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Abstract: The focus of the present work was to investigate the interaction of the anticancer drug
mitoxantrone with two bile salts, sodium taurodeoxycholate (NaTDC) and sodium taurocholate
(NaTC). Ultraviolet-visible (UV-Vis) absorption and electron paramagnetic resonance (EPR)
spectroscopy were used to quantify the interaction and to obtain information on the location of
mitoxantrone in bile salt micelles. The presence of submicellar concentrations of both bile salts
induces mitoxantrone aggregation and the extent of drug aggregation in NaTDC is higher than in
NaTC. For micellar bile salts concentrations, mitoxantrone monomers are entrapped in the micellar
core. Binding constants, micelle/water partition coefficients and the corresponding thermodynamic
parameters for binding and partitioning processes were estimated using the changes in monomer
absorbance in the presence of bile salts. Binding interaction of mitoxantrone is stronger for NaTDC
than NaTC micelles, whereas partitioning efficiency is higher for NaTC micelles for all investigated
temperatures. Thermodynamic parameters indicate that both binding and partitioning processes
are spontaneous and entropy controlled. The spectral behavior and thermodynamic parameters
indicate distinct types of mitoxantrone interaction with NaTDC and NaTC micelles supported by the
differences in nature and structure of bile salts micelles.

Keywords: mitoxantrone; bile salts; binding constant; partition coefficient; UV-Vis absorption
spectroscopy; electron paramagnetic resonance spectroscopy

1. Introduction

Bile salts belong to the class of natural steroids and are synthesized in the liver and stored in the
gallbladder. In addition to their biological role in digestion and gallstone formation, bile salts have also
received much attention as drug delivery systems and are used as membrane penetration enhancers
in drug formulations [1–5]. The general structure of bile salts is very different from that of common
surfactants. Bile salts have a rigid steroidal skeleton consisting of four rings, out of which three rings are
six membered and one is five membered ring. Hydrophilic groups are attached to the hydrophobic ring
system: between one and three hydroxyl groups and one acidic group. Human bile salts differ in the
number, position and stereochemistry of the hydroxyl groups as well as in the conjugated aminoacid,
either taurine or glycine. The hydrophilic part of the bile salts is represented by the concave side of
the rigid steroid ring system bearing the hydroxyl groups, while the hydrophobic part is represented
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by the convex side of the steroidal skeleton. As a consequence of their rigid facial like structure
characterized by a weak separation between the hydrophilic and hydrophobic regions, the micellar
aggregation of bile salts is driven by both, the hydrophobic effect and hydrogen binding [6,7]. Due to
the presence of different binding sites, bile salt aggregates can carry both hydrophilic and hydrophobic
drug molecules depending of the structure and size of the guest molecules [8–11].

The aggregation feature and the shape of the micelles of bile salts are different from those of
conventional surfactants. Several models have been proposed to describe the unusual micellization
behavior of bile salts. The most accepted model known as Small’s model is a two-step model
with the formation of primary and secondary micelles [12]. In the first step, around the critical
micellar concentration (CMC), the bile salt monomers start to aggregate to form primary micelles
containing 2–10 monomers through hydrophobic interactions between the hydrophobic sides of the
monomers. In a second step, at higher concentration, the primary aggregates further interact to form
larger secondary micelles by hydrogen bonding among the hydroxyl groups located on the surface of
primary micelles. This particular micellization behavior determines much lower values of CMC and
aggregation number of bile salts than in the case of usual surfactants with a linear structure.

Mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]-anthracene-9,10-dione)
is a synthetic anthracenedione chemotherapeutic drug which has shown significant clinical efficiency in
the treatment of breast cancer, lymphoma, acute leukemia and multiple sclerosis [13–16]. Mitoxantrone
contains a hydrophobic planar chromophore substituted with two side chains containing nitrogen,
positively charged at physiological pH (Figure 1). The anticancer activity of mitoxantrone is mainly
attributed to its interaction with nuclear DNA by intercalation of the planar anthraquinone ring
between DNA base pairs, whereas the side groups interact electrostatically with the negatively
charged phosphate groups of DNA [17–22]. Mitoxantrone also inhibits the activity of topoisomerase II,
an enzyme involved in the repair of damaged DNA [23,24].
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If the initial purpose of the synthesis of mitoxantrone was to reduce the cardiotoxic side
effects of anthracyclines, further studies extensively reported the cardiotoxicity occurred during
the mitoxantrone therapy [25,26]. Mitoxantrone is also a substrate for efflux mediated by members of
ATP binding cassette (ABC) transporters, which results in the resistance of cancer cells to mitoxantrone
treatment thus limiting its clinical use [27].

A drug molecule has to pass through the cellular and nuclear membranes before to reach their
target inside the cancer cells. Because the biological membranes represent complex multicomponent
structures, the surfactant micelles with much less complexity have been used as model systems
for biomembranes aiming to investigate the interactions of different drug molecules with biological
membranes [28–34]. The surfactant micelles are also useful in drug delivery as they ensure the transport
to specific sites of action, minimize drug degradation and loss, prevent harmful side effects and increase
drug bioavailability [35,36].

