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Abstract: This review covers the synthesis of coumarin–porphyrin, coumarin–phthalocyanine and
coumarin–corrole conjugates and their potential applications. While coumarin–phthalocyanine
conjugates were obtained almost exclusively by tetramerization of coumarin-functionalized
phthalonitriles, coumarin–porphyrin and coumarin–corrole conjugates were prepared by complementary
approaches: (a) direct synthesis of the tetrapyrrolic macrocycle using formylcoumarins and pyrrole
or (b) by functionalization of the tetrapyrrolic macrocycle. In the last approach a range of reaction
types were used, namely 1,3-dipolar cycloadditions, hetero-Diels–Alder, Sonogashira, alkylation
or acylation reactions. This is clearly a more versatile approach, leading to a larger diversity of
conjugates and allowing the access to conjugates bearing one to up to 16 coumarin units.
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1. Introduction

The coumarins are an important class of heterocyclic compounds with diverse pharmacological
activities [1] and outstanding optical properties. Among their varied pharmacological activities,
the anti-inflammatory [2], antibacterial [3,4], antiviral [5,6], and anti-cancer [7–10] properties can
be highlighted. Due to their excellent optical properties, coumarin derivatives have been used in a
variety of applications such as optical brighteners [11,12], optical sensors [13], organic light emitting
diodes [14–17], laser dyes [18], photonic bandgap materials [19], light harvesting materials [20–22],
and as fluorescent labels and probes in biology and medicine [23–30].

Due to their exceptional optical properties, coumarins are the focus of an intense research effort
in various scientific areas. In particular, in recent years, a large number of coumarin–tetrapyrrolic
macrocycle conjugates have been synthesized and their photophysical properties evaluated. Typically,
the main objective of those studies is to take advantage from the efficient energy transfer between
the coumarin and the tetrapyrrole unit, aiming for light harvesting applications. In this article, we
review primarily the synthetic approaches leading to coumarin–porphyrin, coumarin–phthalocyanine,
and coumarin–corrole conjugates. A range of other coumarin–chromophore conjugates, such as
coumarin–bodipy [18,31], coumarin–fullerene [32–34], coumarin–perylene [35–37], etc. have also been
reported and exhibit highly interesting photophysical properties. However, those systems are not
covered in this review.

2. Coumarin–Tetrapyrrolic Macrocycle Conjugates

2.1. Coumarin–Porphyrin Dyads

The number of porphyrin derivatives bearing coumarin units at β-pyrrolic positions are
scarce. Examples of such type of compounds were reported in 2011 by Cavaleiro and
co-workers [38,39]. The coumarin–porphyrin dyads 4a,b were synthesized via hetero-Diels–Alder
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reaction of β-vinyl-meso-tetraphenylporphyrinatozinc(II) (1) [40] with the ortho-quinone methides 3a,b
generated in situ from the reaction of 4-hydroxycoumarins 2a,b with paraformaldehyde (Scheme 1).
The reactions were performed in refluxing 1,4-dioxane for one hour and the resulting dyads were
isolated in 88% (4a) and 95% (4b) yield, respectively. The site and regioselectivity of these reactions are
in agreement with those observed in similar systems. The sensing ability of these Zn(II) conjugates
towards anions was evaluated by UV-vis and fluorescence measurements. Alterations in both
absorption and emission spectra, or only in the emission spectra, were detected in the presence
of Cl−, CN− and CH3CO2

− [39]. The sensing ability of the free-base conjugates 4c and 4d, obtained in
excellent yields by demetalation of the corresponding Zn(II) complexes with a mixture of TFA/CHCl3,
was also evaluated, but in the presence of several metal ions [39]. Both dyads showed a colorimetric
effect (a color change from purple to yellow) and an unprecedented selectivity for Hg(II), even in
an EtOH/H2O mixture. The same colorimetric effect for Hg(II) was observed when dyad 4c was
incorporated in a cellulose support material. The same dyad, both in solution and in the solid support,
also showed a colorimetric effect at different pH values.

The coumarin–porphyrin dyad 4a showed to be a potential probe towards the alkaloids caffeine,
nicotine and cotinine, with a stoichiometry of one alkaloid per ligand [41]. Additionally, it was
evidenced that this probe can detect small amounts of cotinine (2.5 ± 0.3 µM) in dam water samples.

Conjugates 4a–4d, and the corresponding Cu2+ and Ni2+ complexes, were studied by electrospray
mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) [42]. It was observed that the
main fragmentation mechanism occurs via a retro hetero-Diels–Alder pathway.
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Scheme 1. Route to coumarin–porphyrin dyads [38,39].

