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Abstract: Knowledge of drug–target interaction (DTI) plays an important role in discovering new
drug candidates. Unfortunately, there are unavoidable shortcomings; including the time-consuming
and expensive nature of the experimental method to predict DTI. Therefore, it motivates us to
develop an effective computational method to predict DTI based on protein sequence. In the
paper, we proposed a novel computational approach based on protein sequence, namely PDTPS
(Predicting Drug Targets with Protein Sequence) to predict DTI. The PDTPS method combines Bi-gram
probabilities (BIGP), Position Specific Scoring Matrix (PSSM), and Principal Component Analysis
(PCA) with Relevance Vector Machine (RVM). In order to evaluate the prediction capacity of the
PDTPS, the experiment was carried out on enzyme, ion channel, GPCR, and nuclear receptor datasets
by using five-fold cross-validation tests. The proposed PDTPS method achieved average accuracy of
97.73%, 93.12%, 86.78%, and 87.78% on enzyme, ion channel, GPCR and nuclear receptor datasets,
respectively. The experimental results showed that our method has good prediction performance.
Furthermore, in order to further evaluate the prediction performance of the proposed PDTPS method,
we compared it with the state-of-the-art support vector machine (SVM) classifier on enzyme and
ion channel datasets, and other exiting methods on four datasets. The promising comparison results
further demonstrate that the efficiency and robust of the proposed PDTPS method. This makes it a
useful tool and suitable for predicting DTI, as well as other bioinformatics tasks.
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1. Introduction

The identification of drug–target interactions (DTI) has recently emerged as an area of intense
research activity due to its important role in finding new proteins to target for drug development and
discovering new drug candidates [1,2]. However, the target proteins of many drugs are not complete
or even not known. In the past years, much effort has been devoted to using experimental methods
to identify drug–protein interactions. But these experimental methods are both time-consuming and
expensive. It often costs billions of dollars for developing a successful novel chemistry-based drug
and takes nearly a decade for introducing the drug to market. However, there are only few drug
candidates that can be approved to reach the market by Food and Drug Administration (FDA) [3–5].
This is partially caused by the unacceptable toxicity for those drug candidates with the satisfactory
activity, due to the deficient of the knowledge of drug–target interactions. Thus, it is necessary to

Molecules 2017, 22, 1119; doi:10.3390/molecules22071119 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules22071119
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 1119 2 of 13

develop fast and reliable computational methods for identifying drug–target interactions. Therefore,
it is becoming more and more important to use computational approaches to detect DTI. The cost and
time of experimental methods can be reduced and new potential drug–target interaction candidates
can be found by using computational methods.

With the emergence of molecular medicine and the completion of the human genome project,
the body of publicly-available knowledge of biology and chemistry is increasing rapidly. It makes
the researchers restudy DTI questions by a systematic integration. A number of related databases
that focus on drug–target relations have been constructed. We can freely obtain some of them from
the public sector, such as SuperTarget and Matador [6], Kyoto Encyclopedia of Genes and Genomes
(KEGG) [7], DrugBank [8,9], Therapeutic Target Database (TTD) [10,11], etc. It is much useful for many
researchers that a number of important experimental materials can be obtained from these databases
to develop new computational approaches for identifying DTI on a genome-wide scale [12,13].

All the time, in order to predict drug–target interactions, traditional computational methods are
divided into the ligand-based virtual screening method and the docking approach. The ligand-based
virtual screening method compares the similarity of a given proteins represented based on chemical
structure with a classic SAR framework, which is used to predict DTI [14]. However, there is an
obvious shortcoming that the information of protein domains is not used for the method. The docking
simulation is a much useful molecular modeling method that can detect the positive interactions by
using dynamic simulation when drug molecule and protein bound to each other [15–17]. However,
the method has also a significant disadvantage that it can be only applied to proteins whose 3D
structures are known. However, up to now, the proteins whose 3D structures are known comprise only
a small part of all proteins. As a result, it is difficult to satisfy the experimental condition of the docking
simulation method. Furthermore, the number of detected protein sequence data related to the known
3D structure data are increasing exponentially. Therefore, this promotes the need for developing new
computational approaches based on protein sequence for detecting drug–target interactions.

