroplast
genomes due to their unique life cycles [12]. Since the CP genome of Marchantia polymorpha [13] was
reported in 1986, more than 500 complete chloroplast genome sequences have been deposited in
the GenBank database [14]. With the advancement of next-generation sequencing (NGS) technology,
chloroplast genome assembly has become cheaper and easier compared to the Sanger method [15].
Through the comparison of chloroplast genomes, the development of molecular markers has also
become more cost effective. The CP genome has been widely used for understanding phylogenetic
relationships and discovering useful molecular markers, which are used in DNA barcoding to identify
plant species and authenticating and in identifying herbal medicines. In particular, matK and rbcL are
used as universal plant DNA barcodes [16].

Here, we report the de novo assembly of F. ussuriensis and F. cirrhosa CP genomes using the
Illumina platform. This is the first comparative analysis of Fritillarin CP genomes in conjunction
with previously reported CP genomes. This study aims to investigate global structural patterns
of six Fritillaria CP genomes and also to discover highly divergent regions among the species. We
also analyzed phylogenic relationships among the six Fritillaria species. The results provide basic
knowledge on characteristics of Fritillaria species and enhance our understanding of Fritillaria species
evolution within the Liliaceae.

2. Materials and Methods

2.1. Genome Sequencing and Assembly

Fresh leaves of F. ussuriensis (KY646166) and F. cirrhosa (KY646167) were collected from medicinal
plant plantations, and the samples were used for CP genome sequencing. Fritillaria ussuriensis and
FE. cirrhosa were given identification numbers, and specimens were registered in the Korean Herbarium
of Standard Herbal Resources (Index Herbariorum code KIOM) at the Korea Institute of Oriental
Medicine (KIOM). The extraction of DNA was conducted with the DNeasy Plant Maxi kit (Qiagen,
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Valencia, CA, USA), according to the manufacturer’s instructions. Illumina short-insert paired-end
sequencing libraries were constructed and generated using the NextSeq platform (Illumina, San Diego,
Valencia, CA, USA) by LabGenomics, Korea. The CP genomes were obtained by the de novo assembly
method from low-coverage whole-genome sequence derived from the Phyzen pipeline [17]. Trimmed
paired-end reads (Phred scores >20) were assembled using CLC genome assembler (ver. 4.06 beta,
CLC Inc, Rarhus, Denmark) with default parameters. SOAPdenovo gap closer was used to fill gaps
based on alignment paired-end reads [18]. The principal contigs representing the CP genome were
retrieved from the total contigs using Nucmer [19], and aligned contigs were ordered with the CP
genome sequence of Fritillaria hupehensis (NC024736) [20].

2.2. Genome Annotation and Comparative Analysis

Gene annotation of F. ussuriensis and F. cirrhosa CP genomes was performed using DOGMA
annotation [21], and manually corrected for codons and gene boundaries using BLAST searches.
The tRNAs were confirmed with tRNAscan-SE 1.21 [22]. The circular maps of the two Fritillaria CP
genomes were obtained using OGDRAW [23]. GC content and codons were analyzed using MEGA6
software [24]. The mVISTA program was used to compare the seven Fritillaria CP genomes using the
F. ussuriensis CP genome as reference [25]. Five Fritillaria CP genomes were downloaded from GenBank
(F. hupenesis: NC024736, F. tapaiensis: NC023247, F. unibracteata: KF769142, and F. thunbergii: KY646165).

2.3. Repeat Analysis

SSRs in F. ussuriensis and F. cirrhosa CP genomes were detected using MISA [26] with the
parameters set to minimum number of repeats: 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-,
and hexa-nucleotides, respectively. The tandem repeats were 20 bp or more with minimum alignment
score and maximum period size set at 50 and 500, respectively, and the identity of repeats was set to
>90% [27]. IRs were detected using Inverted Repeat Finder with default parameters. The IRs were
20 bp or more with 90% similarity [28].