The extension of the domino Knoevenagel/hetero-Diels–Alder approach to the zinc(II) complexes
of chlorin e6 trimethyl ester and protoporphyrin IX dimethyl ester and the ortho-quinone methides
3a,b afforded the conjugates Zn5a,b and Zn6a,b in excellent yields (81–91%) (Figure 1) [43]. These
complexes were then demetalated to the corresponding free-bases 5a,b and 6a,b. These conjugates were
isolated as mixtures of diastereomers and their relative abundances were determined by advanced
NMR techniques. The evaluation of their photophysical and electrochemical properties showed
that the fluorescence quantum yields of the chlorin e6 derivatives are higher than those of the
protoporphyrin conjugates. All conjugates were able to generate singlet oxygen but protoporphyrin
IX dyads gave the highest singlet oxygen quantum yields. The free-base chlorin e6 dyads showed an
unexpectedly higher ability to generate singlet oxygen when compared with the Zn(II) counterparts
due to the higher tendency of the complexes to aggregate. The same group reported the synthesis of
six coumarin–porphyrin dyads 8a–f from porphyrin 1 and the ortho-quinone methides 7a–f generated
in situ from 4-hydroxycoumarin and suitable aromatic aldehydes.
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tetraphenylporphyrinatocopper(II) (9) [45] with various alkyne-substituted coumarins 10–12 
(Scheme 3) [46]. The authors also prepared the corresponding free-bases in good yield (71–80%) by 
demetalation of the copper derivatives. Metalation of the free-bases with zinc(II) acetate afforded the 
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Figure 1. Structures of coumarin conjugates obtained from natural porphyrins [43].

The reactions were carried out under three different conditions, including in water under ohmic
heating (Scheme 2) [44]. Comparing the results obtained under the various experimental conditions,
the authors concluded that the use of ohmic heating leads to a reduction of the reaction time, higher
yields and selectivities. Moreover, the use of water as solvent facilitates the workup and product
isolation over traditional organic solvents.
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In 2015, Singh and Nath reported the synthesis of β-triazole bridged coumarin–porphyrin
conjugates in 84–92% yield by the Cu(I)-catalyzed click reaction between 2-azido-5,10,15,20-
tetraphenylporphyrinatocopper(II) (9) [45] with various alkyne-substituted coumarins 10–12
(Scheme 3) [46]. The authors also prepared the corresponding free-bases in good yield (71–80%)
by demetalation of the copper derivatives. Metalation of the free-bases with zinc(II) acetate afforded
the corresponding zinc(II) complexes in 91–96% yield. The photophysical characterization of these
conjugates revealed, for some of them, a considerable electronic communication between both units.
Additionally, in some of these dyads it was observed a significant intramolecular energy transfer
between both chromophores.
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Using a similar strategy, the same authors also described the synthesis of zinc(II)β-triazolylmethyl-
bridged coumarin–porphyrin dyads 17–19 (Scheme 4) [47]. In these conjugates the porphyrin and
the triazole units are separated by a methylene spacer. Their synthesis involved the 1,3-dipolar
cycloaddition between the 2-azidomethyl-5,10,15,20-tetraphenylporphyrinatozinc(II) (16) and the
alkyne-substituted coumarins 10–12. The reported yields for the dyads are in the range 84–92%.
Demetalation of the zinc(II) complexes afforded the corresponding dyads with free-base porphyrins in
69–79% yield. Again, the photophysical characterization of the new compounds allowed verifying an
intramolecular energy transfer between both units for some of the conjugates.

The same alkyne-substituted coumarins 10–12 were used to prepare the zinc(II) meso-phenyl-triazole
bridged coumarin–porphyrin dyads 21–23 through copper(I)-catalysed 1,3-dipolar cycloaddition
reaction of zinc(II) 5-(4-azidophenyl)-10,15,20-triphenylporphyrin (20) (Scheme 5) [48]. The corresponding
free-bases were successfully obtained after treatment with concentrated hydrochloric acid. The
free-base dyads were converted into the nickel(II) complexes by treatment with nickel(II) acetate in
chloroform–acetic acid. Preliminary photophysical results revealed a significant intramolecular energy
transfer between both units for some of the zinc(II) conjugates.
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Lin et al. reported the synthesis of symmetric and asymmetric porphyrins bearing coumarin units
at the meso positions (Figure 2) [49]. The mono- and meso-tetrakis(coumarin-4-yl)porphyrins 25–27
were obtained in yields between ca. 5% and 13% from the reaction of pyrrole and an adequate molar
ratio of benzaldehyde/coumarin-4-carbaldehydes 24a–c. Depending on the coumarin−carbaldehyde
used, the porphyrins where synthesized under Adler (refluxing propionic acid) [50] or Lindsey
(BF3·OEt2 or TFA, CHCl3, room temperature, then p-chloranil) [51] conditions. The symmetrical
meso-tetrakis(coumarin-4-yl)porphyrins 26b and 27b, isolated in 5.3% and 2.7% yield, respectively, were
obtained from the reaction between pyrrole and coumarin−carbaldehydes 24b and 24c under Lindsey
conditions. The absorption and photoluminescent spectra of these dyads in dilute THF solutions and
as solid films (obtained by spin-coating the derivatives in quartz plates) demonstrated that the energy
transfer from the coumarin substituents to the porphyrin core is more efficient in solid film than in
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solution. The best results were obtained with the dyads 27a,b bearing the 7-diethylaminocoumarin
moiety. This efficiency was justified by the high electron-donating ability of the amino substituent and
also considering that in the solid state, the stacking porphyrins reduce the torsion angle between the
porphyrin core and the coumarin substituent, forcing them to be coplanar and thus enhancing the
conjugation extent of the porphyrin core and the coumarin substituent, facilitating the energy transfer
from the coumarin units to the porphyrin core.