In recent years, a number of computational approaches have been proposed to predict drug–target
interactions. For example, Yang et al. [18] developed a new computational method to detect
multiple target optimal intervention solutions in a disease network. The method attempts to identify
effective points of intervention and the combination of interventions within a given disease network,
which can best restore the disease network to a desired normal state. Yan et al. [19] developed a
representation of drug–target pairs based on drug chemical similarity and target sequence similarity
and employed the random forest as classifier to build the prediction models. By comparing the method
and the state-of-the-art methods, it produces satisfying performance on the benchmark datasets.
Kuang et al. [20] developed a novel method that proposed an eigenvalue transformation technique
and applied this technique to two representative algorithms for predicting DTI, the Regularized
Least Squares classifier (RLS) and the semi-supervised link prediction classifier (SLP). The prediction
results show that the method achieved better performance on drug–target interaction prediction.
Bharadwaja et al. [21] proposed a new approach for identifying novel interactions for drugs and targets
with no prior interaction information, which improved a machine learning method by integrating
more correlated information of the drug compounds and extended it to a weighted profile method.
Peng et al. [22] proposed a prediction model name as NormMulInf which is a semi-supervised-based
learning framework through collaborative filtering theory, employing labeled and unlabeled interaction
information. Firstly, the method determines similarity principles, for example samples’ similarities
and local correlations between samples’ labels by integrating biological information. Secondly, the
similarity information can be integrated into the NormMulInf model, which solves the problem of
augmented Lagrange multipliers. Wang et al. [23] proposed a new computational method, namely
PDTD (Predicting Drug Targets with Domains), for identifying potential target proteins of new drugs
based on derived interactions between drugs and protein domains. Zhang et al. [24] proposed a
stacking-based ensemble learning method to boost performance of previous DTI prediction methods
by using a state-of-the-art support vector machine (SVM) model as classifier to integrate the prediction
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results of previous methods. Although these methods have achieved good prediction accuracy,
however, the proposed prediction model focuses on improving the prediction accuracy. Thus, there is
still room to improve the prediction accuracy to identify DTI.

In the paper, we proposed a novel computational approach based on protein sequence, namely
PDTPS (Predicting Drug Targets with Protein Sequence), to predict drug–target interactions (DTI).
The PDTPS method combines Bi-gram probabilities (BIGP), Position Specific Scoring Matrix (PSSM),
and Principal Component Analysis (PCA) with Relevance Vector Machine (RVM). In order to evaluate
the prediction capacity of the PDTPS, we carry out the experiment on enzyme, ion channel, GPCR,
and nuclear receptor datasets by using five-fold cross-validation tests. The proposed PDTPS method
achieved average accuracy of 97.73%, 93.12%, 86.78%, and 87.78% on enzyme, ion channel, GPCR,
and nuclear receptor datasets respectively. The experimental results showed that our method has
good prediction performance. Furthermore, in order to further evaluate the prediction performance
of the proposed PDTPS method, we compared it with the state-of-the-art support vector machine
(SVM) classifier on enzyme and ion channel datasets and other exiting methods on four datasets.
The promising comparison results further demonstrate the efficiency and robustness of the proposed
PDTPS method. This makes it a useful tool and suitable for predicting DTI, as well as other
bioinformatics tasks. The flow chart of the proposed prediction model is shown in Figure 1.
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Figure 1. The flow chart of the proposed prediction model.