In our previous papers, we reported a physico-chemical investigation of interactions between
mitoxantrone and anionic, cationic and non-ionic micelles by employing spectral and electrochemical
measurements [37–40]. In continuation of our interest in anticancer drug mitoxantrone and its
interaction with biomimicking structures, in the present study the mitoxantrone-bile salts system
has been investigated by UV-Vis absorption and EPR spectroscopy. Sodium taurodeoxycholate
(NaTDC) and sodium taurocholate (NaTC) bile salts used in the present study have the same
head group (–CO–NH–CH2–SO3

−) but NaTC contains one hydroxyl group more in the hydrophilic
surface and this difference makes NaTC more hydrophilic than NaTDC (Figure 1). The changes
in the absorption spectra of mitoxantrone in the presence of bile salts were used to calculate the
binding constants, stoichiometric ratios, partition coefficients of mitoxantrone between aqueous and
micellar phases and the corresponding thermodynamic parameters for the above two processes. These
parameters predict the strength of binding between mitoxantrone and bile salts. EPR spectroscopy
can provide useful information on the topology and dynamic aspects of systems generated by
aggregation process of natural or synthetic surfactants [41,42]. The spin probe method is often used in
investigating diamagnetic systems emerging from self-assemblies through non-covalent interaction of
their constituents. The spin probe method has been applied so far in studying surfactant solutions,
nanostructure materials, and the accessibility of low molecular mass molecules to porous materials,
self-assembled monolayers or on gold nanoparticles [41]. In this study, the amphiphilic spin probes
from the family of n-doxyl-stearates were chosen to provide information on the self-assembly of
NaTDC and NATC bile salts. These spin probes are characterized by sensitivity of their EPR spectra to
restricted motion when are incorporated in micellar solutions. This general behavior of doxyl spin
probes is determined by the fact that paramagnetic moiety is rigidly attached to the alkyl chain.

2. Results and Discussion

2.1. UV-Vis Absorption Studies

The absorption spectra of mitoxantrone—bile salts solutions containing different NaTDC or
NaTC concentrations were recorded at different temperatures in order to investigate the molecular
interactions between mitoxantrone and bile salts molecules.

In the absence of bile salts, the visible absorption spectrum of mitoxantrone in phosphate buffer
pH 7.4 shows two absorption bands at 660 and 610 nm, and a shoulder at about 570 nm. Based on the
dependence of the absorption spectrum of mitoxantrone on concentration, the band at 660 nm was
attributed to the monomer (M), the band at 610 nm to the dimer (D) and the band around 560 nm to
the formation of the higher aggregates (HA) of the drug [43]. The absorption spectra of 2.80 × 10−5 M
mitoxantrone obtained in the presence of various NaTDC concentrations at 293.15 K temperature are
shown in Figure 2, where it can be observed that the spectral absorption behavior of mitoxantrone
is dependent on the NaTDC concentration. On gradual addition of NaTDC, a hypochromic effect
is observed on both monomer and dimer bands (Figure 2a). When the concentration of NaTDC is
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about 1.88 × 10−3 M, the monomer and dimer bands practically disappear and the band at 570 nm
corresponding to higher aggregates is outlined very clearly (spectrum 7 in Figure 2a).Molecules 2017, 22, 1079 4 of 19 
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Figure 2. Absorption spectra of mitoxantrone (2.80 × 10−5 M) in phosphate buffer pH 7.4 and 293.15 K 
temperature, in the presence of different sodium taurodeoxycholate (NaTDC) concentrations: (a) 
[NaTDC] = 0 (spectrum 1)–1.88 × 10−3 M (spectrum 7); (b) [NaTDC] = 1.88 × 10−3 M (spectrum 7)–3.22 × 10−2 
M (spectrum 18). The arrows indicate the decrease or increase of monomer (M), dimer (D) and higher 
aggregates (HA) absorption bands. 