Molecules 2017, 22, 994 6 of 26 

solution. The best results were obtained with the dyads 27a,b bearing the 7-diethylaminocoumarin 
moiety. This efficiency was justified by the high electron-donating ability of the amino substituent 
and also considering that in the solid state, the stacking porphyrins reduce the torsion angle between 
the porphyrin core and the coumarin substituent, forcing them to be coplanar and thus enhancing 
the conjugation extent of the porphyrin core and the coumarin substituent, facilitating the energy 
transfer from the coumarin units to the porphyrin core. 

 
Figure 2. meso-(Coumarin-4-yl)porphyrins reported by Lin et al. [49]. 

The Lindsey experimental conditions were also used for the condensation of coumarin-3-
carbaldehydes 28a–d with pyrrole (Scheme 6) [52]. The resulting meso-tetrakis(4-chlorocoumarin-3-
yl)porphyrins 29a–d were obtained in ca. 20% yield as mixtures of four atropisomers. The authors 
were able to determine the ratio of the atropisomers by high-performance thin-layer chromatography 
(HPTLC) (UV-detector). The metalation of the free-bases with zinc(II) acetate in CHCl3–MeOH at 
room temperature afforded the corresponding zinc(II) complexes Zn29a–d in 80–86% yield. 

Fréchet and co-workers reported the synthesis of branched star polymers consisting of a central 
porphyrin core and 16 coumarin units (Scheme 7) [53–55]. The compounds were prepared via 
esterification of meso-tetrakis(3,5-dihydroxyphenyl)porphyrin (30) with acetonide-protected 2,2-
bis(hydroxymethyl)propanoic acid followed by deprotection of the diol functionalities under acidic 
conditions. The reaction of the resulting hexadecahydroxy-functionalized porphyrin 31 with 
coumarin-3-carboxylic acid chloride gave the hexadecacoumarin-functionalized porphyrin 32. 

Figure 2. meso-(Coumarin-4-yl)porphyrins reported by Lin et al. [49].

The Lindsey experimental conditions were also used for the condensation of coumarin-3-
carbaldehydes 28a–d with pyrrole (Scheme 6) [52]. The resulting meso-tetrakis(4-chlorocoumarin-3-yl)
porphyrins 29a–d were obtained in ca. 20% yield as mixtures of four atropisomers. The authors
were able to determine the ratio of the atropisomers by high-performance thin-layer chromatography
(HPTLC) (UV-detector). The metalation of the free-bases with zinc(II) acetate in CHCl3–MeOH at room
temperature afforded the corresponding zinc(II) complexes Zn29a–d in 80–86% yield.

Fréchet and co-workers reported the synthesis of branched star polymers consisting of a
central porphyrin core and 16 coumarin units (Scheme 7) [53–55]. The compounds were prepared
via esterification of meso-tetrakis(3,5-dihydroxyphenyl)porphyrin (30) with acetonide-protected
2,2-bis(hydroxymethyl)propanoic acid followed by deprotection of the diol functionalities under
acidic conditions. The reaction of the resulting hexadecahydroxy-functionalized porphyrin 31 with
coumarin-3-carboxylic acid chloride gave the hexadecacoumarin-functionalized porphyrin 32.
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Bulk polymerization of ε-caprolactone with the initiator 31, with tin(II) 2-ethylhexanoate as the
catalyst, followed by esterification of the resulting polymer with coumarin-3-carboxylic acid chloride
gave 33 in quantitative yield. Polymers 33 with varying chain lengths were prepared in almost
quantitative yields by adjusting the monomer-to-initiator ratio. The 16 coumarin units in compounds
32 and 33 are responsible for the large absorption in the UV region of the spectrum. It was found that
the presence of coumarin donor chromophores in these systems was particularly useful to evaluate the
isolation of the core functionalities by using fluorescence resonance energy transfer (FRET). When the
coumarin units were excited selectively at λ = 350 nm, the emission from both the coumarin donor
and the porphyrin acceptor was observed demonstrating that in these systems FRET was facile but
not quantitative. It was verified that as the chain length of the polymer increases the donor emission
intensity increases as the result of the reduced probability of FRET. In compound 32, due to the
extremely short average donor–acceptor distance, a quantitative FRET was observed. Besides the chain
length, it was verified that poor solvents seem to further increase the degree of site isolation due to a
structural collapse of the polymer backbone giving rise to a more densely packed structure around
the core unit and a reduced average donor–acceptor distance. This observation was supported by
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pulsed field gradient spin–echo (PGSE) NMR experiments that allowed the direct determination of the
polymers molecular sizes in different solvents.