2. Results and Discussion

2.1. Performance of the Proposed Method

In order to verify the effectiveness of the proposed method, we carry out the experiment
on enzyme, ion channel, GPCR, and nuclear receptor datasets through employing five-fold
cross-validation tests respectively. For five-fold cross-validation, the whole dataset was divided
into five parts; four parts of them were used as training samples, and one part of them was employed
as testing samples. In addition, there are several parameters that need be optimized for the RVM
classifier in the experiment. Here, the ’ploy2’ function was selected as the kernel function, we also
set up other parameters: width = 1, initapla = 1/N and beta = 0. Where width represents the width
of ‘ploy2’ kernel function, N is the number of training samples, and beta represents classification.
Tables 1–4 list the five-fold cross-validation tests prediction results by using the proposed approach on
enzyme, ion channel, GPCR, and nuclear receptor datasets.
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It can be observed from Tables 1–4 that the average Accuracy (Ac) and its standard deviation
for enzymes, ion channels, GPCRs, and nuclear receptors is 97.73%, 93.12%, 86.77%, 87.78%, and
0.40%, 1.34%, 2.41%, and 3.17%, respectively. The corresponding average Sensitivity (Sn) and its
standard deviation is 97.44%, 93.32%, 84.89%, 92.63%, and 1.04%, 1.54%, 4.04%, 11.53%, respectively.
The corresponding average Precision (Pe) and its standard deviation is 98.01%, 92.96%, 87.91%, 85.19%,
and 0.78%, 2.10%, 3.47%, 6.70%, respectively. At the same time, the average Matthews’s correlation
coefficient (Mcc) and its standard deviation is 95.56%, 87.18%, 76.97%, 78.32%, and 0.76%, 2.28%, 3.64%,
4.72%, respectively. These experimental results indicated that the proposed method can obtain good
prediction accuracy for predicting drug–target interactions.

The good prediction results of the proposed approach for drug–target interactions result from the
correct choice of feature extraction method and classifier. Major improvements of the proposed feature
extraction method can be divided into three following reasons: (1) Because PSSM not only describes
the order information but also retains sufficient prior information, it can capture useful information
from a given protein sequence; (2) The Bi-gram probabilities represented each protein PSSM and
calculated the Bi-gram feature through employing the probability information PSSM contains. Because
the Bi-gram features extracted from PSSMs can significantly reduce the sparsity level, this helps in
improving the recognition performance; (3) For reducing the influence of noise for classifying and
ensuring the integrity of feature information, we transformed the dimensions of each BIGP feature
vector from 400 to 350 using Principal Component Analysis (PCA). Thus, it can be seen from these
experimental results that the proposed BIGP method plays an essential role for improving prediction
accuracy for predicting DTI.

Table 1. 5-fold cross validation results performed by proposed model on an enzyme dataset.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

1 97.95 98.31 97.65 95.98
2 97.52 95.84 99.31 95.16
3 97.26 97.29 97.29 94.68
4 98.29 98.44 98.10 96.64
5 97.61 97.34 97.69 95.33

Average 97.73 ± 0.40 97.44 ± 1.04 98.01 ± 0.78 95.56 ± 0.76

Table 2. 5-fold cross validation results performed by proposed model on an ion channel dataset.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

1 92.71 91.18 94.58 86.48
2 91.02 92.31 89.49 83.64
3 94.41 94.46 94.14 89.44
4 93.39 93.81 94.10 87.55
5 94.07 94.85 92.47 87.18

Average 93.12 ± 1.34 93.32 ± 1.54 92.96 ± 2.10 87.18 ± 2.28

Table 3. 5-fold cross validation results performed by proposed model on a GPCR dataset.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

1 83.07 77.88 83.02 71.21
2 88.58 86.86 91.54 79.70
3 87.41 85.40 90.70 77.91
4 85.83 86.15 86.15 75.66
5 88.98 88.14 88.14 80.28

Average 86.77 ± 2.41 84.89 ± 4.04 87.91 ± 3.47 76.97 ± 3.64
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Table 4. 5-fold cross validation results performed by proposed model on a nuclear receptor dataset.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

1 83.33 73.68 93.33 71.79
2 88.89 100.0 80.00 80.00
3 91.67 100.0 86.96 84.05
4 86.11 100.0 76.19 75.59
5 88.89 89.47 89.47 80.19

Average 87.78 ± 3.17 92.63 ± 11.53 85.19 ± 6.70 78.32 ± 4.72

2.2. Comparison with the SVM-Based Method

The proposed method has achieved good prediction accuracy. In order to further evaluate the
prediction performance of the RVM classifier, the comparison of prediction accuracy between the RVM
classifier and the state-of-the-art support vector machine (SVM) classifier was carried out through
employing the same feature extraction method on enzyme and ion channel datasets. We also adopted
five-fold cross-validation tests to assess the prediction accuracy of the SVM classifier. The LIBSVM
tool [25] of SVM was used to execute classification. In the experiment, we also optimized several
parameters of the SVM classifier. We selected the radial basis function (RBF) as the kernel function, and
the c and g parameters of the RBF kernel were set up (c = 0.5 and g = 0.6) by using a grid search method.