2.4. Phylogenic and Divergence Analysis

A molecular phylogenetic tree was constructed using 74 protein-coding genes from 11 species.
Among these 11 taxa, nine completed CP genomes were downloaded from NCBI: Fritillaria unibracteata
(KF769142), Fritillaria taipaiensis (NC023247), Fritillaria hupehensis (NC024736), Fritillaria thunbergii
(KY646165), Lilium superbum (NC026787), Lilium longiflorum (KC968977), Smilax china (HM536959),
Acorus gramineus (NC026299), and Cocos nucifera (KX028884). A total of 71 protein-coding genes were
aligned with MAFFT [29]. Maximum likelihood (ML) and maximum parsimony (MP) analyses were
performed using MEGA6 with 1000 bootstrap replicates [24]. Six Fritillaria species CP genomes were
aligned using MAFFT, and the sequences were manually adjusted with Bioedit [30]. To calculate
nucleotide variability (Pi) between CP genomes, sliding window analysis was performed using DnaSP
version 5.1 software [31]. Window length was set to 600 bp, and the step size was 200 bp.

3. Results

3.1. Chloroplast Genome Organization of Two Fritillaria Species

lumina sequencing generated 5.0 and 4.5 Gb of trimmed paired-end reads from
Fritillaria ussuriensis and Fritillaria cirrhosa, respectively. From the de novo assembly sequence that uses
low-coverage whole-genome sequencing (WGS), we obtained ten and eight contigs covering the whole
chloroplast genome sequences of F. ussuriensis and F. cirrhosa, respectively (Table S1). Single circular
sequences were completed after gap filling and manual editing. The complete circular chloroplast
genomes of F. ussuriensis and F. cirrhosa were 151,524 and 151,083 bp, with approximately 256 x and
452 coverages, respectively (Table S2). Paired-end read mapping was conducted to validate the
draft genome, which was compared to our draft genomes and the previously reported F. hupehensis
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genome using BLASTZ program (Figure S1). Both F. ussuriensis and F. cirrhosa chloroplast genomes had
a quadripartite structure similar to most land plants consisting of a pair of IRs (52,678 and 52,156 bp,
respectively). In addition, both F. ussuriensis and F. cirrhosa chloroplast genomes were also separated
by large single copy (LSC; 81,732 and 81,390 bp) and small single copy (SSC; 17,114 and 17,537 bp)
regions (Figure 1, Table 1). The Fritillaria chloroplast genomes were AT-rich (63% in both species), but
the LSC (65.3% and 64.2% in F. ussuriensis and F. cirrhosa, respectively) and SSC (69.4% and 69.6% in
F. ussuriensis and F. cirrhosa, respectively) regions were more AT-rich than the IR regions (57.6% and
57.4% in F. ussuriensis and F. cirrhosa, respectively), making the LSC and SSC regions more similar to
other chloroplast genomes [10,32-35].

Table 1. Size comparison of two Fritillaria species’ chloroplast genomic regions.

Species Fritillaria ussuriensis Fritillaria cirrhosa
Total CP genome size (bp) 151,524 151,083
LSC (bp) 81,732 81,390
IR (bp) 52,678 52,156
SSC (bp) 17,114 17,537
GC content (%) 36.95 36.96
LSC (%) 34.71 34.79
IR (%) 42.40 42.60
SSC (%) 30.63 30.50
Total number of genes 111 112
Protein-coding gene 77 78
rRNA 4 4
tRNA 30 30

CP: Chloroplast; LSC: Large single copy; IR: Inverted repeat; SSC: Small single copy.

