Supporting Information

Article

Combining NMR spectroscopy and chemometrics to monitor structural features of crude heparin. Lucio Mauri¹, Maria Marinozzi¹, Giulia Mazzini¹, Richard E. Kolinski², Michael Karfunkle², David A. Keire², Marco Guerrini^{1*}

 ^{1*}Institute for Chemical and Biochemical Research G. Ronzoni, via G. Colombo 81, 20133 Milan, Italy
 ² Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 645 S. Newstead Ave., St. Louis, MO 63110, USA
 *Correspondence: guerrini@ronzoni.it; Tel.: +39-02-70641621

List of Figures

- **Fig. S1.** ¹H spectra of the supernatant and re-suspended precipitate.
- Fig. S2. ¹H spectra of crude heparin samples in D_2O and phosphate buffer.
- **Fig. S3.** Loading plot of the first two principal components of PCA of the anomeric region of PMHC spectra.
- **Fig. S4.** ¹H spectra of crude heparin samples belonging to group A, B and C.
- **Fig. S5.** HSQC spectrum of crude heparin ring signals region.
- **Fig. S6.** HSQC spectrum of crude heparin anomeric signals region.
- **Fig. S7.** Score plot of the first two components of the PCA of the glycosaminoglycan regions, showing samples of crude heparin from different origins.
- Fig. S8. Loading plots of the first and third component of the PCA of the anomeric region of PMHC spectra.
- **Fig. S9.** Results of the alignment algorithm.

List of Tables

- Table S1. Summary results of preparation procedure.
- Table S2. HSQC Integration regions.
- **Table S3.** Formulas for the HSQC quantification.
- **Table S4.** Plackett-Burman design for the HSQC robustness study.
- **Table S5.** Results of the HSQC quantification for the Plackett-Burman design.
- **Table S6.** Effects of factors of the Plackett-Burman design.
- **Table S7.** Experimental design for the HSQC intermediate precision study.
- Table S8. Results of the HSQC quantification for the intermediate precision experiments.
- **Table S9.** Results of the HSQC intermediate precision study.
- Table S10. HSQC molar percentages of glucosamine residues of 75 porcine crude heparin samples.
- Table S11. HSQC molar percentages of uronic acids residues of 75 porcine crude heparin samples.
- **Table S12.** HSQC percentages of GAGs of 75 porcine crude heparin samples.
- **Table S13.** Linkage region and sulfation degree of 75 porcine crude heparin samples.
- **Table S14.** Alignment algorithm.

Fig. S1. Low field (a) middle field (b) and high field (c) ¹H spectra of crude heparin samples. The spectrum of the supernatant and re-suspended precipitate are shown in blue and red, respectively. Arrows indicate broad signal due to nucleic acid material.

Fig. S2. Anomeric region (a) and acetyl region (b) of four ¹H spectra of crude heparin samples in D_2O and phosphate buffer, respectively. Arrows indicate the acetyl signals of heparin, dermatan and chondroitin components.

Fig. S3. Loading plot of the first two components derived from the PCA of part of the anomeric region. In the loading plot of component 1, negative signals corresponding to the trisulfated disaccharide (*) (-I2S-GlcNS,6S-) are observed. Negative signals corresponding to the H1 of GlcNS,6OH and I2S linked to GlcNS,6OH are observed in the loading plot of the component 2.

Fig. S4. ¹H spectra of crude heparin samples belonging to group A, B and C.

Fig. S5. Ring region of the HSQC spectrum of crude heparin. Signal assignments of heparin and DeS/ ChS components are in black and red, respectively.

Fig. S6. Anomeric region of the HSQC spectra of crude heparin samples. Overlay of an HSQC spectrum of a crude heparin sample with 100% oxidized serine (blue) and one without oxidation (red).

Fig. S7. Score plot of the first two components generated by PCA of BMHC (brown), OMHC (gray) and BLHC (dark brown), against the library of PMHC (violet). Glycosaminoglycan regions of proton spectra were used.

Fig. S8. Loading plots of the first and third component of the PCA of the anomeric region of PMHC spectra. Asterisks indicate the signals corresponding to the H1 of GlcNS,6S-IdoA2S disaccharide in the loading of the component 1 (negative) and H1 GlcNS,OH-IdoA2S disaccharide in the loading of the component 3 (positive).