A further increase of NaTDC concentration determines the increase of absorbance of both 610 
nm and 660 nm bands but the absorbance band at 660 nm corresponding to the drug monomer 
becomes predominant (spectrum 18 in Figure 2b) and even more pronounced than that in the 
absence of NaTDC (spectrum 1 in Figure 2a). At the same time, the absorbance of 570 nm band 
corresponding to the higher aggregates of the drug decreases. The CMC of NaTDC in 0.1 M salt 
solution is 2 mM [44]. Mitoxantrone has two ionizable amines on lateral chains with pKa values of 
8.3–8.6 [45]. Therefore, under the experimental conditions of pH 7.4, mitoxantrone is present as 
bivalent cation due to the two protonated nitrogen atoms from lateral chains. At the same time, both 
NaTDC and NaTC molecules exist as anions (pKa less than 2). Consequently, the strong molecular 
interaction of mitoxantrone with NaTDC observed at concentrations lower than CMC can be assigned 
to the formation of mitoxantrone-NaTDC complex due to the electrostatic interaction between the 
cationic drug molecules and the anionic bile salt monomers. In our previous studies, we have 
investigated the interaction of mitoxantrone with anionic (sodium dodecyl sulfate, SDS) [37], cationic 
(cetyltrimethylammonium bromide, CTAB) [38] and non-ionic (Triton X-100, Tween-20, Tween-80) [39] 
surfactants. Comparing all these spectral results, we observe the same spectral behavior of 
mitoxantrone in the presence of NaTDC and SDS (decrease of both monomer and dimer bands for 
surfactant concentration lower than CMC). At the same time, this spectral behavior was not 
observed in the presence of cationic and non-ionic surfactants indicating the electrostatic nature of 
the interaction between mitoxantrone and the anionic surfactants (SDS and NaTDC). The decrease of 
absorbance observed for NaTDC concentrations lower than CMC may be explained by the 
neutralization of mitoxantrone positive charges by the bile salt anions and this electrostatic interaction 
decreases the repulsive forces between the positively charged drug molecules. Consequently, this 
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pH 7.4 at concentrations higher than 1.00 × 10−6 M, and the dimerization process is dependent on pH, 
the dimerization constant increasing with the increase of pH [43]. In order to get a deeper insight 
into the aggregation behavior of mitoxantrone, we recorded the absorption spectra of drug in 
carbonate buffer pH 10 at different concentrations (data not shown). It was observed that the shape 
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Figure 2. Absorption spectra of mitoxantrone (2.80 × 10−5 M) in phosphate buffer pH 7.4 and
293.15 K temperature, in the presence of different sodium taurodeoxycholate (NaTDC) concentrations:
(a) [NaTDC] = 0 (spectrum 1)–1.88 × 10−3 M (spectrum 7); (b) [NaTDC] = 1.88 × 10−3 M
(spectrum 7)–3.22 × 10−2 M (spectrum 18). The arrows indicate the decrease or increase of monomer
(M), dimer (D) and higher aggregates (HA) absorption bands.

A further increase of NaTDC concentration determines the increase of absorbance of both 610 nm
and 660 nm bands but the absorbance band at 660 nm corresponding to the drug monomer becomes
predominant (spectrum 18 in Figure 2b) and even more pronounced than that in the absence of NaTDC
(spectrum 1 in Figure 2a). At the same time, the absorbance of 570 nm band corresponding to the higher
aggregates of the drug decreases. The CMC of NaTDC in 0.1 M salt solution is 2 mM [44]. Mitoxantrone
has two ionizable amines on lateral chains with pKa values of 8.3–8.6 [45]. Therefore, under the
experimental conditions of pH 7.4, mitoxantrone is present as bivalent cation due to the two protonated
nitrogen atoms from lateral chains. At the same time, both NaTDC and NaTC molecules exist as
anions (pKa less than 2). Consequently, the strong molecular interaction of mitoxantrone with NaTDC
observed at concentrations lower than CMC can be assigned to the formation of mitoxantrone-NaTDC
complex due to the electrostatic interaction between the cationic drug molecules and the anionic bile
salt monomers. In our previous studies, we have investigated the interaction of mitoxantrone with
anionic (sodium dodecyl sulfate, SDS) [37], cationic (cetyltrimethylammonium bromide, CTAB) [38]
and non-ionic (Triton X-100, Tween-20, Tween-80) [39] surfactants. Comparing all these spectral results,
we observe the same spectral behavior of mitoxantrone in the presence of NaTDC and SDS (decrease
of both monomer and dimer bands for surfactant concentration lower than CMC). At the same time,
this spectral behavior was not observed in the presence of cationic and non-ionic surfactants indicating
the electrostatic nature of the interaction between mitoxantrone and the anionic surfactants (SDS
and NaTDC). The decrease of absorbance observed for NaTDC concentrations lower than CMC may
be explained by the neutralization of mitoxantrone positive charges by the bile salt anions and this
electrostatic interaction decreases the repulsive forces between the positively charged drug molecules.
Consequently, this electrostatic interaction may induce premicellar surfactant aggregation and favors
the aggregation of the drug molecules [46–49]. The presence of mitoxantrone–NaTDC complexes at
bile salt concentrations lower than CMC induces a strong aggregation of mitoxantrone molecules and
the bands of monomer and dimer disappears and higher aggregates are formed, as is indicated by
the spectrum 7 in Figure 2a. While in the case of SDS, the presence of mitoxantrone-SDS complexes
induces the dimerization of mitoxantrone [37], the presence of mitoxantrone-NaTDC complexes
leads to the formation of higher aggregates. Our previous investigation showed that mitoxantrone
forms dimers in phosphate buffer pH 7.4 at concentrations higher than 1.00 × 10−6 M, and the
dimerization process is dependent on pH, the dimerization constant increasing with the increase of
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pH [43]. In order to get a deeper insight into the aggregation behavior of mitoxantrone, we recorded
the absorption spectra of drug in carbonate buffer pH 10 at different concentrations (data not shown).
It was observed that the shape of the absorption spectrum is dependent on concentration, similar
with the behavior in phosphate buffer pH 7.4 but the shoulder at about 570 nm assigned to the
higher aggregates of the drug is more evident. Also, the shape of the spectrum does not change
with temperature, but the monomer and dimer absorption bands increases on expanse of higher
aggregates, suggesting the dissociation process of these aggregates with increasing temperatures.
In order to follow the evolution of monomer, dimer and higher aggregates bands of mitoxantrone in
different experimental conditions, the absorption spectra were deconvoluted in elementary bands.
Figure 3 shows the variation of monomer, dimer and higher aggregate components with mitoxantrone
concentration and pH 10 and 7.4.
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Figure 3. Evolution of M, D and HA band areas in deconvoluted spectra for different mitoxantrone
concentrations in carbonate buffer pH 10 and phosphate buffer pH 7.4.

