A novel synthesis of 4-acetoxyl
 5(4H)-oxazolones by direct α-oxidation of N -benzoyl amino-acid using hypervalent iodine

Gang Wen, Wenxuan Zhang,* Song Wu*
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
*email: wxzhang@imm.ac.cn; ws@imm.ac.cn

Content

1. Reagent.
2. Instrument.
3. The preparation of N-benzoyl amino acid substrates 1a-10a.
4. Synthesis of the target compounds 1b-10b
5. The by-product of the oxidative reaction.
6. The synthesis of the product $\mathbf{1 b}$ from intermediate $\mathbf{1 c}$.
7. Reagent: Unless otherwise indicated, all solvents and organic reagents were obtained from commercially available sources and were used without further purification. The following solvents were dried using molecular sieves. $\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}(98 \%$, Innochem $), \mathrm{Pd}(\mathrm{OAc})_{2}(99 \%$, Innochem $), \mathrm{Ac}_{2} \mathrm{O}(99+\%$, Acros) were used in the Pd-catalyzed reaction.
8. Instrument: The reaction process was monitored using thin layer chromatography (TLC) with silica gel plates (thickness $=0.20 \mathrm{~mm}, \mathrm{GF}_{254}$) under UV light. Flash chromatography was performed using a ZCX-II, (200-300 mesh) to purify the products. ${ }^{1} \mathrm{H}$ NMR spectra was recorded on a Varian Mercury- 500 MHz instrument, while ${ }^{13} \mathrm{C}$ NMR spectra was recorded at 400 MHz on a Varian Mercury using DMSO- d_{6} as a solvent and tetramethylsilane (TMS) as an internal standard. Mass spectra was obtained using a Waters Acquity UPLC-SQD mass spectrometer. High resolution mass spectra (HRMS) were recorded on an Agilent Technologies LC/MSD TOF spectrometer.
9. The preparation of N -benzoyl amino acid substrates $\mathbf{1 a - 1 0 a}$.

To a solution of amine (1.0 eq) in 15 ml 1 N NaOH at $0^{\circ} \mathrm{C}$ is added 4-Methylbenzoyl chloride dropwise (1.03 eq). The solution is stirred at rt for 2 hours until the reaction is complete based on TLC ($\mathrm{PE}: \mathrm{EA}=1: 1$). And then it is quenched with conc. HCl to $\mathrm{pH}=2$. The precipitate is filtered and the resulting residue is recrystallized in $\mathrm{EtOAc} / \mathrm{Hex}$ to give the key intermediate as a white solid.

3.1. 3-methyl-2-(4-methylbenzamido)pentanoic acid(1a)

White solid; Yield: 92%; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6\right) ~ \delta: 12.54(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~m}$, $1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z} 249.40[\mathrm{M}+\mathrm{H}]^{+}$.

3.2. (4-methylbenzoyl)alanine(2a)

White solid; Yield: 85%; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta: 12.49(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~S}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ESI $\left.{ }^{+}\right)$: m/z $207.92[\mathrm{M}+\mathrm{H}]^{+}$.

3.3. 2-(4-methylbenzamido)butanoic acid(3a)

White solid; Yield: 82%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta: 12.59(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{td}, J=8.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 5 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{dt}, J=$ $13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ESI'): m/z $222.38[\mathrm{M}+\mathrm{H}]^{+}$.
3.4. (4-methylbenzoyl)valine(4a)

White solid; Yield: 88%; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 12.59(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H})$; MS (ESI'): m/z $236.09[\mathrm{M}+\mathrm{H}]^{+}$.
3.5. 2-(4-methylbenzamido)pentanoic $\operatorname{acid}(5 \mathbf{5})$

White solid; Yield: 90%; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 12.51(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{dt}, J=$ $14.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z} 235.96[\mathrm{M}+\mathrm{H}]^{+}$.

3.6. 2-(4-methylbenzamido)hexanoic acid(6a)

White solid; Yield: 87%; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 12.50(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{td}, J=8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{tdd}, J=14.2,12.1,10.1$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{tq}, J=15.8,9.1,8.5 \mathrm{~Hz}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z} 250.08[\mathrm{M}+\mathrm{H}]^{+}$.

37. (4-methylbenzoyl)leucine(7a)

White solid; Yield: $89 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 12.67(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.47-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=$ 6.3 Hz, 3H), $0.86(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z} 250.00[\mathrm{M}+\mathrm{H}]^{+}$
38. (4-methylbenzoyl)phenylalanine(8a)

White solid; Yield: 84\%; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta: 8.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24(\mathrm{~m}, 7.9 \mathrm{~Hz}, 6 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=13.3,10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z} 298.11[\mathrm{M}+\mathrm{H}]^{+}$.
3.9. 3-(2-methoxyphenyl)-2-(4-methylbenzamido)propanoic acid(9a)

White solid; Yield: 85%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 12.58(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ $(\mathrm{m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=13.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=13.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}^{(\mathrm{ESI}}$) m/z $314.29[\mathrm{M}+\mathrm{H}]^{+}$.
3.10. 2-(4-methylbenzamido)-3-(4-((4-methylbenzoyl)oxy)phenyl)propanoic acid(10a)

White solid; Yield: 50\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} \sigma$) $\delta: 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.50$ $(\mathrm{s}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=13.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=13.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}$ $418.32[\mathrm{M}+\mathrm{H}]^{+}$.