	Weight loss %	Precipitate %	Solubilized %	
mean	8.8	5.6	85.6	
median	9.7	4.2	86.4	
stdev	4.4	4.7	5.8	
CV%	49.7	84.1	6.8	
MIN	0.0	0.0	64.6	
MAX	20.5	27.6	96.1	

Table S1. Summary results of preparation procedure on 88 samples (weight loss after lyophilization, soluble and insoluble components).

N	Comp	C#	Name in text	Name in formulas	F1		F2	
1	HEP	2	2ANS EX	2ANS6X	62.28	59.79	3.40	3.14
2	HEP	2	² A _{NS 25 6Y}	2ANS3S6X	59.95	58.84	3.51	3.36
3	HEP	2	2ANAC 5Y	2ANAc6X	57.14	55.76	4.02	3.83
4	HEP	2	² A _{NH2 6Y}	2ANH26X	57.26	56.59	3.42	3.35
5	HEP	6	6ANY 2Y	6ANY3X	63.46	61.80	3.99	3.74
6	HEP	6	⁶ A _{NY 3X 65}	6ANY3X6S	70.06	68.29	4.59	4.11
7	HEP	1	¹ A _{NS 6X} -(G)	1ANS6X_G	100.99	99.74	5.66	5.52
8	HEP	1	¹ A _{NS,35,6X}	1ANS3S6X	99.32	98.69	5.56	5.49
9	НЕР	1	${}^{1}A_{NS,6X}$ -(I _{2S}) + ${}^{1}A_{NAc}$ -(G)	Atot	100.81	99.01	5.48	5.26
10	HEP	1	¹ A _{NS 6X} -(I)	1ANS6X_I	98.75	97.88	5.43	5.30
11	HEP	1	¹ A _{NAC.6X} -(I)	1ANAc6X_I	96.85	96.22	5.17	5.13
12	HEP	1	¹ A _{NS.6X} αRed	1ANS6X_aRed_X	94.37	93.56	5.48	5.42
13	HEP	1	¹ A _{NAc.6X} αRed	1ANAc6X_aRed	93.72	93.14	5.23	5.20
14	HEP	1	¹ A _{NS,6X} -(GalA) + Unk	1ANS6X_GalA_Unk	102.41	101.54	5.43	5.38
15	НЕР	1	${}^{1}I_{25}$ -(A _{NY',3X,6X}) + ${}^{1}GalA$	I2Stot	102.73	101.64	5.34	5.05
16	HEP	1	¹ I-(A _{NY'.65})	1I_ANY6S	105.34	104.51	5.06	4.97
17	HEP	1	¹ I-(A _{NY})	1I_ANY	104.99	104.33	4.97	4.92
18	HEP	1	¹ G _X	1GX	103.95	103.37	4.72	4.68
19	HEP	1	¹ G-(A _{NS,3S,6X})	1G_ANS3S6X	104.19	103.56	4.66	4.58
20	HEP	1	¹ G-(A _{NS,6X})	1G_ANS6X	105.32	104.50	4.68	4.56
21	HEP	1	${}^{1}\text{G-}(\text{A}_{\text{NAc,6X}}) + {}^{1}\text{XyI-}(\text{Ser})$	1G_ANAc6X	105.73	104.84	4.56	4.45
22	HEP	1	¹ Gal-(Xyl)	1Gal_Xyl	104.46	104.00	4.57	4.50
23	HEP		α Serine	1Xyl_Ser	57.69	57.04	4.03	3.98
24	HEP	1	¹ Xyl-(oxSer)	1Xyl_oxSer	106.11	105.58	4.48	4.43
25	HEP	1	¹ G-(Gal) + ¹ Gal-(Gal)	2LR	107.14	106.22	4.71	4.61
26	HEP	5	⁵ GalA	5GalA	74.85	74.25	4.73	4.67
27	HEP	1	¹ 2,3-epoxide	1epoxide	97.78	97.24	5.45	5.41
28	HEP	1	¹ I ₂₅ -(A _{NH2,6X})	1I2S_ANH26X	101.54	100.97	5.28	5.22
29	HEP	4	⁴ G _{NR}	4GNR	75.24	74.53	3.59	3.51
30	HEP	3	³ G _{NR}	3GNR	78.60	77.69	3.58	3.51
31	HEP	2	² A _{NAc} ox	2ANAc_ox	59.56	58.41	4.42	4.33
32	ChS	1	¹ G-(GalN _{4S})	1G_ChS4S	106.86	106.27	4.50	4.44
33	ChS	1	¹ G-(GalN _{6S})	1G_ChS6S	107.26	106.88	4.52	4.48
34	DS	1	¹ I-(GalN)	1I_DS	106.54	105.60	4.96	4.82
35	DS	1	¹ I _{2S} -(GalN)	1I2S_DS	103.67	103.04	5.21	5.14
36	DS+ChS	2	² GalN	2GalN_DSChS	55.21	53.07	4.12	3.98
37			noise	noise	59	53	2.0	1.5