The comparison prediction results of RVM and SVM classifiers on enzyme and ion channel
datasets are listed in Tables 5 and 6, respectively. At the same time, the comparison of ROC Curves
between RVM and SVM classifiers are also shown in Figures 2 and 3 on enzyme and ion channel
datasets, respectively. As displayed in Table 5, the RVM classifier obtained 97.73% average accuracy
on the enzyme dataset, while 91.15% average accuracy was achieved by the SVM classifier. Similarly, it
can be seen form Table 6 that 93.12% average accuracy was obtained by the RVM classifier and 87.77%
average accuracy was achieved by the SVM classifier on the ion channel dataset. It can be observed
from these results that the prediction accuracy obtained by the RVM classifier is significantly higher
than that of the SVM classifier. In addition, as displayed in Figures 2 and 3, the ROC curves of the RVM
classifier is also obviously better than that of the SVM classifier. The proposed method obtained good
prediction results which may be attributable to two reasons: (1) because the RVM classifier greatly
reduces the amount of calculation of the kernel function relative to the SVM classifier; which helps
in improving the prediction performance; (2) the kernel functions required to meet the condition of
Mercer is the obvious disadvantage of the SVM classifier; however, the RVM classifier overcame it
and solved the problem. Thus, all of these experimental results indicate that the proposed prediction
model might become a useful tool for predicting DTI, as well as performing other bioinformatics tasks.

Table 5. 5-fold cross validation results performed by SVM and RVM classifiers on an enzyme dataset.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

RVM + PSSM + BIGP
1 97.95 98.31 97.65 95.98
2 97.52 95.84 99.31 95.16
3 97.26 97.29 97.29 94.68
4 98.29 98.44 98.10 96.64
5 97.61 97.34 97.69 95.33

Average 97.73 ± 0.40 97.44 ± 1.04 98.01 ± 0.78 95.56 ± 0.76

SVM + PSSM + BIGP
1 90.94 90.56 91.48 83.52
2 89.49 91.18 88.67 81.15
3 90.60 93.06 88.85 82.93
4 92.48 94.11 90.95 86.08
5 92.24 93.97 90.29 85.67

Average 91.15 ± 1.23 92.57 ± 1.62 90.05 ± 1.25 83.87 ± 2.03
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Table 6. 5-fold cross validation results performed by SVM and RVM classifier on an ion channel dataset.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

RVM + PSSM + BIGP
1 92.71 91.18 94.58 86.48
2 91.02 92.31 89.49 83.64
3 94.41 94.46 94.14 89.44
4 93.39 93.81 94.10 87.55
5 94.07 94.85 92.47 87.18

Average 93.12 ± 1.34 93.32 ± 1.54 92.96 ± 2.10 87.18 ± 2.28

SVM + PSSM+ BIGP
1 86.78 84.31 89.58 77.03
2 88.47 90.56 86.33 79.59
3 86.10 89.62 83.28 76.03
4 88.45 86.07 92.36 79.51
5 89.02 91.91 85.32 80.39

Average 87.77 ± 1.26 88.49 ± 3.18 87.37 ± 3.59 78.51 ± 1.87
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2.3. Comparison with Other Methods

Up to now, a number of computational methods have been proposed for predicting drug
target interactions. In our study, in order to further evaluate the prediction performance of the
proposed method, we compared its prediction accuracy with four existing DTI predictors; DBSI [26],
Yamanishi [27], KBMF2K [28], and NetCMP [29] on enzyme, ion channel, GPCR, and nuclear receptor
datasets, respectively. These methods use the same strategy as the proposed method, however, they
adopt different feature extraction methods and classifiers. Table 7 displays these comparison results.
It can be observed from Table 7 that the prediction accuracy of the proposed approach is significantly
higher than the other four methods on enzyme, ion channel, GPCR, and nuclear receptor datasets.
The comparison results further demonstrated that the PDTPS can improve the prediction accuracy
relative to current approaches. Due to using a good classifier and a novel feature extraction method,
the proposed method achieved good prediction results. This makes the PDTPS a useful tool and
suitable for predicting DTI.