The gene content, order, and orientation were similar in Fritillaria CP genomes. There were 111
and 112 predicted genes in F. ussuriensis and F. cirrhosa, respectively. Of these, 94 in F. ussuriensis and
95 in F. cirrhosa were unique to the LSC and SSC regions, and 18 were duplicated in the IR regions
(Tables 1 and 2). The 111 and 112 unique genes consisted of 77 and 78 protein-coding regions in
F. ussuriensis and F. cirrhosa, respectively. In the upstream region of the F. ussuriensis CP genome,
one gene, cermA, had an internal stop codon (TGA). The gene cemA encodes a heme-binding protein
in the chloroplast envelope membrane, which was lost in land plants due to the introduction of an
internal stop codon. [8,10,36]. The two Fritillaria CP genomes had 30 tRNAs, with 17 duplicated genes
including seven tRNAs (trnA-UGC, trnl-CAU, trnl-GAU, trnL-CAA, trnN-GUU, trnR-ACG, trnV-GAC),
four rRNAs (rrn16, rrn23, rrn4.5, rrn5), and six protein-coding genes (ndhB, rpl2, rpl23, rps12, ycfl, ycf2).
They also had 18 intron-containing genes, among which 15 (nine protein-coding genes and six tRNA
genes) had a single intron and two genes (ycf3 and clpP) had two introns each (Table S4). Thirteen
genes (nine protein-coding and four tRNA genes) were located in the LSC region, a protein-coding
gene in the SSC region, and four genes (two protein-coding and two tRNA genes) in the IR regions.
The protein-coding genes included five genes (ndhB, rpl2, rpl23, rps12, ycf2) that were duplicated in the
IR regions. The rps12 gene was trans-spliced because the 5’ end was located in the LSC region and the
3’ end in the IR region. The trnK-UUU gene had the largest intron region (2613 bp in F. ussuriensis and
2562 bp in F. cirrhosa), including matK. The genes psbT, rpl2, and ndhD had the alternative start codon
ACG, and rps19 started with GTG. Use of ACG and GTG as start codons are common features of a
variety of genes in the chloroplast genomes of land plants [37-40].

Approximately 52% of Fritillaria chloroplast genomes consisted of protein-coding genes (78,951 bp
in F. ussuriensis and 79,835 bp in F. cirrhosa), 1.9% of tRNAs (2876 bp in both species), and 6.0% of
rRNAs (9048 bp in both species). The remaining 40.1% consisted of intergenic regions, non-coding
introns, and pseudogenes. The ycfl gene located between the inverted repeat b (IRb) and the small
single copy (SSC) region had premature stop codons in the coding sequence, and has been annotated



Molecules 2017, 22,982 50f 15

as a pseudogene in other angiosperm chloroplast genomes [32,41-43]. The codon usage and anticodon
recognition patterns of the CP genomes are summarized in Table S5. Protein-coding genes comprised
26,317 codons in F. ussuriensis and 26,611 in F. cirrhosa. Among these codons, those for leucine and
isoleucine were the most common in both Fritillaria genomes, as observed previously in other land
plant CP genomes (Figure 2) [10,44]. The 30 tRNA genes included codons for all 20 amino acids
required for biosynthesis. Within protein-coding regions, the AT content for the first, second, and third
codons were 55.1%, 62.1%, and 70.4% in F. ussuriensis, respectively, and 59.3%, 63.1%, and 65.6% in
F. cirrhosa, respectively (Table S3). The bias towards a higher AT content at the third position has been
observed in other land plant CP genomes [45-47].
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yH-GUG

151,524 bp

M photosystem |

W photosystem 11

[ cytochrome bif complex

[ ATP synthase

[ NADH dehydrogenase

[l RubisCO large subunit

[ RNA polymerase

O ribosomal proteins (SSU)

[ ribosomal proteins (LSU)

[ clpP, matk

[ other genes

[J hypothetical chioroplast reading frames (ycf)
RFs

M transfer RNAs

Il ribosomal RNAS

[ origin of replication
Ointrons

M polycistronic transcripts

Figure 1. Circular gene map of chloroplast genomes of two Fritillaria species. Genes drawn inside the
outer layer circle are transcribed clockwise, and those outside the circle are transcribed counterclockwise.
The darker gray in the inner circle corresponds to GC content. * cemA is pseudogene in F. ussuriensis.

Table 2. Genes present in the two Fritillaria chloroplast genomes.

Gene Products of Two Fritillaria Species

Photosystem I psaA,B,C, I |
Photosystem II psbA,B,C,D,E,F,H,I,],K,L, M,N, T, Z
Cytochrome b6/ f petA,BM, DM G, [,N
ATP synthase atpA,B,E,FM, H, I
Rubisco rbcL
NADH oxidoreductase ndhAW,BL3) C D, E F, G, H,I J, K

Large subunit ribosomal proteins
Small subunit ribosomal proteins
RNA polymerase

rpl2 13, 14,16 W, 20, 22,233, 32, 33, 36
ps2,3,4,739,8,11,12?4, 14,15, 16, 18, 19
rpoA, B,C1 M, C2
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Table 2. Cont.