⁽¹⁾ Overlapped with GalNAc6S ChS

 Table S2.
 HSQC Integration regions

v_1ANS6X_G + v_1ANS3S6X + v_Atot + v_1ANS6X_I + v_1ANAc6X_I2X + v_1ANS6X_aRed_X + v_1ANAc6X_aRed + v_1ANS6X_GalA_Unk + v_1epoxide
v_2ANS6X + v_2ANS3S6X + v_2ANAc6X + v_2ANH26X
v_6ANY3X + v_6ANY3X6S
v_I2Stot + v_1I2S_ANH26X + v_1I_ANY6S + v_1I_ANY + v_1GX + v_1G_ANS3S6X + v_1G_ANS6X + v_1G_ANAc6X + v_1epoxide
A2SUM+v_2GalN_DSChS
v_1G_ChS4S + v_1G_ChS6S + v_1I_DS + v_1I2S_DS
ressed in glycosaminoglycans components:
100 * A2SUM / GAGSUM
IF [DCSUM > 0] 100 * (v_2GalN_DSChS / GAGSUM) * (v_1I_DS+v_112S_DS) / DCSUM ELSE 0
IF [DCSUM > 0] 100 * (v_2GalN_DSChS / GAGSUM) * (v_1G_ChS4S+v_1G_ChS6S) / DCSUM ELSE 0
glucosamines in heparin and heparan sulfate, expressed in percent:
v_2ANAc6X*100 / A2SUM - (v_1ANAc6X_I2X + v_1ANAc6X_aRed)*100 / A1SUM
v_1ANAc6X_I2X*100 / A1SUM
v_1ANS6X_G*100 / A1SUM
v_1ANS6X_I*100 / A1SUM
v_Atot*100 / A1SUM - v_2ANAc6X*100 / A2SUM + (v_1ANAc6X_I2X + v_1ANAc6X_aRed)*100 / A1SUM
v_1ANS6X_GalA_Unk*100 / A1SUM
v_1epoxide*100 / A1SUM
v_2ANH26X*100 / A2SUM
v_2ANAc6X*100/ A2SUM
v_1ANS3S6X*100 / A1SUM
v_1ANAc6X_aRed*100 / A1SUM
v_1ANS6X_aRed_X*100/A1SUM - v_2ANH26X*100 / A2SUM
100 - A_NH26X - A_NAc6X - A_NS3S6X
ıronic acids in heparin and heparan sulfate, expressed in percent:
v_1G_ANAc6X*100 / USUM
v_1G_ANS6X*100 / USUM
v_1G_ANS3S6X*100 / USUM
v_1I_ANY*100 / USUM
v_11_ANY6S*100 / USUM
v_1I2S_ANH26X*100 / USUM
(v_l2Stot - v_5GalA)*100 / USUM
(v_1G_ANS6X + v_1G_ANAc6X + v_1G_ANS3S6X)*100 / USUM
v_1GX*100 / USUM
(v_11_ANY6S+v_11_ANY)*100 / USUM
(v_112S_ANH26X + v_12Stot - v_5GalA)*100 / USUM
v_5GalA*100 / USUM
v_1epoxide*100 / USUM
v_6ANY3X6S*100 / A6SUM

 Table S3.1 - Formulas for the HSQC quantification

6 - Evaluation of the ligand region and the percentage of oxidized serine:

LR	v_2LR*100 / (A1SUM + USUM)
oxSer	IF [v_1Xyl_Ser+v_1Xyl_oxSer > 0] v_1Xyl_oxSer*100 / (v_1Xyl_Ser+v_1Xyl_oxSer)
	ELSE 'Not Available: Serine not Detected!'
7 - Degree of sulfation:	
DSulf	(A_6S + A_NS6X + 2*A_NS3S6X + G_2S + I_2S) / 100
8 - Additional Results:	
GNR	(v_3GNR + v_4GNR)*100 / (2*USUM)
A _{NAc} -ox	v_2ANAc_ox*100 / A2SUM
A _{NS.6X} from ² A	v_2ANS6X / A2SUM*100
A _{NS,3S,6X} from ² A	v_2ANS3S6X / A2SUM*100
$^{2}A_{SUM}/^{1}A_{SUM}$	A2SUM / A1SUM
$^{1}\text{U}_{\text{SUM}}/^{1}\text{A}_{\text{SUM}}$	USUM / A1SUM
Disacch Mass	336 + 23 + SDEG * 102 + A_NAc6X * 42 / 100
9 - Sulfation distribution de	ermatan sulfate and of chondroitin:
% 2-sulfated DS	IF $[v_1I_DS+v_1I2S_DS > 0]$ 100 * $v_1I2S_DS / (v_1I_DS+v_1I2S_DS)$
(short. DS2S)	ELSE 'Not Available: Dermatan Sulfate not Detected'
% 6-sulfated ChS	IF [v_1G_ChS4S+v_1G_ChS6S > 0] 100 * v_1G_ChS6S / (v_1G_ChS4S+v_1G_ChS6S)
(short. ChS6S)	ELSE 'Not Available: Chondroitin Sulfate not Detected'

Design scheme

Factor	Weight	Buffer pH	Temp.	Phase ⁽¹⁾	DM1	DM2	DM3
Low level (-1)	18 mg	7.0	296 K	PCH0-5°	NA	NA	NA
High level (1)	22 mg	7.2	300 K	PCH0+5°	NA	NA	NA
EXP 1	1	1	1	1	1	1	1
EXP 2	1	1	-1	1	-1	-1	-1
EXP 3	1	-1	1	-1	1	-1	-1
EXP 4	1	-1	-1	-1	-1	1	1
EXP 5	-1	1	1	-1	-1	1	-1
EXP 6	-1	1	-1	-1	1	-1	1
EXP 7	-1	-1	1	1	-1	-1	1
EXP 8	-1	-1	-1	1	1	1	-1

Effects formulas

$$E_{ij} = \frac{1}{4} \cdot \sum_{k=1}^{8} lv_{ki} \cdot r_{kj} \qquad \qquad E_{lim,j} = \pm \sqrt{\frac{\sum_{i=5}^{7} E_{ij}^2}{3}}.$$

 E_{ii} is the effect of factor i on fragment j

 lv_{ki} is the value (1 or -1) of the level for the factor j in the experiment k

 r_{ki} is the value of the fragment j in the experiment k

 $E_{lim,i}$ are the limits outside which an effect on fragment j is considered significant

Table S4 - Plackett-Burman design for the HSQC robustness study and formulas for the computation of the effects of factors.

 $^{(1)}$ ±5° in PCH0 is referred to the optimal value found by the operator.