4. Synthesis of the target compounds ($\mathbf{1 b} \mathbf{- 1 0 b}$)

A mixture of N -benzoylamide amino acid substrates $(0.4 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{PhI}(\mathrm{OCOCF} 3)_{2}(0.6 \mathrm{mmol}, 1.5 \mathrm{eq})$ and anhydrous toluene: Acetic anhydride $(\mathrm{v}: \mathrm{v}=4 \mathrm{ml}: 1 \mathrm{ml})$ in a three-necked flask (10 ml) was heated at $60^{\circ} \mathrm{C}$ for 1.5 hours. After the reaction was completed, the reaction mixture was cooled to rt , and concentrated under reduced pressure. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the desired products.

4.1. 4-(sec-butyl)-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate(1b)

Yellow oil; Yield: 63\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta: 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.95-0.89(\mathrm{~m}, 1.5 \mathrm{H})$, $0.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta: 172.20,167.96,164.06,141.22,131.66,128.90,127.68,94.46$, 42.82, 24.53, 21.24, 21.13, 14.44, 11.26; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 290.1392$; Found: 290.1380.
4.2. 4-methyl-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate(2b):

Yellow oil; Yield: 53\%; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 7.86(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta: 172.29,168.05,167.55$, $141.31,131.67,129.56,129.37,128.97,127.73,21.29,21.17$; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 276.1236$; Found: 276.1220.
4.3. 4-ethyl-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate(3b)

Yellow oil; Yield: 47%; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta: 173.57,170.06$, $162.99,144.82,130.04,128.27,121.83,92.41,28.98,21.48,20.12,6.34$; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}\left[\mathrm{M}_{+} \mathrm{H}^{+}\right]$: 262.1079; Found: 262.1071.
4.4. 4-isopropyl-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate (4b)

Yellow oil; Yield: 53\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta: 173.38,170.13,163.20,144.90,130.08,128.28,121.17,94.29,34.18,21.48,21.40,15.62 .15 .05$; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 276.1236; Found: 276.1220.
4.5. 5-oxo-4-propyl-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate(5b)

Yellow oil; Yield: 47%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta: 173.68,170.02,162.92,144.81,130.03,128.26,121.86,92.01,37.51,21.47,20.13,15.28,13.74 ;$ HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$276.1236; Found: 276.1226.
4.6. 4-butyl-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate($\mathbf{6 b}$)

Yellow oil; Yield: 60%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta: 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta: 173.63,169.98,162.89,144.80,130.02,128.25,121.84,92.02,35.25,23.74,21.93,21.44,20.10$, 13.80; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right.$]: 290.1392; Found: 290.1378.

4.7. 4-isobutyl-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate(7b)

Yellow oil; Yield: 47%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta: 172.20,167.94,163.31,141.21,131.67,128.90,127.68,92.02,47.17,23.75,22.38$, 21.24, 21.12, 14.14; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 290.1392; Found: 290.1390.
4.8. 4-benzyl-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate($\mathbf{8 b}$)

Yellow oil; Yield: 45\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.74$ (d, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.35$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20 $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 5 \mathrm{H}), 3.44(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 172.21,167.96,166.52,142.05,141.23,135.14,131.66,129.44,128.91,128.50,127.68$, 109.72, 30.19, 21.25, 21.13; HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 324.1236$; Found: 324.1234.
4.9. 4-(2-methoxybenzyl)-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl acetate(9b)

Yellow oil; Yield: 51%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta: 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20$
$-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.32(\mathrm{q}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta: 172.85,169.88,162.39,157.94,144.64,132.21,131.70,129.97$, $129.51,129.36,128.90,128.85,127.98,127.68,121.81,120.13,119.75,111.16,92.43,55.54,35.34,21.44,20.21$; HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 354.1341 ; Found: 354.1322.
4.10. 4-((4-acetoxy-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl)methyl)phenyl 4-methylbenzoate(10b)

Yellow oil; Yield: 45\%; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta: 7.97$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 $-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta: 173.01,169.93,164.59,162.96$, $150.22,144.88,144.71,132.11,130.05,130.00,129.69,129.50,129.46,128.18,127.67,126.26,121.79,92.29$, 40.59, 21.48, 21.42, 20.17; HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 458.1604; Found: 458.1587.
5. The by-product of the oxidative reaction.
Entry

5

$6 a$
20%
6

40%
(10\%)
7

10%

8

 18%
(30\%)b
9

10a

(30\%) ${ }^{\text {b }}$
${ }^{\text {a }}$ Isolated yields
${ }^{\text {b }}$ Yields were based on UPLC-MS
6. The synthesis of the product $\mathbf{1 b}$ from intermediate $\mathbf{1 c}$.

A mixture of 4-(sec-butyl)-2-(p-tolyl)oxazol-5(4H)-one 1c $(0.4 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}(0.6 \mathrm{mmol}, 1.5 \mathrm{eq})$ and anhydrous toluene: Acetic anhydride $(\mathrm{v}: \mathrm{v}=4 \mathrm{ml}: 1 \mathrm{ml})$ in a three-necked flask $(10 \mathrm{ml})$ was heated at $60{ }^{\circ} \mathrm{C}$ for 1.5 hours. After the reaction was completed, the reaction mixture was cooled to rt , and concentrated under reduced pressure. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the desired products $\mathbf{1 b}$.