Gene Products of Two Fritillaria Species

Unknown function protein-coding gene ycf1®,20),32) 4
Other genes aceD, ccsA, cemA ©), clpp @), matK
Ribosomal RNAs rml16®),23®) 450 50

trnA-UGC 3, rnC-GCA, trnD-GUC, trnE-UUC,
trnF-GAA, trnG-UCC O, trnG-GCC, trnH-GUG,
trnl-CAU @), trnl-GAU U3, grnK-UUUL @),
trnL-UAAT @ trul-UAG, trnL-CAA ®, truM-CAU,
trnfM-CAU, trnN-GUU @, trnP-UGG, trnQ-UUG,
trnR-ACG @, trnR-UCU, trnS-GCU, trnS-GGA,
trnS-UGA, trnT-GGU, trnT-UGU, trnV-UAC O,
trnV-GAC ®, trnW-CCA, trnY-GUA

() Gene containing a single intron; @ gene containing two introns;  two gene copies in inverted repeats (IRs);
@ trans-splicing gene; © pseudogene in the chloroplast (CP) genome of Fritillaria ussuriensis.

Transfer RN As
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W F. cirrhosa

8%
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) ‘ “ ‘l II II “ ‘ ‘I
o Il JH

Ala Arg Asn Asp Cys GIn Glu Gly His Leu Ille Lys Met phe Pro Ser Stop Thr Trp Tyr Val

Proportion
B

BN

Figure 2. Amino acid frequencies in Fritillaria (F.) ussuriensis and F. cirrhosa protein-coding sequences.

3.2. Repeat Analysis in Two Fritillaria Chloroplast Genomes

Simple sequence repeats (SSRs) or microsatellites are tandem repeat sequences consisting of
1-6 nt sequence motifs in prokaryotic and eukaryotic genomes [48,49]. SSRs were detected using a
microsatellite identification tool—MISA—in both Fritillaria CP genomes. We detected 183 and 178 SSRs
in F. ussuriensis and F. cirrhosa CP genomes, respectively. Mononucleotide motifs were the most
abundant type of repeat, and di-nucleotides were the second most abundant in both of the Fritillaria
CP genomes (Figure 3). Almost all SSR loci were composed of A or T, which contributed to the bias
in base composition (A/T; 63%) in both Fritillaria CP genomes. Simple sequence repeats (SSRs) were
more abundant in non-coding regions than in coding regions, as evidenced by the presence of 63%
of all SSRs in the non-coding regions of both genomes. Furthermore, most SSRs were located in the
LSC region. In addition, 48 polymorphic SSRs were detected between the two Fritillaria CP genomes
(Table S8). Most SSRs were located in the intergenic region with the A or the T motif. The longest
polymorphic SSR was found in the psbZ-trnG region, and had a 12 bp length difference.

We also identified 15 tandem repeats in F. ussuriensis and 13 tandem repeats in F. cirrhosa of
more than 20 bp (Table S6). Of these, most were located in IGS, LSC, and IR regions. The longest
tandem repeats were 108 bp in F. ussuriensis (located in the trnT-UGU /trnL-UAA IGS) and 94 bp in
F. cirrhosa (located in the trnG-UCC/trnR-UCU IGS). Four (two in IGS, two in CDS) tandem repeats
represented the same region in both CP genomes. Four and six palindromic repeats were also detected
in F. ussuriensis and F. cirrhosa, respectively (Table S7). In F. ussuriensis, two of these were located in the
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LSC region and the other two were located in the IR regions. Both species had palindromic repeats at
four locations—namely, the IGS of accD /psal, petD /rpoA, ccsA/ndhD, and rps15/ycf1 regions.