A	_NAc6X	_G A_	NAc6X_	A_NS6	X_G A_NS	6X_I A_	_NS6X_I_2	2S A_NS6X_0	GalA A	NS6X_Epox A	_NH26X A	_NAc6	X A_N	S3S6X	A_NA	c6XaRec	A_NS6	KaRed A	A_NS6X	A_6S
PB1	14.2		0.8	9.2	9.	8	58.2	0.0		0.0	1.8	16.1	2	1.6		1.1	0.2	2	77.4	75.2
PB2	14.4		0.6	9.7	8.	8	59.0	0.0		0.0	2.0	16.1	2	1.6		1.1	-0.	1	77.3	74.7
PB3	13.1		1.0	10.	5 9.	4	57.2	1.1		0.0	1.9	15.3	4	1.8		1.2	-0.	1	78.1	73.4
PB4	13.7		0.9	10.4	4 8.·	4	57.0	2.1		0.0	2.0	15.8	4	1.1		1.1	0.3	3	78.2	74.2
PB5	13.1		0.8	10.4	4 8.	6	58.2	1.7		0.0	2.0	14.8	2	1.1		1.0	0.2	2	79.1	74.6
PB6	14.1		0.6	8.9	9.	D	60.0	0.0		0.0	2.0	15.4	2	1.4		0.8	0.2	2	78.1	74.7
PB7	15.1		0.4	9.2	8.	7	58.9	0.0		0.7	2.0	16.2	2	1.4		0.7	-0.	1	77.4	75.8
PB8	13.7		0.7	9.8	8.	8	59.3	0.0		0.0	2.0	15.4	2	1.9		1.0	-0.	2	77.7	74.7
PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8	G_A_↑ 6. 7. 6. 7. 6. 6. 6.	NAc6X 9 2 9 8 0 8 2 9	G_A_NS 6.8 7.4 7.2 7.9 6.8 7.2 8.3 6.9	56X G_4	NS3S6X 3.6 3.4 3.9 3.6 3.1 3.8 3.1 3.2	I_A_NY 3.7 4.0 3.3 3.6 3.1 3.2 2.8 3.1	I_A_NY6 7.4 7.7 7.8 7.5 7.8 7.1 7.2 7.0	55 I_25_A_N 2.2 2.7 2.4 2.5 1.9 2.2 2.4 2.4 2.4	H26X I <u></u>	_2S_A_NY3X63 69.4 67.7 68.6 68.0 70.4 69.7 69.3 70.5	X G_2OH 17.3 18.0 18.3 16.8 17.8 17.6 17.0	G_2S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	I_2OH 11.0 11.7 11.0 11.1 10.9 10.2 10.0 10.1	I_2S 71.6 70.3 71.0 70.6 72.2 71.9 71.7 72.8	GalA 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Epox 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0				
	Нер	DS	ChS	DS2S	ChS6S			LR	GNR	oxA_NAc	oxSer	SDE	GI	MDIS						
PB1	89.5	8.4	2.0	11.2	9.7		F	PB1 6.1	2.5	0.0	8.8	2.3	3	604						
PB2	89.9	8.0	2.1	13.7	17.8		F	PB2 6.1	2.6	0.0	4.2	2.3	2	602						
	00.0	0.0	1.0	10.4	14.7				1.0	0.0	 E 6	 	- ว	602						
FDJ	90.0	0.2	1.0	10.4	14.7			- 0.5 5.8	1.9	0.0	5.0	2.5	2	002						
PB4	91.1	7.8	1.1	13.4	0.0		F	PB4 6.5	2.2	0.0	0.0	2.3	1	601						
PB5	90.1	8.6	1.3	11.0	0.0		F	PB5 5.7	1.7	0.0	10.8	2.3	4	604						
PB6	90.9	7.6	1.5	10.8	16.9		F	PB6 6.1	1.8	0.0	0.0	2.3	4	604						
PB7	89.4	8.6	2.0	5.5	8.3		F	PB7 5.9	2.0	0.0	2.9	2.3	4	604						
PB8	90.7	7.8	1.5	11.6	0.0		F	PB8 6.3	3.3	0.0	3.0	2.3	5	605						

Table S5 – Results of the HSQC quantification for the Plackett-Burman designexperiments done to evaluate the method robustness

	Нер	DS	ChS
Weight	-0.14	-0.06	0.19
Buffer pH	-0.2	0.06	0.14
Temperature	-0.91	0.65	0.26
Phase	-0.64	0.19	0.45
DM1	0.15	-0.25	0.1
DM2	0.28	0.07	-0.34
DM3	0.08	-0.05	-0.03

	A _{NH2,6x}	A _{NAc,6x} -(G)	A _{NAc,6x} -(I)	A _{NS,6x} -(G)	A _{NS,6x} -(I)	A _{NS,6x} -(I2S)
Weight	-0.11	-0.14	0.22	0.38	0.31	-1.24
Buffer pH	-0.01	0.03	-0.06	-0.45	0.22	0.72
Temperature	-0.06	-0.09	0.07	0.13	0.39	-0.69
Phase	-0.01	0.86	-0.21	-0.6	0.14	0.76
DM1	-0.04	-0.27	0.07	-0.31	0.64	0.4
DM2	-0.03	-0.5	0.17	0.36	-0.07	-0.6
DM3	-0.01	0.7	-0.07	-0.62	0.09	0.11