Table 7. Comparison of predicting performance between our method and other methods on
four Datasets.

Dataset Our Method DBSI [26] Yamanishi [27] KBMF2K [28] NetCMP [29]

Enzymes 0.9773 0.8075 0.821 0.832 0.8251
Icon Channels 0.9312 0.8029 0.692 0.799 0.8034

GPCRs 0.8677 0.8022 0.811 0.857 0.8235
Nuclear Receptors 0.8778 0.7578 0.814 0.824 0.8394

3. Materials and Methods

3.1. Dataset

In this study, we carried out the experiment using the proposed method on four protein targets
datasets: enzymes, ion channels, GPCRs, and nuclear receptors. These data can be freely obtained
from the KEGG BRITE [7], BRENDA [30], SuperTarget [6], and Drug Bank [8] databases and were used
as the gold-standard datasets by Yamanishi et al [27] The number of drugs known to target enzymes,
ion channels, GPCRs, and nuclear receptors are 445, 210, 233, and 54, respectively. The numbers of
proteins known to be targeted by the drugs are 664, 204, 95, and 26 respectively. These drug–target
pairs were carefully screened, 5127 pairs of them are known to interact with each other. The numbers
of known interactions involving enzymes, ion channels, GPCRs, and nuclear receptors are 2926, 1476,
635, and 90, respectively. Then, all known interactions of the drug–target pairs were chosen as positive
sample sets for four datasets in our experiment.

A bipartite graph is usually used to represent a drug–target interaction network, whose nodes
represent target proteins or drug molecules and the edges describe the real drug–target interactions
that have been already identified through experiments or other ways. It can be observed from bipartite
graph that the number of the real drug–target interactions edges are small. Here, we take the enzyme
dataset as an example; there are a total of 295,480 (445× 664) connections in the corresponding bipartite
and only 2926 edges of them are known drug–target interactions. Therefore, the possible number of
negative samples (295,480 − 2926 = 29,2554) is significantly more than the number of positive samples
(2926), which is a bias problem. In order to solve this problem, we randomly selected the negative
samples as much as the positive sample. As a result, there are 2926, 1476, 635, and 90 negative samples
of enzymes, ion channels, GPCRs, and nuclear receptors datasets. In other words, there are 5852, 2952,
1270, and 180 drug–target pairs of enzymes, ion channels, GPCRs, and nuclear receptors datasets in
the experiment.
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3.2. Position Specific Scoring Matrix

Position Specific Scoring Matrix (PSSM) can be represented an M × 20 matrix M ={
Mij i : 1 = 1 . . . M, j = 1 . . . 20

}
, where M represents the length of a given protein sequence,

20 is the number of 20 amino acids, and Mij represents the score of the jth amino acid relative
to the ith position for a query protein sequence [31]. The score Mij can be expressed as Mij =

20
∑

k = 1
p(i, k) × q(j, k) , where p(i, k) represents the appearing frequency of the kth amino acid at

position i of the probe, and q(i, k) is the value of Dayhoff’s mutation matrix between jth and kth amino
acids. Thus, a high score represents a highly-conserved position; on the contrary, a low score represents
a weakly-conserved position.

In the study, in order to create experimental datasets, we used Position Specific Iterated BLAST
(PSI-BLAST) [32] to construct PSSMs for each protein sequence. The e-value and number of iterations
are set up as the default values in PSI-BLAST. For achieving highly and widely homologous sequences,
an e-value of 0.001 and three iterations were selected. It is possible that features may be different if we
use different parameters, however, in the work we concentrated on exploring general PSSM features
for predicting DTI by employing mostly default settings. Thus, each PSSMs feature vector can be
represented as M × 20 matrix by using PSI-BLAST, where M is the number of residues of a given
protein sequence and the 20 columns are the number of 20 amino acids.