200 200
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| = 1 34 32
) )
o 150 59 o 150
57 7]
] 2 29 30
S 100 g 100
3 3
: :
2 % 3 50
0 0
F. ussuriensis F. cirrhosa F. ussuriensis F. cirrhosa
c mmono mdi mtri mtetra mLSC mSSC mIR
200
& 150 67
@» 66
(7]
© 100
@
Qo
Z
2 50
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F. ussuriensis F. cirrhosa

m non-coding M coding

Figure 3. Distribution of SSRs (simple sequence repeat) in the Fritillaria (F.) ussuriensis and F. cirrhosa
chloroplast (CP) genomes. (A) SSR type distribution in the two Fritillaria CP genomes; (B) The
proportion of SSRs in different genomic regions of Fritillaria CP genomes; (C) SSR distribution between
coding and non-coding regions.

3.3. Comparison of the Chloroplast Genomes with Those of Other Fritillaria Species

The two Fritillaria chloroplast genomes had approximately 98% sequence identity, and their
gene content and order and genome structure were similar. The CP genome of F. ussuriensis was
approximately 441 bp longer than F. cirrhosa (Table 1). The LSC and IR regions of F. ussuriensis were
342 bp and 522 bp longer, respectively, than F. cirrhosa. The SSC region of F. ussuriensis was 423 bp
shorter than F. cirrhosa. IR contraction and expansion are common evolutionary events and contribute
to genome size variation [10,32,50]. We analyzed the border structure of F. ussuriensis and F. cirrhosa
genomes. Detailed comparison of the LSC, SSC, and IR regions are shown in Figure 4. The rps19 gene
located in the LSC region extended into the IRb region by 27—46 bp. The border between IRb/SSC and
SSC/IRa extended into the ycfl genes if all Fritillaria species except for F. taipaiensis. Overlaps of 17-33
bp were observed between the ycf] pseudogene and ndhF gene, except in F. taipaiensis. The trnH genes
were all located in the IR region, 149-174 bp away from the IRa/LSC boundary. The locations of most
of the other genes (e.g., ndhF and trnH) were similar in both CP genomes (Figure 4).

We performed multiple sequence alignments between six Fritillaria chloroplast genomes using
mVISTA (Figure 5). The non-coding regions were more divergent than the coding regions. The most
divergent regions were found in IGSs such as matK/trnK-UUU, trnK-UUU /rps16, rps16/trnQ-UUG,
psbK /psbl, atpH /atpl, psbM /trnD-GUC, and ycf4/petD. For the coding regions, the most divergent
regions included matK, rpoC1, rpoC2, ycfl, ycf2, ndhD, and ndhF. Previous studies reported similar
divergent regions [32]. These regions are conserved regions with clusters of sequence variability called
hotspots, containing single-nucleotide polymorphisms (SNPs) and indels [51,52]. The nucleotide
variability—Pi—was calculated to show divergence at the sequence level of Fritillaria CP genomes. As
expected, the IR regions were more conserved than the LSC and SSC regions. Between F. ussuriensis
and F. cirrhosa CP genomes, Pi values (%) ranged from 0 to 15.8% with a mean of 0.9%. Ten highly
divergent loci included matK, atpl, trnY-GUA, trnE-UUC, trnT, ycf3, rps4, ycf4, petA, rpl16, rps3, rps19,
ccsA, ndhD, and ycfl (Figure 6). The most divergent region in the ycf4-petA (IGS) region showed 15.8%
sequence variability. In the coding region, rpl/16 showed the highest degree of nucleotide variability
(4.3%). The ten loci had a much higher sequence divergence value than the other regions (Pi > 2.7%).
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Among the six Fritillaria CP genomes, Pi values varied from 0 to 2.1% with a mean of 0.4% (Figure 6).
The loci matK, atpl, trnY, trnE, trnT, rps19, ccsA, ndhD, and ycfl were highly divergent among Fritillaria
species. The highest degree of variability was found in ndhD (2%).
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Figure 4. Comparison of large single copy (LSC), small single copy (SSC), and inverted repeat (IR)
border regions among the six Fritillaria species’ chloroplast genomes. Colored boxes for genes represent
the gene position. {: pseudogenes.
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Figure 5. Comparison of six Fritillaria chloroplast genomes using mVISTA alignment program.
The complete chloroplast (CP) genomes of six Fritillaria species were used for comparisons with
published CP genomes. Blue block: conserved gene; sky-blue block: transfer RNA (tRNA) and
ribosomal RNA (rRNA); red block: conserved non-coding sequences (CNS). White peaks indicate
regions with sequence variation among Fritillaria species.
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Figure 6. Sliding window analysis of the chloroplast (CP) genomes. (A) Comparison of the nucleotide
variability (Pi) between Fritillaria (F.) ussuriensis and F. cirrhosa. (B) Comparison of the nucleotide
variability (Pi) among six Fritillaria species’ cp genomes.