It can be observed that in carbonate buffer pH 10, the dimer component is almost constant for
increasing mitoxantrone concentrations but the higher aggregates component increases on expense of
monomers. Also, for the same mitoxantrone concentration, the dimer component is almost constant
for pH 7.4 and 10 but the higher aggregates component is 1.7 times higher in pH 10, indicating
mitoxantrone aggregation in basic medium.

The variation of monomer, dimer and higher aggregate components with NaTDC concentration
is shown in Figure 4.
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It can be observed that for increasing NaTDC concentrations up to 1.88 × 10−3 M the higher
aggregates component increases drastically (about 3.3 times) on the expense of monomer and
dimer components, indicating a strong aggregation of mitoxantrone induced by the presence of
mitoxantrone-NaTDC premicellar aggregates.

When the NaTDC concentration is higher than CMC, both monomer and dimer absorbance
bands increase (the absorbance band of drug monomer is predominant) and the higher aggregates
absorbance maxima decreases (Figure 2b). As the NaTDC concentration increases and the micelles
start to form, the mitoxantrone aggregation is reduced and mitoxantrone is solubilized in the micelles
in its monomer form. The presence of NaTDC micelles yields two isosbestic points at 587 and 705 nm
in absorption spectra of mitoxantrone. Moreover, at NaTDC concentrations above CMC a red shift of
both absorbance maxima can be observed (616 and 669 nm, respectively). For NaTDC concentrations
higher than CMC, the monomer and dimer components increases and the higher aggregate component
decreases, indicating the dissociation of higher aggregates into dimers and monomers due to the
interaction of mitoxantrone with NaTDC (Figure 4).

The variation of monomer absorbance as a function of NaTDC concentration at different
temperatures (Figure 5) indicates two distinct processes: process I (the decrease of absorbance) in
premicellar range of NaTDC concentrations, and process II (the increase of absorbance) at NaTDC
concentrations higher than CMC. The two processes are similar to those observed in the case of the
interaction of mitoxantrone with SDS [37]. For NaTDC concentrations higher than about 2.00 × 10−2 M,
the monomer absorbance attains almost a constant value for all investigated temperatures indicating
that the mitoxantrone monomers are completely solubilized in the NaTDC micelles. Also, it can be
observed that for increasing temperatures the process I is less evident. As in the case of SDS [37],
the decrease of monomer absorbance (process I) may be explained by the neutralization of mitoxantrone
positive charges by the bile salt anions that eliminates the repulsive forces between drug molecules and
favors the drug aggregation; the increase in monomer absorbance (process II) is due to the interaction
of mitoxantrone monomers with NaTDC micelles.
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Figure 6 presents the absorption spectrum of mitoxantrone in the presence of increased
concentrations of NaTC for two different temperatures. In contrast with NaTDC, it can be observed
that for NaTC concentrations lower than CMC the absorbance of both 610 nm and 660 nm bands
increases and the monomer absorbance becomes predominant. At the same time, the absorbance of
560 nm band corresponding to the higher aggregates of the drug decreases.
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Figure 6. Absorption spectra of mitoxantrone (2.80 × 10−5 M) in phosphate buffer pH 7.4 in the absence
(spectrum 1) and the presence of different NaTC concentrations ([NaTC] = 4.62 × 10−4 M (spectrum 2);
1.21 × 10−2 M (spectrum 6) and at two different temperatures ((a), 293.15 K; (b), 313.15 K). The arrows
indicate the decrease or increase of M, D and HA absorption bands.

The variation of monomer, dimer and higher aggregate components with NaTC concentration
obtained from deconvolution of the spectra is shown in Figure 7. As against NaTDC, it can be observed
that the monomer component increases on the expense of dimer and higher aggregates as NaTC
concentration increases.
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Figure 7. The percent of component band areas in deconvoluted spectra for M, D and
HA for 2.80 × 10−5 M mitoxantrone in phosphate buffer pH 7.4 in the presence of different
NaTC concentrations.

The variation of the monomer absorbance of mitoxantrone as a function of NaTC concentration
is shown in Figure 8 for different temperatures. It can be observed that the monomer absorbance
increases nearly linear with the concentration of NaTC until around 5 mM concentration which is
the CMC of NaTC [44]. For higher NaTC concentration, the monomer absorbance becomes almost
constant indicating the complete solubilization of mitoxantrone monomers in NaTC micelles. Also,
the presence of NaTC induces a red shift of both monomer and dimer absorbance maxima of the drug
(617 and 670 nm, respectively). The increase in the monomer absorbance and the red shift of absorption
maxima, even for submicellar NaTC concentrations, indicate a strong electrostatic interaction between
anionic NaTC and cationic mitoxantrone monomers.
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By comparing the interaction of mitoxantrone with NaTDC and NaTC, we can say that the
spectral behavior dependents on the type of bile salt. NaTDC and NaTC have the same head group
(–CO–NH–CH2–SO3