3.3. Bi-Gram Probabilities

The Bi-gram Probabilities (BIGP) have been used for protein fold recognition. In the literature [33],
it was described how to use a given protein’s original primary sequence or its consensus sequence
for protein fold recognition. Instead, we employed the BIGP feature extraction method that the
literature [34] proposed to represent a given protein sequence based on its PSSM (PSSM has been
mentioned in the Section 3.2 of the paper). In detail, the bi-gram feature vector was computed through
counting the bi-gram frequencies of occurrence in PSSM. It is assumed that P represents the PSSM
of a protein sequence, which contains L rows and 20 columns, where L is the length of a given
protein sequence and 20 columns represents a number of 20 amino acids. The PSSM element Pij can
be interpreted as the relative probability of jth amino acid at the ith location of the primary protein

sequence, Pij can be expressed as Pij =
20
∑

j = 1
i : 1 = 1 . . . L, j = 1 . . . 20. The frequency of occurrence

of transition from mth amino acid to nth amino acid can be defined as follows:

BIGPmn =
L−1

∑
i = 1

Pi,mPi+1,n1 ≤ m ≤ 20, 1 ≤ n ≤ 20 (1)

Equation (1) gives 400 frequencies of occurrence BIGPmn for 400 bi-gram transitions, the matrix
BIGP called the bi-gram occurrence matrix, the number of the 400 whose elements represent the
bi-gram feature vector [34] are as follows:

BF = [BGP1,1, BGP1,2 . . . BGP1,20, BGP2,1, . . . BGP2,20, . . . . . . BGP20,1, . . . BGP20,20] (2)

These bi-gram features can also be expressed as follows:

BF = [ϕ1,, ϕ2, ϕ3, . . . ϕu,, . . . ϕθ ] (3)
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where θ = mn = 400 is the dimensionality of the feature vector BF, the ϕu can be represented
as follows:

ϕu =



BGP1,u (1 ≤ u ≤ 20)
BGP2,u−20 (21 ≤ u ≤ 40)

. . . . . .
BGP20,u−380 (381 ≤ u ≤ 400)

(4)

Finally, each protein sequence was converted into a 400-dimensional vector by using BIGP method.
In the paper, to reduce the influence of noise and improve the prediction accuracy, the dimensions of
enzymes, ion channels, GPCRs, and nuclear receptors datasets were reduced from 400 to 350 by using
Principal Component Analysis (PCA) method.

3.4. Relevance Vector Machine

The related theory of the Relevance Vector Machine describes in details in the literature [35].
We assumed {xn, tn}N

n = 1, xn ∈ Rd is the training set for binary classification question, where
tn ∈ {0, 1} represents the training set label, ti is the testing set label, and ti = yi + εi, where

yi = wT ϕ(xi) =
N
∑

j = 1
wjK

(
xi, xj) + w0 is the classification model; εi is the additional noise, with a

mean value of zero and a variance of σ2, where εi ∼ N(0, σ2), ti ∼ N(yi, σ2). It is assumed that the
training sets are independent and identically distributed; the vector t submits to as follows distribution:

p( t
∣∣∣x, w, σ2 ) = (2πσ2)

−N/2
exp[− 1

2σ2 ||t− ϕw||2] (5)

where ϕ is defined as follows:

ϕ =

 1 k(x1, x1) · · · k(x1, xN)

. . . . . . . . .
1 k(xN , x1) . . . k(xN , xN)

 (6)

The training set label t is employed to detect the testing set label t∗, given by

p(t∗|t) =
∫

p(t∗|w, σ2)p(w, σ2|t)dwdσ2 (7)

Due to making the value of most components of the weight vector w zero and reducing the
number of calculation of the kernel function, additional conditions are attached to the weight vector
w Assuming that wi obeys a distribution with a mean value of zero and a variance of α−1

i , the mean

wi ∼ N
(

0, α−1
i

)
,p(w|a) =

N
∏
i=0

p(wi|ai) where α is a hyper-parameter vector of the prior distribution

of the weight vector w.

p(t∗|t) =
∫

p(t∗|w, a,σ2)p(w, a,σ2|t)dwdadσ2 (8)

p(t∗|w, a, σ2) = N(t∗ |y(x∗; w), σ2) (9)