Mao and Song also used meso-tetrakis(3,5-dihydroxyphenyl)porphyrin (30) as a platform to
synthesize three porphyrin-core dendrimers bearing eight coumarin units (Scheme 8) [56]. Dendrimer
36 was prepared in 85% yield by reacting porphyrin 30 with the coumarin derivative 34. Dendrimers
37a and 37b were synthesized in 73–75% yield by coupling porphyrin 30 with the carboxylic acid
terminated coumarins 35a,b in the presence of DCC (N,N′-dicyclohexylcarbodiimide) and DPTS
(4-(dimethylamino)pyridinium p-toluenesulfonate). The study of the photophysical properties of the
dendrimers in CH2Cl2 solutions and in thin neat films revealed an intramolecular energy transfer
from the coumarin units to the porphyrin core. The best energy-transfer efficiencies were found for
the dendrimers 37a and 37b due to a better spectral overlap between the emission spectrum of the
coumarin units and the absorption spectrum of the porphyrin moiety than in dendrimer 36. Comparing
the optical properties of both dendrimers 37, it was found that the energy-transfer efficiency is better
for 37b than 37a in both solid film and solution, probably due to the presence of the longer alkyl
side-chain which improves its solubility and consequently prevents the coumarins from self-quenching.
All dendrimers emit red light with higher fluorescence quantum yields than the free-base porphyrin.
It was remarked that these systems could be applied as light-harvesting antenna.
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Marcos and co-workers reported a new class of porphyrin-core dendrimers bearing 12 coumarin
units via acylation of meso-tetrakis(4-hydroxyphenyl)porphyrin 38 with the coumarin-substituted
benzoic acid derivative 39 (Scheme 9) [57]. The resulting compound 40 was obtained in 55%
yield. Metalation of the free-base dendrimer 40 with zinc(II) acetate or with copper(II) acetate in
CHCl3–MeOH afforded the corresponding zinc(II) or copper(II) complexes. All dendrimers formed
nematic discotic mesophases and the charge mobility values of these materials are the highest ever
reported for a nematic discotic phase. Excitation of the coumarin moieties (λexc = 320 nm) leaded
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to energy transfer to the porphyrin core. However, emission from both the coumarin units and the
porphyrin acceptor was observed, thus demonstrating that FRET was facile but not quantitative in
these systems [57].

Molecules 2017, 22, 994 9 of 26 

to the porphyrin core. However, emission from both the coumarin units and the porphyrin acceptor 
was observed, thus demonstrating that FRET was facile but not quantitative in these systems [57]. 

 
Scheme 9. Synthesis of porphyrin-core dendrimers bearing 12 coumarin units [57]. 

Lin and co-workers also used meso-tetrakis(4-hydroxyphenyl)porphyrin (38) as a platform to 
synthesize a coumarin–porphyrin dyad (Scheme 10) [58]. This platform was alkylated with ethyl 
bromoacetate and the carboxylic acid 42 was obtained after hydrolysis of the ester group. The new 
dyad 43 was then prepared in 68% yield by coupling the amine-functionalized coumarin 41 with the 
carboxylic acid 42 in the presence of benzotriazol-1-yloxytris(dimethylamino)phosphonium 
hexafluorophosphate (BOP) and triethylamine. The dyad is highly selective and sensitive to thiols, 
exhibiting a remarkable change in emission colour from red to blue, being suitable for ratiometric 
fluorescence imaging of thiols in living cells. 