	A _{NS,6x} -(GalA)+Unk	A _{NS,3S,6x}	A _{NAc,6x} αRed	A _{NS,6x} αRed
Weight	0.36	0.07	0.28	0.05
Buffer pH	-0.36	-0.12	0	0.17
Temperature	0.16	-0.03	-0.02	-0.01
Phase	-1.2	0.3	-0.03	-0.18
DM1	-0.68	0.36	0.04	-0.05
DM2	0.68	-0.13	0.12	0.17
DM3	-0.16	-0.21	-0.15	0.16

	G-(A _{NAc,6x})	G-(A _{NS,6x})	G-(A _{NS,3S,6x})
Weight	0.23	0.01	0.33
Buffer pH	0.26	-0.52	0.02
Temperature	-0.19	-0.06	-0.08
Phase	-0.06	0.07	-0.27
DM1	0.12	-0.57	0.31
DM2	0.16	-0.44	-0.19
DM3	-0.3	0.49	0.13

	I-(ANy')	I-(ANy',6S)	I2S-(ANH2,6x)	I2S-(ANy',3x,6x)	2,3-epoxide
Weight	0.58	0.3	0.23	-1.52	-0.17
Buffer pH	0.3	0.11	-0.19	0.2	-0.17
Temperature	-0.26	0.19	-0.22	0.45	0.17
Phase	0.1	-0.2	0.19	0.01	0.17
DM1	-0.08	-0.25	-0.09	0.73	-0.17
DM2	0.09	-0.03	-0.16	0.73	-0.17
DM3	-0.07	-0.28	0.03	-0.17	0.17

	LR	DSulf	% 6S	G _{NR}	A _{NS,6X} from ² A	A _{NS,3S,6X} from ² A	Disacch Mass
Weight	0.13	-0.02	-0.55	0.09	-0.66	0.42	-1.91
Buffer pH	-0.1	0.002	0.29	-0.19	0.22	-0.19	0.21
Temperature	-0.39	0.005	0.17	-0.42	-0.57	0.68	0.47
Phase	0.11	0.007	0.86	0.74	-0.27	-0.35	1.02
DM1	0.05	0.009	-0.34	0.25	0.34	-0.14	0.8
DM2	0.16	0.007	0.06	0.36	-0.18	0.42	0.67
DM3	0.18	-0.002	0.63	-0.21	-0.34	-0.13	0

 Table S6 – Plackett-Burman design - effects of factors on the HSQC quantification.

Condition 1	Condition 2	Condition 3	Condition 4
Operator A	Operator A	Operator B	Operator B
Spectr. 500MHz	Spectr. 600MHz	Spectr. 500MHz	Spectr. 600MHz
replicate (1,#1)	replicate (2,#1)	replicate (3,#1)	replicate (4,#1)
replicate (1,#2)	replicate (2,#2)	replicate (3,#2)	replicate (4,#2)
replicate (1,#3)	replicate (2,#3)	replicate (3,#3)	replicate (4,#3)
replicate (1,#4)	replicate (2,#4)	replicate (3,#4)	replicate (4,#4)

Let *c* be the number of conditions (c = 4), *m* the number of replicates for each condition (r = 4) and x_{ij} the value obtained in the *j*-th replicate of *i*-th condition for fragment *x*. Define

$$\bar{x}_{i} = \frac{1}{m} \cdot \sum_{\substack{j=1 \ m}}^{m} x_{ij}$$
$$\bar{x} = \frac{1}{cm} \sum_{\substack{i=1 \ c}}^{c} \sum_{\substack{j=1 \ m}}^{m} x_{ij}$$
$$s_{1}^{2} = \frac{m}{c-1} \cdot \sum_{\substack{j=1 \ c}}^{c} (\bar{x}_{i} - \bar{x})^{2}$$
$$s_{2}^{2} = \frac{1}{c(m-1)} \cdot \sum_{\substack{i=1 \ c}}^{c} \sum_{\substack{j=1 \ c}}^{m} (x_{ij} - \bar{x}_{i})^{2}$$

The p-value of s_1^2/s_2^2 for the *F*-distribution with c - 1 degrees of freedom at the numerator and m - 1 degrees of freedom at the denominator was computed. Significance of conditions on fragment *x* evaluation was set at 5%.