3.4. Phylogenic Analysis

Chloroplast genome sequences have been successfully used in numerous phylogenetic studies
of angiosperms [53,54]. To identify the phylogenetic position of the six Fritillaria species within
the Liliaceae, 74 protein-coding sequences shared by 11 CP genomes were aligned (Figure 7). Two
species, Acorus gramineus and Cocos nucifera, were set as outgroups. The alignment covered 80,532 bp.
Maximum likelihood (ML) and maximum parsimony (MP) analyses revealed that six out of eight
nodes had 100% bootstrap values. Both the ML and MP phylogenetic results strongly indicated
that the genera—Fritillarin and Lilium—were clearly separated, and the six Fritillaria species were
closely related within Liliaceae. Fritillaria cirrhosa and F. unibracteata formed a cluster. Subsequently,
a monophyletic clade formed a cluster with F. taipaiensis, F. hupehensis, and F. thunbergii, which were
related to F. ussuriensis as a monophyletic branch.
Fritillaria cirrhosa Fritilaria cirrhosa

100 100

Fritillaria unibracteata Friillaria unibracteata

100 Fritillaria taipaiensis 100 Friillaria taipaiensis

Fritillaria hupehensis Fritillaria hupehensis

100 100

Fritillaria thunbergii Fritillaria thunbergii

Fritillaria ussuriensis

— Lilium superbum

100 100 Fritillaria ussuriensis

Lilium superbum

sl Lillum longiflorum Lilium longiflorum
Smilax china Smilax china
— Acorus gramineus — Acorus gramineus
100 L—— Cocos nucifera 100L—— Cocos nucifera

Figure 7. Phylogenetic trees constructed with 74 protein-coding genes of 11 species using maximum
likelihood (ML) and maximum parsimony (MP) methods. Numbers above are bootstrap support
values (>50%).

4. Discussion

Advances in NGS technologies make it possible to complete the entire chloroplast genome with
the discovery of molecular markers [55,56]. We used low-coverage WGS data to obtain chloroplast
genomes—an approach that has been successfully used in several other studies [17,57,58]. This
approach requires less time and has a lower cost than the previously used method. Here, we obtained
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two Fritillaria chloroplast genomes and applied comparative analysis to six Fritillaria species CP
genomes. The two Fritillaria CP genomes contained a pair of IRs, and LSC and SSC regions. The two
Fritillaria genomes have similar genome structures, gene orders, and gene contents, including introns
and base compositions. They show characteristics that are typical of land plant CP genomes [8,32].

SSRs are suitable molecular markers because they are distributed throughout the whole
genome and display high polymorphism between species, locus-specific co-dominance, and high
transferability [59]. SSRs play an important role in CP genome rearrangement during evolution [41,60].
The repeat units—A and T—appear most frequently in SSRs, which contribute to the AT-richness of
the CP genome [61-63]. Recently, plastid genomic information obtained by NGS analysis has provided
a resource for high-throughput screening of SSR loci and permitted efficient SSR marker development
in various plant taxa [64,65]. In this study, we identified 183 and 178 SSR loci in F. ussuriensis and
F. cirrhosa CP genomes, respectively (Figure 3). In addition, we also identified 48 potential polymorphic
SSRs between the two Fritillaria species, F. cirrhosa and F. ussuriensis (Table S8). These abundant SSR
loci and potential inter-species specific polymorphic SSRs could provide useful genetic information
and sequence resources for further molecular genetic studies of Fritillaria species, including species
identification, assessment of genetic diversity, ecological genetic studies, and evolution studies [66].