A G3 dendrimeric coumarin-porphyrin conjugate consisting of a central Pt meso-tetrakis-(4-
alkoxyphenyl)porphyrin linked to several coumarin-343 units was prepared and used as a probe for 
cellular two-photon oxygen imaging [59]. Knoester and co-workers reported the synthesis of a first-
generation coumarin–porphyrin dendrimer where the porphyrin core is a derivative of meso-tetrakis 
(4-carboxyphenyl)porphyrin (Scheme 11) [60]. For the synthesis of this donor–acceptor system, meso-
tetrakis(4-carboxyphenyl)porphyrin was first coupled to piperazine, using pivaloyl chloride as a 
coupling reagent, to form the piperazine-functionalized porphyrin 44. The coumarin units were 
subsequently coupled to this porphyrin using (benzotriazol-1-yloxy)tripyrrolidin-1-yl)phosphonium 
hexafluorophosphate (PyBOP, a peptide coupling reagent), to give compound 45. The energy transfer 
kinetics (from coumarin to porphyrin) was shown to be fast (transfer time ca. 500 fs) and efficient 
(transfer efficiency ca. 97%). 
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Lin and co-workers also used meso-tetrakis(4-hydroxyphenyl)porphyrin (38) as a platform to
synthesize a coumarin–porphyrin dyad (Scheme 10) [58]. This platform was alkylated with ethyl
bromoacetate and the carboxylic acid 42 was obtained after hydrolysis of the ester group. The new
dyad 43 was then prepared in 68% yield by coupling the amine-functionalized coumarin 41 with
the carboxylic acid 42 in the presence of benzotriazol-1-yloxytris(dimethylamino)phosphonium
hexafluorophosphate (BOP) and triethylamine. The dyad is highly selective and sensitive to thiols,
exhibiting a remarkable change in emission colour from red to blue, being suitable for ratiometric
fluorescence imaging of thiols in living cells.

A G3 dendrimeric coumarin-porphyrin conjugate consisting of a central Pt meso-tetrakis-
(4-alkoxyphenyl)porphyrin linked to several coumarin-343 units was prepared and used as a
probe for cellular two-photon oxygen imaging [59]. Knoester and co-workers reported the
synthesis of a first-generation coumarin–porphyrin dendrimer where the porphyrin core is a
derivative of meso-tetrakis(4-carboxyphenyl)porphyrin (Scheme 11) [60]. For the synthesis of this
donor–acceptor system, meso-tetrakis(4-carboxyphenyl)porphyrin was first coupled to piperazine,
using pivaloyl chloride as a coupling reagent, to form the piperazine-functionalized porphyrin 44.
The coumarin units were subsequently coupled to this porphyrin using (benzotriazol-1-yloxy)
tripyrrolidin-1-yl)phosphonium hexafluorophosphate (PyBOP, a peptide coupling reagent), to give
compound 45. The energy transfer kinetics (from coumarin to porphyrin) was shown to be fast (transfer
time ca. 500 fs) and efficient (transfer efficiency ca. 97%).
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Scheme 11. Synthesis of a donor–acceptor system [60].

Marcos and co-workers reported the formation of supramolecular system based on
hydrogen-bonding between a porphyrin core and carboxylic acid dendrons functionalized with
coumarin units (Scheme 12) [61]. The supramolecular porphyrin–coumarin dendrimers were prepared
by mixing a dichloromethane solution of meso-tetra(4-pyridyl)porphyrin (46), or its Zn(II) complex
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(Zn46), and four equivalents of the carboxylic acid 47. The slow evaporation of the solvent by stirring
at room temperature afforded the dendrimers 48 and Zn48. Their stoichiometry in the condensed
phase is 1:4, as corroborated by NMR spectroscopy. These supramolecular complexes do not show
liquid crystalline behaviour and their absorption and emission spectra are a combination of the spectra
of the corresponding building blocks. The lack of energy transfer between the two chromophores is
probably due to the long distance between them.
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Gust and co-workers reported the synthesis of a molecular hexad 50 comprising two porphyrin
moieties and four coumarin antenna chromophores, all organized by a central hexaphenylbenzene
core (Scheme 13) [62]. The metalated hexad self-assembles with a pyridyl-bearing fullerene moiety,
through coordination with the zinc atoms of the porphyrins, to yield the artificial photosynthetic
reaction center 51.

It was shown that light absorbed by any of the coumarins in hexad 50 is transferred to a porphyrin
on the 1–10 ps time scale, depending on the site of initial excitation. The quantum yield of singlet
energy transfer is 1.0. In heptad 51, energy transfer to the porphyrins is followed by photoinduced
electron transfer to the fullerene, resulting in a charge-separated state (P•+–C60

•−) with an overall
quantum yield of 1.0 [62].