−) but differ in the number of hydroxyl groups in the hydrophilic surface: NaTDC
has two hydroxyl groups while NaTC contains three hydroxyl groups. Also, the hydrophobicity indices
indicate that NaTDC is more hydrophobic (hydrophobicity index 0.59) than NaTC (hydrophobicity
index 0) [8]. For bile salt concentrations lower than CMC, the first step in the interaction of mitoxantrone
with NaTDC and NaTC is the formation of mitoxantrone-NaTDC (NaTC) complexes by electrostatic
interaction between positively charged mitoxantrone molecules and negatively charged bile salt
monomers (Figure 9).
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When the mitoxantrone-bile salt complexes are formed, the charges on both mitoxantrone and
bile salt monomers are neutralized leading to the suppression of electrostatic repulsion between
positively charged drug molecules and aggregation of mitoxantrone occurs. In the case of NaTDC,
the formation of mitoxantrone-NaTDC aggregates induces a higher aggregation of mitoxantrone
(the higher aggregates are the major component in solution) compared to NaTC when monomer
and dimer are the major components in solution. Experiments performed in pH 10 carbonate buffer,
when mitoxantrone molecules are uncharged due to deprotonation of NH3

+ groups of the side chains,
indicated that the dimer component is almost constant for increasing mitoxantrone concentrations but
the higher aggregate component increases at the expense of monomers. However, the formation of
mitoxantrone-NaTDC aggregates induces a higher drug aggregation than basic medium, most likely
this behaviour being the result of concerted electrostatic interactions and hydrophobic interactions
between the aromatic chromophore of mitoxantrone and the hydrophobic surface of NaTDC. Also,
the presence of mitoxantrone-NaTDC aggregates leads to a higher aggregation of mitoxantrone than
in the case of anionic surfactant SDS [37]. In the case of the interaction of Nile Blue A dye with bile
salts, the results indicated that the presence of submicellar NaDC and NaC concentrations induces dye
dimerization and the extent of dimerization is higher in NaDC than in NaC [46]. At concentrations
of bile salts higher than CMC, stable bile salts micelles are formed and mitoxantrone molecules are
incorporated in the micelles in monomer form. The absorption maxima of mitoxantrone are red shifted
in both NaTDC and NaTC micelles in comparison with pure aqueous medium. This red shift in the
absorption maxima of mitoxantrone can be explained by the transfer of mitoxantrone molecules from
the highly polar phase (phosphate buffer) into a less polar phase (the hydrophobic micelles) and point
toward the existence of strong interactions between mitoxantrone monomers and bile salts micelles.

2.2. Determination of Binding Constant, Partition Coefficient and Thermodynamic Parameters

The mitoxantrone absorption changes at 660 nm in the presence of varying bile salts concentrations
were used to estimate the binding constant of mitoxantrone to bile salts micelles and the partition
coefficient of mitoxantrone between aqueous and micellar phases, and the respective thermodynamic
parameters. The binding constant (Kb) and the stoichiometric ratio (n) were estimated from the double
reciprocal Benesi-Hildebrand plots of 1/(A-A0) versus 1/[BS]n (Equation (4)). These plots should
be linear for the correct stoichiometry (n) [50]. As shown in Figure 10, a linear Benesi-Hildebrand
plots were obtained for mitoxantrone–bile salts micelle binding at all investigated temperatures when
n = 2 indicating a 1:2 stoichiometry for these complexes. The results are presented in Table 1 for both
bile salts.
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Table 1. Binding constants and thermodynamic parameters for the interaction of mitoxantrone with
NaTDC and NATC.

NaTDC NaTC

T (K) Kb/104

(M−2)
∆G0

b
(kJ mol−1)

∆H0
b

(kJ mol−1)
∆S0

b
(J mol−1 K−1)

Kb/103

(M−2)
∆G0

b
(kJ mol−1)

∆H0
b

(kJ mol−1)
∆S0

b
(J mol−1 K−1)

293.15 0.64 ± 0.05 −21.35 26.85 164.42 1.41 ± 0.08 −23.27 20.49 149.27
303.15 1.21 ± 0.09 −23.68 166.68 1.89 ± 0.07 −24.81 149.43
313.15 1.52 ± 0.09 −25.06 165.77 2.17 ± 0.08 −25.98 148.40
323.15 1.83 ± 0.08 −26.36 164.66 3.21 ± 0.09 −27.87 149.65

The binding constant values reveal that mitoxantrone binds stronger to NaTDC micelles than
NaTC micelles for all investigated temperatures. This result can be explained by the difference in
the hydrophobicity of micelles core of the two bile salts. NaTDC and NaTC have the same head
group but the presence of an additional hydroxyl group in NaTC structure leads to a more hydrophilic
surface of NaTC than in the case of NaTDC. The observation suggests that hydrophobic interactions
between mitoxantrone monomers and NaTDC micelles are much stronger compared to that between
mitoxantrone monomers and NaTC micelles. Also, the binding constant increases with increasing
temperatures for both bile salts.

Partition coefficient (Kx) is an important thermodynamic parameter used to assess the distribution
of drug molecules between the micellar phase and the bulk aqueous phase. The value of Kx is obtained
from the slope of the plot of 1/∆A versus 1/(CT + [BS] − CMC) (Equation (5)) as shown in Figure 11
for different temperatures. The results are summarized in Table 2.
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Figure 11. Plot of 1/(A-A0) versus 1/(CT + [BS]-CMC) for the interaction of mitoxantrone with
(a) NaTDC and (b) NaTC at different temperatures.