IR regions are the most conserved regions in the chloroplast genome [9]. The contraction and
expansion at the borders of IR regions, however, are common evolutionary events, and they are
the major causes of rearrangements and size variations [10,34,50]. In this study, we compared
the SC/IR boundaries among six Fritillaria genomes. The SC/IR boundaries showed only slight
differences, for example, at ycfl and ycfl (Figure 4). This phenomenon is relatively common in
other CP genomes [35,41,67]. Several genes, including ndhF, rps19, and trnH, had almost identical
locations and sizes among Fritillaria. Multiple sequences of alignment between the six Fritillaria
genomes indicated that the IR regions were more conserved than the LSC and SSC regions due to copy
corrections by gene conversion in the IR regions [68]. The most divergent regions were found in the
IGS, which have been used in phylogenetic studies [11,69]. For the coding regions, the most divergent
regions included matK, rpoC1, rpoC2, ycfl, ycf2, ndhD, and ndhF. Previous studies reported similar
divergent regions [9]. These regions are conserved regions of clustered variation called hotspots,
containing SNPs and indels [51,52]. The rpoC2, rpoC1, and ycfl genes are known to contain hotspots
of sequence variation [11,51,52,70]. Therefore, as in other land plants, Fritillaria CP genomes contain
general hotspot regions for genetic variation.

Chloroplast genomes provide an abundant genomic resource for phylogenetic analysis, and many
studies have used protein-coding sequences or whole chloroplast genome sequences in these
analyses [32,69,71]. In the present study, we conducted phylogenic analysis on the six Fritillaria species
and found that the six species were well clustered according to the type of herbal medicine (Figure 7).
Furthermore, F. ussuriensis could be clearly separated from other Fritillaria species, as previously
reported [20,72]. In this study, phylogenetic analysis revealed clear positons of Fritillaria at the species
level with 100% bootstrap values. Fritillaria hupehensis and F. thunbergii formed monophyly with 100%
bootstrap values. Another monophyletic group clustered F. cirrhosa and F. unibracteata with F. taipaiensis.
Fritillaria ussuriensis showed a distant genetic relationship to the other five Fritillaria species. In a
previous study, a phylogenetic tree was constructed to verify the relationship between ninety-two
Fritillaria species using a combined chloroplast region consisting of matK, rbcL, and rpl16. Ninety-two
Fritillaria species were classified into eight Fritillaria subgenera while considering their geographic
distributions [1]. Fritillaria thunbergii, F. cirrhosa, and F. ussuriensis were well classified into the Fritillaria
subgenus—consistent with our results. Although the phylogenetic tree comprised only a few Fritillaria
species, our results are well supported by the phylogenetic relationships of Fritillaria species reported
previously [1]. Thus, phylogenetic analysis of CP genome sequences could provide useful information
for uncovering relationships among Fritillaria species—in particular, details of their positions at the
species level with 100% bootstrap values. However, the results suggested that additional large-scale
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genomic analyses using numerous accurately identified Fritillaria species are required to clarify the
taxonomy and phylogenetic relationships of Fritillaria species at low taxonomic levels.

Molecular genetic tools using complete CP genome sequences provide an efficient and accurate
way to authenticate herbal medicines. Universal DNA barcoding is widely used as a reliable genetic
tool for identifying plant species; however, these methods are still limited in their ability to identify and
discriminate medicinal plants at the species level for several taxa. The complete CP genome sequences
could be useful for identifying plant species solely as a super DNA barcode, which provide high
resolution at lower taxonomic levels [73]. In addition, the two complete Fritillaria CP genome sequences
determined in this study could provide useful basic genomic information along with the previously
reported Fritillaria species for studying phylogeny. The sequence variability from comparative analyses
could be used as potential resources for further development of DNA molecular markers such as
SSR or microsatellite marker. These additional developments could be used to study evolutionary
properties and/or population genetics of Fritillaria species as well as DNA barcodes or SCAR markers.

Supplementary Materials: Supplementary Materials are available online.
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