Compound 50 was prepared in 90% yield by coupling compound 49 with coumarin 343
using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) and 4-dimethylaminopyridine (DMAP).
The synthesis of other compounds of type 50, with one or two coumarin units (52–54, Figure 3), was
also reported [62].
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These studies allowed to conclude that in spite of the relatively long, flexible ester linkages
between the coumarins and the hexaphenylbenzene ring, coumarin moieties are well suited as antennas
in the 400−460 nm spectral range for porphyrin based artificial photosynthetic reaction centers.
The high transfer rates, and therefore efficiencies, are ensured by coumarin singlet excited state
lifetimes of several ns and high fluorescence quantum yields.

2.2. Coumarin–Phthalocyanine Dyads

Several coumarin–phthalocyanine conjugates have been reported in the last years. Many of
those conjugates were synthesized from substituted 7-hydroxycoumarins 55 following the synthetic
route shown in Scheme 14. Typically the first step involves the formation of a coumarin-substituted
phthalonitrile, usually by nucleophilic displacement of a nitro group in 3- or 4-nitrophthalonitrile,
and the resulting phthalonitriles 56 are then converted into metallophthalocyanines 57 by
cyclotetramerization in 2-(dimethylamino)ethanol in the presence of a metal salt. The coumarins
and phthalonitriles used in many of these reactions, and the metals in the phthalocyanine complexes,
are shown in Table 1 [63–91].

Molecules 2017, 22, 994 13 of 26 

These studies allowed to conclude that in spite of the relatively long, flexible ester linkages between 
the coumarins and the hexaphenylbenzene ring, coumarin moieties are well suited as antennas in the 
400−460 nm spectral range for porphyrin based artificial photosynthetic reaction centers. The high 
transfer rates, and therefore efficiencies, are ensured by coumarin singlet excited state lifetimes of 
several ns and high fluorescence quantum yields. 

2.2. Coumarin–Phthalocyanine Dyads 

Several coumarin–phthalocyanine conjugates have been reported in the last years. Many of those 
conjugates were synthesized from substituted 7-hydroxycoumarins 55 following the synthetic route 
shown in Scheme 14. Typically the first step involves the formation of a coumarin-substituted 
phthalonitrile, usually by nucleophilic displacement of a nitro group in 3- or 4-nitrophthalonitrile, and the 
resulting phthalonitriles 56 are then converted into metallophthalocyanines 57 by cyclotetramerization in 
2-(dimethylamino)ethanol in the presence of a metal salt. The coumarins and phthalonitriles used in 
many of these reactions, and the metals in the phthalocyanine complexes, are shown in Table 1 [63–91]. 

 
Scheme 14. Typical route to coumarin–phthalocyanine conjugates [63–91]. 

Table 1. Starting materials and yields of coumarin–phthalocyanine conjugates 57. 

R1 R2 R3 X M 
57 

Ref. 
Yield (%) 

H H H, Me 4-NO2 2H, Zn, Co, Ni, Cu 50–96 [63,64] 
H Me H - 2H, Zn, Co, - [65–67] 
H H, CF3 H 4-NO2 Zn, Co 51–58 [68] 

H 4-MeOC6H4 Me 
3-NO2, 4-NO2, 

2H, Co, Zn, Fe 35–74 [69–72] 
4,5-dichloro 

H CH2CO2H Me 3-NO2 Zn, Co, In(OAc) 14–30 [73] 
2-Cl-4-FC6H3 H H 3-NO2, 4-NO2 2H, Co, Zn 16–36 [74,75] 
3-MeOC6H4, 

H H 
3-NO2, 4-NO2, 

Zn, In, Mg, Mn 9–36 [76–80] 4-MeOC6H4, 
4,5-dichloro 

3,4,5-(MeO)3C6H2 
3,5-F2C6H3 H H 3-NO2, 4-NO2 Zn, In 38–39 [81] 
biphenyl H H 3-NO2, 4-NO2 2H, In, Co, Zn 19–48 [82] 
4-pyridyl H H 3-NO2, 4-NO2 Zn, Co 55–80 [83] 
ferrocenyl H H 4-NO2 Zn, Co 45, 51 [84] 

Me Ph H 
3-NO2, 4-NO2, 

In 26–31 [85,86] 
4,5-dichloro 

CO2Et H H 3-NO2, 4-NO2 Zn, Co, Ni, Cu 18–36 [87,88] 
CH2CH2NEt2 Me H 3-NO2, 4-NO2 2H, Zn 43, 77 [89–91] 

The method described above was also used for the synthesis of phthalocyanines bearing four 
peripheral 7-thio-coumarin units. The metal-free phthalocyanine 59a and the metallophthalocyanines 
59b–d (Scheme 15) were prepared in high yields from the phthalonitrile derivative 58, respectively 
in 2-dimethylaminoethanol (DMAE) at 145 °C or in quinoline at 195 °C, in a sealed tube [64]. 