Table 2. Partition coefficients and thermodynamic parameters for the interaction of mitoxantrone with
NaTDC and NaTC in phosphate buffer pH 7.4.

NaTDC NaTC

T (K) Kx/103 ∆G0
x

(kJ mol−1)
∆H0

x
(kJ mol−1)

∆S0
x

(J mol−1 K−1) Kx/104 ∆G0
x

(kJ mol−1)
∆H0

x
(kJ mol−1)

∆S0
x

(J mol−1 K−1)

293.15 1.32 ± 0.04 −17.50

42.39

204.30 3.03 ± 0.04 −25.14

20.87

156.95
303.15 3.16 ± 0.08 −20.30 206.80 4.10 ± 0.07 −26.76 157.11
313.15 4.29 ± 0.07 −21.77 204.89 4.67 ± 0.02 −27.98 156.00
323.15 7.11 ± 0.09 −23.82 204.89 7.06 ± 0.05 −29.98 157.36

The analysis of the results from Table 2 indicates that mitoxantrone shows quite high partition
coefficients for both bile salt micelles but higher for NaTC in comparison with NaTDC for all
investigated temperatures. Therefore, it is concluded that mitoxantrone monomers are entrapped
more efficient in NaTC micelles and this difference may be due to the presence of an extra hydroxyl
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group in NaTC which make it more hydrophilic. Also, the results show that the partition coefficient
increases with the increase in temperature for both bile salts.

The values of the Gibbs free energy of interaction (∆G0
b) and the Gibbs free energy of the transfer

of drug from bulk aqueous phase to micellar phase (∆G0
x) and the corresponding standard enthalpy

(∆H0) and the standard entropy (∆S0) changes were calculated from the values obtained for Kb and Kx

at different temperatures from the spectral studies using the following equations:

∆G0 = −RTlnK (1)

∆H0 =
∂(∆G0/T)

∂(1/T)
(2)

∆S0 =
∆H0 − ∆G0

T
(3)

According to Equation (2), the plot of ∆G0/T versus 1/T is linear and the slope of this plot is
equal with ∆H0 (Figure 12).
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As seen from Tables 1 and 2, ∆G0 values are negative at each investigated temperature for both
binding and partitioning processes of mitoxantrone to NaTDC and NaTC micelles indicating the
spontaneity of both processes. Moreover, the ∆G0 values becomes more negative with the increase
of temperature for both processes meaning that the binding and partitioning of mitoxantrone to the
bile salts micelles are preferred at higher temperatures. The positive values of ∆H0 indicate that
both binding and partitioning processes are endothermic. The net ∆H0 is the sum of the change in
enthalpies arising from hydrophobic interactions, electrostatic interactions and hydration of polar
head groups. The positive values of ∆S0 and ∆H0 indicate that the binding and partitioning processes
of mitoxantrone to both NaTDC and NaTC micelles are entropy controlled over the range of studied
temperatures. The difference in the entropy changes could be a reflection of the changes in water
accessible surface area when the complex is formed. When the water is transferred from the hydration
shell of a non-polar molecule to the bulk a strong positive contribution to ∆S is observed [51,52].
Therefore, the positive values of ∆S0 and ∆H0 indicate that the hydrophobic interactions play a
major role in the binding and partition processes of mitoxantrone with NaTDC and NaTC micelles.
Furthermore, the higher positive values of ∆H0 and ∆S0 for NaTDC micelles could reflect a more
pronounced hydrophobic interaction, in agreement with higher hydrophobicity of NaTDC than
NaTC. Thermodynamic parameters presented in Tables 1 and 2 reflect distinct types of mitoxantrone
interaction with NaTDC and NaTC micelles supported by the differences in nature and structure of
bile salts micelles. In NaTC micelles the molecules associate with their hydrophobic sides (back-to-back
association), while in NaTDC micelles hydrophobic and hydrophilic sides face each other (back-to-face
association) due to the less hydrophilic face and the closer contact this arrangement allows for the
slightly curved ring system [53,54].
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2.3. EPR Studies on Mitoxantrone/Micellar Bile Salts Systems

EPR spectroscopy represents a valuable tool in investigating the non-homogeneity at micro scale
level of a given system. In this study we choose three amphiphilic spin probes from the family of doxyl
type spin probes based on their suitability to investigate micellar systems in general [41] and in the
case of bile salts, in particular [55]. The paramagnetic moieties attached to the stearic acid backbone in
different positions allow analysis of the polarity and dynamic of paramagnetic molecules in the bile
salts micelles as a function of the structural particularities of the systems components.

In Figure 13 are presented the EPR spectra of 5-, 12- and 16-(4,4-dimethyl-3-oxazolidinyloxy)
(abbreviated as 5-DSA, 12-DSA and 16-DSA, respectively) spin probes in micelles of NaTDC and NaTC
(1.00 × 10−2 M) in the absence and the presence of mitoxantrone. It can be observed that in phosphate
buffer solution all three spin probes have the same nitrogen coupling constant (aN) value (15.85 G)
corresponding to a hydrophilic environment. At the same time, all spin probes exhibit an isotropic
motion (spectra 1 in Figure 13a–c).