Because p(w, a, σ2|t) cannot be obtained by an integral, it must be resolved using a Bayesian
formula, given as

p(w, a, σ2|t) = p(w|a, σ2, t)p(a, σ2|t) (10)

p(w|a, σ2, t) = p(t|w, σ2)p(w|a)/p(t|a, σ2) (11)
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The integral of the product of p
(
w, a, σ2|t

)
and p(w|a) is as follows:

p(t|a, σ2) = (2π)−N/2|Ω|−1/2 exp (− tTΩ−1t
2

) (12)

Ω = σ2 I + ϕA−1 ϕT , A = diag(a0,a1, . . . , aN) (13)

p(w|a, σ2, t) = (2π)−(N+1)/2|Σ|−1/2 exp (− (w− u)T(w− u)
2

) (14)

Σ = (σ−2 ϕT ϕ + A)
−1

(15)

u = σ−2ΣϕTt (16)

Because p(a, σ2|t)∝ p(t|a, σ2)p(a)p(σ2) and p(a, σ2|t) cannot be solved by means of integration,
the solution is approximated using the maximum likelihood method, represented by

(aMP, σ2
MP) = arg

a,σ2
maxp(t|a, σ2) (17)

The iterative process of aMP and σ2
MP is given by:

anew
i = γi

µ2
i

(σ2)
new

= ||t−ϕµ||2

N−∑N
i=0 µi

γi = 1− ai ∑ i, i

(18)

Here ∑ i, i is ith element in the Σ diagonal and the initial value of α and σ2 can be decided via the
approximation of aMP and σ2

MP using Formula (15) continuously updated. After enough iterations,
most of ai will be close to infinity, the corresponding parameters in wi will be zero, and other ai values
will be close to finite. The resulting corresponding parameters xi of ai are now referred to as the
relevance vector.

3.5. Performance Evaluation

In the paper, we used the following evaluation criteria as a measure for evaluating the performance
of the proposed classifier and feature extraction method in our experiment. There are Ac (Accuracy), Sn
(Sensitivity), Pe (precision), and Mcc (Matthews’s correlation coefficient). The definition is as follows:

Ac = TP+TN
TP+FP+TN+FN

Sn = TP
TP+TN

Pe = TP
FP+TP

Mcc = (TP × TN)−(FP × FN)√
(TP+FN) × (TN+FP) × (TP+FP) × (TN+FN)

(19)

where true positives (TP) represents the number of positive pairs that are predicted as interacting
drug–target pairs, false positives (FP) is the count of negative pairs that are predicted as interacting
drug–target pairs, true negatives (TN) is the total of negative pairs that are predicted as non-interacting
drug–target pairs and false negatives (FN) represents the number of positive pairs that are predicted as
non-interacting drug–target pairs. In addition, the Receiver Operating Curve (ROC) was established
to evaluate the performance of the proposed approach in the experiment.

4. Conclusions

In the paper, we proposed a novel computational approach based on protein sequence, namely
PDTPS (Predicting Drug Targets with Protein Sequence), to predict drug–target interactions (DTI).
The PDTPS method combines bi-gram probabilities (BIGP), Position Specific Scoring Matrix (PSSM),
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and Principal Component Analysis (PCA) with Relevance Vector Machine (RVM). In order to evaluate
the prediction capacity of the PDTPS, we carried out the method on enzyme, ion channel, GPCR,
and nuclear receptor datasets by using five-fold cross-validation tests. The proposed PDTPS method
achieved average accuracy of 97.73%, 93.12%, 86.78%, and 87.78% on enzyme, ion channel, GPCR, and
nuclear receptor datasets, respectively. The experimental results showed that our method has good
prediction performance. Furthermore, in order to evaluate the prediction performance of the proposed
PDTPS method, we compared it with the state-of-the-art support vector machine (SVM) classifier
on enzyme and ion channel datasets and other existing methods on four datasets. The promising
comparison results further demonstrate the efficiency and robustness of the proposed PDTPS method.
This makes it a useful tool and suitable for predicting DTI, as well as performing other bioinformatics
tasks. For future studies, more effective feature extraction approaches and machine learning algorithms
can be developed for predicting DTI.
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