Scheme 14. Typical route to coumarin–phthalocyanine conjugates [63–91].

Table 1. Starting materials and yields of coumarin–phthalocyanine conjugates 57.

R1 R2 R3 X M
57

Ref.Yield (%)

H H H, Me 4-NO2 2H, Zn, Co, Ni, Cu 50–96 [63,64]
H Me H - 2H, Zn, Co, - [65–67]
H H, CF3 H 4-NO2 Zn, Co 51–58 [68]

H 4-MeOC6H4 Me
3-NO2, 4-NO2,

2H, Co, Zn, Fe 35–74 [69–72]4,5-dichloro
H CH2CO2H Me 3-NO2 Zn, Co, In(OAc) 14–30 [73]

2-Cl-4-FC6H3 H H 3-NO2, 4-NO2 2H, Co, Zn 16–36 [74,75]
3-MeOC6H4,

H H
3-NO2, 4-NO2,

Zn, In, Mg, Mn 9–36 [76–80]4-MeOC6H4,
4,5-dichloro3,4,5-(MeO)3C6H2

3,5-F2C6H3 H H 3-NO2, 4-NO2 Zn, In 38–39 [81]
biphenyl H H 3-NO2, 4-NO2 2H, In, Co, Zn 19–48 [82]
4-pyridyl H H 3-NO2, 4-NO2 Zn, Co 55–80 [83]
ferrocenyl H H 4-NO2 Zn, Co 45, 51 [84]

Me Ph H
3-NO2, 4-NO2,

In 26–31 [85,86]4,5-dichloro
CO2Et H H 3-NO2, 4-NO2 Zn, Co, Ni, Cu 18–36 [87,88]

CH2CH2NEt2 Me H 3-NO2, 4-NO2 2H, Zn 43, 77 [89–91]

The method described above was also used for the synthesis of phthalocyanines bearing four
peripheral 7-thio-coumarin units. The metal-free phthalocyanine 59a and the metallophthalocyanines
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59b–d (Scheme 15) were prepared in high yields from the phthalonitrile derivative 58, respectively in
2-dimethylaminoethanol (DMAE) at 145 ◦C or in quinoline at 195 ◦C, in a sealed tube [64].Molecules 2017, 22, 994 14 of 26 
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The group of Bulut reported the synthesis of several phthalonitriles 60 and their conversion into
phthalocyanines 61 carrying four or eight 4-(coumarin-3-yl)phenoxy substituents (Scheme 16 and
Table 2) [92–104].
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Bulut and co-workers reported the synthesis of the axial coumarin-substituted titanium(IV)
phthalocyanines 66a,b and their characterization by IR, UV–Vis, fluorescence, 1H-NMR, and
MALDI-TOF MS [106]. The new conjugates were obtained in high yields from the reaction of
the ortho-dihydroxyphenylcoumarin derivatives 64a,b with the oxotitanium(IV) phthalocyanine 65
(Scheme 18). The UV–Vis spectra revealed small red-shifts of the Q-bands of the conjugates 66a,b
when compared to the Q-band of the oxotitanium(IV) phthalocyanine 65. They also suggested
that the conjugates have low aggregation tendency in nonpolar solvents. The fluorescence studies
showed that the emission intensity is diminished by the axial coumarin substituents. Metal–insulator–
semiconductor capacitors incorporating spin coated films of phthalocyanines 65 and 66a,b as the
insulating layer showed a rectification behavior.Molecules 2017, 22, 994 16 of 26 
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2.3. Coumarin–Corrole Conjugates

Corroles display highly interesting and unusual photophysical and chemical properties.
The methods for their functionalization were reviewed recently [107]. Despite the importance of
such tetrapyrrolic compounds, published works on the synthesis of coumarin–corrole conjugates are
scarce. In fact, the first synthesis of coumarin–corrole conjugates was reported only in 2010 by Gryko
and co-workers [108]. These authors used two distinct approaches to synthesize the coumarin–corrole
conjugates: (a) direct synthesis of the conjugates from the condensation of a dipyrromethane with a
coumarincarbaldehyde (Scheme 19) or (b) functionalization of an ethynyl-substituted corrole with a
bromocoumarin derivative via a Sonogashira reaction (Scheme 20).