The values of rotational correlation time of the 5-DSA, 12-DSA and 16-DSA, in micellar solutions
of NaTDC and NaTC alone and in the presence of mitoxantrone are presented in Table 3.

Table 3. Rotational correlational time (τ) of the 5-DSA, 12-DSA and 16-DSA in micellar solutions of
NaTDC and NaTC (2.00 × 10−2 M), alone and in the presence of mitoxantrone (2.55 × 10−5 M).

System
5-DSA 12-DSA 16-DSA

τ1 (s) τ1 (s) τ2 (s) τ1 (s)

Phosphate buffer, pH 7.4 2.55 × 10−10 2.50 × 10−10 1.23 × 10−10

NaTDC 2.9 × 10−9 5.63 × 10−11 6.39 × 10−9 2.02 × 10−9

mitoxantrone + NaTDC 3.50 × 10−9 7.32 × 10−11 6.72 × 10−9 2.44 × 10−9

NaTC 2.13 × 10−9 5.87 × 10−11 3.26 × 10−9 1.18 × 10−9

mitoxantrone + NaTC 2.56 × 10−9 3.85 × 10−10 3.44 × 10−9 1.28 × 10−9
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The molar ratio bile salts/spin probe is 100:1 and concentration of each bile salt is 10 to 25 times
higher than CMC. Therefore, we assume that the presence of spin probe on the micellar size can
be neglected and the dynamic of the equilibrium between bile salts monomers and micelles is not
perturbed. In micellar solutions of bile salts used in the present study, the spin probes exhibit significant
changes of their EPR parameters. The aN values of spin probes dissolved in micellar solutions decrease
as the nitroxide moiety senses a more hydrophobic environment. The values of aN for 5-DSA and
16-DSA indicate that the paramagnetic moiety senses a more hydrophobic environment in both type of
micelles than 12-DSA. For example, aN corresponding to EPR spectra of 5-DSA and 16-DSA is 15.25 G
in NaTC micelle solution and 14.9 G in NaTDC micelles solution. 12-DSA senses a less hydrophobic
environment as the values of aN are 15.5 G and 15.65 G in NaTC and NaTDC respectively. These
observations reveal that at microscale level, the polarity inside the micelles is not uniform. In both
micellar solutions it was noticed a slower motion of the spin probes compared to the buffer solution
which also indicate the formation of micelle/spin probe complex. Also, the τ values for all spin probes
are higher for NaTDC micelles than that for NaTC micelles, indicating a difference in properties of
these micelles.

While in the case of 5-DSA and 16-DSA the rotational correlation time reveals a weak
immobilization of the spin probes (Figure 13a,c), in the case of 12-DSA the spin probe is moderately
immobilized (Figure 13b). In the same time, the EPR spectra of 12-DSA in micellar solutions exhibit a
two component spectra (Figure 13b, spectra 2–5). One component corresponds to a fast motion while
the other one shows a moderately immobilization. The structures of spin probes used in this study are
linear and flexible and beside the amphiphilic character, these aspects are relevant for orientation of
paramagnetic moiety attached to the backbone in a given environment. Likely, the stearic chain adopts
a bended conformation, which in our case determines orientation of nitroxide moiety toward different
microenvironments. The results suggest that in the case of 12-DSA, the nitroxide is oriented close to
the interface micelle/water which explain the higher values of aN observed in this case. Moreover,
in all cases it was noticed that NaTC micelle is more hydrophilic than NaTDC micelle.

The EPR spectra of these spin probe also can give indirect information on the orientation of the
mitoxantrone in bile salts micelles, by comparison of rotation correlation time observed in the absence
and in the presence of the drug. Mitoxantrone concentration is lower than of spin probe, therefore
it is normal do not expect an exclusion of the spin probe from the micelle. On the other hand at the
mitoxantrone concentration used in this study, the drug will not influence the assembly of the bile salts.
Although the dynamic regime of the spin probe is not influenced by the presence of mitoxantrone,
the rotational correlation time increases. In the case of 5-DSA the variation of this parameter is larger
and this suggest that locally the environment is more viscous due to the presence of mitoxantrone.
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3. Materials and Methods

3.1. Materials

Mitoxantrone dihydrochloride, NaTC, NaTDC and the spin probes 5-DSA, 12-DSA and 16-DSA
were analytical grade and supplied by Sigma Aldrich (St. Louis, MO, USA). All the compounds were
used without further purification. Experiments were performed in 0.1 M phosphate buffer (pH 7.4) and
0.1 M carbonate buffer (pH 10) and deionized water (18.2 MΩcm, Mili-Q water purification system)
was used for the preparation of solutions.