Table S7 – Intermediate precision: experiments design (four conditions; four replicates for each condition) and formulae for assess significance of conditions.

	A_NAc6X_G	A_NAc6X_I	A_NS6X_ G	A_NS6X_I	A_NS6X_I_2S	A_NS6X_GalA	A_NS6X_Epox	A_NH26X	A_NAc6X	A_NS3S6X	A_NAc6XaRed	A_NS6XaRed	A_NS6X	A_6S
replicate (1,#1)	14.4	1.0	9.0	9.1	58.2	0.0	0.4	2.2	16.6	4.7	1.3	-0.1	76.5	73.2
replicate (1,#2)	13.8	0.9	10.4	9.1	58.2	0.0	0.0	2.2	15.8	4.7	1.2	-0.4	77.3	73.5
replicate (1,#3)	13.6	0.9	9.3	10.5	57.8	0.0	0.0	2.1	15.5	4.7	1.0	0.1	77.7	73.4
replicate (1,#4)	15.1	0.8	9.9	10.4	54.7	0.9	0.0	2.4	16.8	4.9	0.9	-0.1	76.0	73.2
replicate (2,#1)	14.6	0.7	9.4	9.1	58.0	0.0	0.0	2.3	16.4	5.4	1.2	-0.5	75.9	75.2
replicate (2,#2)	14.2	0.8	9.4	9.3	59.3	0.0	0.0	1.3	15.6	4.7	0.6	0.4	78.3	74.7
replicate (2,#3)	14.4	0.8	10.3	9.3	57.8	0.0	0.0	2.1	16.1	4.7	0.9	-0.3	77.2	74.7
replicate (2,#4)	13.7	0.6	9.3	8.2	59.8	0.0	0.0	1.8	15.6	5.2	1.3	0.1	77.3	74.8
replicate (3,#1)	14.9	0.6	9.5	9.3	57.3	0.8	0.4	1.9	16.6	4.1	1.0	0.1	77.4	73.2
replicate (3,#2)	15.0	0.6	10.3	8.6	57.5	0.8	0.0	2.1	16.5	4.5	0.9	-0.2	77.0	73.3
replicate (3,#3)	14.6	0.7	9.7	9.3	56.5	2.3	0.0	2.2	16.2	4.0	0.9	-0.2	77.6	72.8
replicate (3,#4)	14.6	1.0	9.7	8.5	58.1	1.0	0.0	2.0	16.4	4.1	0.8	0.2	77.5	73.3
replicate (4,#1)	14.3	0.8	9.0	9.4	58.9	1.1	0.0	2.0	16.1	3.7	0.9	-0.2	78.3	74.6
replicate (4,#2)	13.5	0.7	9.4	9.2	59.5	0.0	0.0	2.3	15.3	4.6	1.1	-0.3	77.8	74.9
replicate (4,#3)	14.9	0.6	9.7	8.9	58.7	0.0	0.0	2.5	16.1	4.2	0.7	-0.2	77.2	74.3
replicate (4,#4)	14.2	0.9	9.3	9.5	59.2	0.0	0.0	1.5	15.7	4.0	0.7	0.7	78.7	75.4