The method used to prepare conjugates 69a–c, that bear a direct link between both
chromophores, involved the condensation of 5-(pentafluorophenyl)dipyrromethane 67 [109] with
the coumarincarbaldehydes 68a–c in CH2Cl2/trifluoroacetic acid (TFA) followed by oxidation with
DDQ, according to established conditions [110]. The authors justified the relative low yields obtained
in the [2 + 1] strategy for corroles 69a–c due to a competitive Michael addition of the dipyrromethane
to the coumarin α,β-unsaturated system.
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The dyad 73 was synthesized by coupling the ethynyl-corrole 71 with the adequate bromo-
ketobiscoumarin 72 under copper-free Sonogashira conditions (Scheme 20) [108]. Corrole 71 was
obtained from the reaction of the TMS-protected ethynylbenzaldehyde 70 [111] with dipyrromethane
67 in aqueous methanol in the presence of HCl, followed by oxidation with DDQ [112] and then
removal of the protecting group with tetrabutylammonium fluoride (TBAF).

Spectroscopic studies revealed that in all dyads the electronic coupling between the components
is weak. In addition, there is a quantitative and extremely fast energy transfer from the coumarin
moiety to the corrole unit [108]. This behaviour was justified considering the significant Stokes shift
and the resulting overlap of coumarin emission with corrole absorption as well as the short spacer
between the two units. The energy transfer was ascribed to a dipole–dipole mechanism. In dyad 69b
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it was detected an electron-transfer from the excited corrole to the coumarin, yielding the low lying
charge separated state Cum−–Corr+.

The same group extended the copper-free Sonogashira approach to the synthesis of dyads 74 and
75 (Figure 4) [113]. The coupling involved the ethynyl-corrole 71 and the adequate 6-bromocoumarins.
The cross-coupling reactions were performed in DMF in the presence of Pd(AcO)2, PPh3 and Cs2CO3

and the dyads were obtained in moderate yields.
In the same article it was also reported the synthesis of a series of coumarin–corrole dyads

(76–80, Figure 5) via condensation of dipyrromethane 67 with suitable formylcoumarins [113]. These
condensations were performed in CH2Cl2/trifluoroacetic acid followed by oxidation with DDQ and
again the competitive Michael addition of the dipyrromethane to the α,β-unsaturated coumarins was
considered responsible by the low yields of the desired dyads.Molecules 2017, 22, 994 18 of 26 
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Gryko, Wróbel and co-workers reported the synthesis of several trans-A2B-corroles, where A is the
C6F5 group and B is an aryl or hetaryl group, and their use in a comparative study of their spectroscopic
features [114]. One of those compounds was the coumarin–corrole 82 that was obtained from the
reaction of dipyrromethane 67 with the coumarin-4-carbaldehyde 81 (Scheme 21). The yield obtained
(16%) is much higher than the ones of related systems reported in previous studies (ca. 5–8%) [108,113].
This result was attributed to the much weaker polarization of 7,8-dimetoxycoumarin-4-carbaldehyde 81
and consequently the side reactions were minimized. Spectroscopic studies (absorption and excitation
emission and fluorescence life-time values) of this dye in chloroform allowed to rule out the formation
of aggregates even in highly concentrated solutions. The experimental data were supported by
quantum chemical calculations (TD-DFT) of the HOMO and the LUMO. The electron spin resonance
(ESR) studies before and after light illumination demonstrated that an unpaired electron is localized
on the corrole core but not on the substituent.Molecules 2017, 22, 994 19 of 26 
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Neves and co-workers developed a new strategy to prepare coumarin–corrole dyads where
the coumarin unit is linked to a β-pyrrolic position of the corrole [39]. The new method involved a
hetero-Diels–Alder reaction between the 3-vinylcorrole 83 [115] with o-quinone methides generated in
situ from 4-hydroxycoumarins 2a,b and paraformaldehyde (Scheme 22). The reactions were performed
in refluxing dioxane and the cycloadducts 84a,b were obtained in excellent yields.
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The characterization of the photophysical properties of these dyads in various solvents
(dichloromethane, DMSO, toluene, and ethanol) showed a strong solvatochromic effect for compound
84b, easily detected by naked eye (Figure 6): a bathochromic shift of the absorption bands occurs
with the increase of the solvent polarity. The sensorial ability of the coumarin–corrole dyads 84a,b
towards spherical (F−, Cl−), linear (CN−), and bulky (CH3COO−) anions was evaluated by UV-vis
and fluorescence measurements and the more drastic alterations were detected for fluoride, cyanide
and acetate.
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3. Final Remarks

As shown in this review, several synthetic strategies aiming the synthesis of coumarin–
tetrapyrrolic macrocycle conjugates were already developed. However, it is important to develop
new and versatile synthetic routes to these compounds. In particular, the access to coumarin−
phthalocyanine conjugates via post-functionalization of adequately substituted phthalocyanines
deserves greater attention from synthetic chemists. Considering the well-known photophysical (and
biological) properties of coumarins and tetrapyrrolic macrocycles, the corresponding conjugates are
expected to be found in real applications in the coming years.
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