3.2. UV-Vis Absorption Spectroscopy

The absorption spectra of pure mitoxantrone and in the presence of different concentrations of
NaTDC and NaDC bile salts were recorded in the wavelength range of 400–800 nm and different
temperatures (293.15 K, 303.15 K, 313.15 K and 323.15 K) by using a JASCO V-630 spectrophotometer
equipped with a Peltier-controlled ETCR-762 model accessory (JASCO Corporation, Tokyo, Japan).
The measurements were done using a matched pair of quartz cuvettes of 1.0 cm optical length.
The absorption titration experiments were performed by successive additions of concentrated bile salts
stock solution directly into a cuvette containing 2 mL mitoxantrone solution. After addition of bile salt
aliquots, the mixtures were shaken well and the absorption spectra were registered after equilibration.
The binding constants of mitoxantrone to bile salts and micelle-water partition coefficients were
determined from the monomer absorbances of series of solutions containing a fixed drug concentration
and increasing bile salts concentrations.

The binding constant (Kb) and the stoichiometric ratio (n) for mitoxantrone-bile salts complexes
were estimated from the Benesi-Hildebrand equation [56,57]:

1
A − A0

=
1

Kb(A1 − A0)[BS]n
+

1
A1 − A0

(4)

where [BS] is the concentration of bile salts, A, A0 and A1 are the absorbance values of mitoxantrone
in presence of bile salt, in absence of bile salt and the absorbance due to the formation of drug-bile
salt complex.

Partition coefficient (Kx) was evaluated from the following equation, according to the
pseudo-phase model [58,59]:

1
∆A

=
1

∆A∞
+

nW

Kx∆A∞([BS] + CT − CMC)
(5)

where ∆A = A − A0, ∆A∞ = A1 − A0, CT is the total drug concentration and nw = 55.5 M is the molarity
of water.

The visible absorption spectra of mitoxantrone alone and in the presence of different bile salts
concentrations were deconvoluted using Gaussian multi-peaks function in PeakFit 4.11 software
(Systat Software Inc., Chicago, IL, USA), in order to assess the evolution of the overlapping spectral
bands. Linear fitting of the experimental data was performed using Origin 7.0 software (MicroCal
Software, Inc., Piscataway, NJ, USA).

3.3. EPR Spectroscopy

The EPR spectra were recorded on a FA 100 spectrometer (JEOL, Tokyo, Japan) at room
temperature, with the following parameters: frequency modulation of 100 kHz, microwave power of
0.998 mW, sweep time of 480 s, modulation amplitude of 1 G, time constant of 0.3 s, and magnetic field
scan range of 100 G. The rotational correlation times of the spin probe showing an isotropic dynamic
regime were determined using Equation (6):



Molecules 2017, 22, 1079 15 of 18

τc = 6.51 × 10−10∆H0

[(
h0

h−1

) 1
2
+

(
h0

h+1

)1/2
− 2

]
(6)

where ∆H0 is the peak-to-peak width (in Gauss) of the central line, and h−1, h0 and h+1 are the heights
of the low, central and high field lines, respectively [55].

The EPR spectra of spin probes incorporated into micelles exhibit a slow dynamic and in some
cases a two component feature. In these cases the EPR spectral simulations were performed using the
program developed by Budil et al., based on non-linear least-squares (NLSL) fits [60]. Stock solutions
of spin probes (10−2 M) were prepared in ethanol. To prepare samples for EPR measurements, in each
case, an appropriate volume of ethanol solution of the spin probe was evaporated from a vial under a
stream of inert gas. Subsequently a buffer solution (containing NaTC, NaTDC or mitoxantrone) was
added to reach a spin probe concentration of approximately 10−4 M. To record EPR spectrum, each
solution was transferred to glass capillaries and sealed.

4. Conclusions

The interaction between anticancer drug mitoxantrone and NaTDC (a dihydroxy) and NaTC
(a trihydroxy) bile salts has been investigated by combining UV-Vis absorption and EPR spectroscopy
techniques. The results indicated that the presence of submicellar concentrations of both bile salts
induces mitoxantrone aggregation, but NaTDC induces a higher aggregation of mitoxantrone
(the higher aggregates are the major component in solution as against NaTC when monomer and dimer
are major components in solution). For micellar bile salt concentrations, mitoxantrone monomers are
entrapped in the micellar core. The binding of mitoxantrone is stronger for NaTDC micelles than
NaTC micelles for all investigated temperatures and these results can be explained by the difference
in the micellar structure as well as the hydrophobicity of two bile salts. The positive high values
of both ∆Sb

0 and ∆Hb
0 are indicative of enhanced hydrophobic interactions between hydrophobic

chromophore of mitoxantrone and hydrophobic surface of bile salts. The positive high values of both
∆H0 and ∆S0 indicate that the binding and partitioning processes of mitoxantrone to both NaTDC and
NaTC micelles are entropy controlled and the hydrophobic interactions are the main interaction forces
between mitoxantrone and both bile salts.

The analysis of the EPR spectra of amphiphilic spin probes from doxyl family demonstrated
the no homogeneity of the bile salt micelles. Thus, it was proved that NaTC micelles represent a
less hydrophobic environment compared with NaTDC micelles. In the same time the spin probe
motions inside NaTDC are more restricted compared with NaTC. The rotational correlation time
reflects dynamic of the spin probe in a given environment and the results shown that this parameter
increases in the case of mitoxantrone/bile salt micelles.

Because the cell membrane is the first obstacle to be overcome by drugs in order to enter
cells and micelles are known as simple model systems for complicated biological membranes,
the present results represent a first step towards the general understanding of the drug-biomimicking
structures interaction.
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