	G_A_NAc6X	G_A_NS6X	G_A_NS3S6X	I_A_NY	I_A_NY6S	I_2S_A_NH26X	I_2S_A_NY3X6X	G_2OH	G_2S	I_20H	I_2S	GalA	Ерох
replicate (1,#1)	6.7	6.9	3.0	3.6	7.2	2.2	69.8	16.6	0.0	10.9	72.0	0.3	0.4
replicate (1,#2)	6.5	7.4	3.6	3.8	7.8	2.7	68.3	17.4	0.0	11.6	71.0	0.0	0.0
replicate (1,#3)	6.8	7.7	4.0	3.5	7.2	2.7	68.1	18.5	0.0	10.6	70.8	0.0	0.0
replicate (1,#4)	6.6	6.9	3.9	3.6	7.4	2.7	68.9	17.4	0.0	11.0	71.6	0.0	0.0
replicate (2,#1)	6.9	7.4	3.4	3.1	8.0	2.1	69.2	17.6	0.0	11.1	71.3	0.0	0.0
replicate (2,#2)	7.1	7.6	3.4	2.9	8.2	2.0	68.8	18.1	0.0	11.1	70.8	0.0	0.0
replicate (2,#3)	6.7	7.1	3.7	3.3	8.1	2.3	68.8	17.6	0.0	11.4	71.1	0.0	0.0
replicate (2,#4)	7.7	8.3	2.9	3.5	7.4	2.3	67.9	18.9	0.0	11.0	70.2	0.0	0.0
replicate (3,#1)	6.0	7.1	3.3	4.2	6.9	2.2	69.9	16.4	0.0	11.1	72.2	0.0	0.4
replicate (3,#2)	6.6	6.7	3.4	4.1	7.7	1.9	69.6	16.7	0.0	11.8	71.5	0.0	0.0
replicate (3,#3)	6.5	7.2	3.2	3.8	7.5	2.3	69.6	16.8	0.0	11.3	71.9	0.0	0.0
replicate (3,#4)	6.5	7.0	3.0	3.4	7.5	2.1	70.5	16.4	0.0	10.9	72.7	0.0	0.0
replicate (4,#1)	6.8	6.6	3.7	4.3	7.9	2.2	68.5	17.1	0.0	12.2	70.7	0.0	0.0
replicate (4,#2)	6.5	7.2	3.5	4.1	7.7	2.2	68.9	17.2	0.0	11.7	71.1	0.0	0.0
replicate (4,#3)	7.3	8.2	3.2	3.5	7.5	2.0	68.3	18.7	0.0	11.0	70.3	0.0	0.0
replicate (4,#4)	7.0	6.3	3.5	3.4	7.9	2.3	69.6	16.8	0.0	11.3	72.0	0.0	0.0

Table S8.1 – Results of the HSQC quantification for the intermediate precision experiments

	LR	GNR	oxA_NAc	oxSer	SDEG	MDIS
replicate (1,#1)	6.0	2.1	0.0	10.6	2.31	602
replicate (1,#2)	6.0	2.3	0.0	6.0	2.31	601
replicate (1,#3)	6.4	2.2	0.0	4.2	2.31	601
replicate (1,#4)	6.1	2.5	0.0	10.2	2.31	601
replicate (2,#1)	6.0	2.7	0.0	7.9	2.33	604
replicate (2,#2)	5.9	2.0	0.0	10.7	2.33	603
replicate (2,#3)	6.5	2.1	0.0	2.1	2.32	603
replicate (2,#4)	6.1	2.7	0.0	3.6	2.33	603
replicate (3,#1)	5.7	2.2	0.0	2.6	2.31	601
replicate (3,#2)	5.7	1.8	0.0	11.9	2.31	601
replicate (3,#3)	5.9	2.4	0.0	9.0	2.30	601
replicate (3,#4)	6.0	2.3	0.0	7.5	2.32	602
replicate (4,#1)	5.9	2.2	0.0	4.5	2.31	601
replicate (4,#2)	6.1	2.6	0.0	7.7	2.33	603
replicate (4,#3)	5.8	2.3	0.0	7.0	2.30	601
replicate (4,#4)	5.9	1.9	0.0	8.7	2.34	604

	Нер	DS	ChS	DS2S	ChS6S
replicate (1,#1)	87.8	9.7	2.5	13.0	27.0
replicate (1,#2)	88.7	9.1	2.2	15.5	32.9
replicate (1,#3)	89.7	8.4	1.9	12.8	36.3
replicate (1,#4)	89.5	8.4	2.1	12.0	14.2
replicate (2,#1)	90.5	7.5	2.0	11.3	24.6
replicate (2,#2)	89.2	8.5	2.3	13.0	15.0
replicate (2,#3)	90.7	7.6	1.7	11.7	21.7
replicate (2,#4)	90.3	7.9	1.8	14.7	0.0
replicate (3,#1)	90.3	7.9	1.8	8.5	8.9
replicate (3,#2)	89.4	8.7	1.9	13.8	24.5
replicate (3,#3)	90.2	8.4	1.4	15.0	0.0
replicate (3,#4)	90.2	7.8	2.0	12.7	15.0
replicate (4,#1)	91.3	7.3	1.4	15.5	0.0
replicate (4,#2)	89.7	8.3	2.0	11.0	17.8
replicate (4,#3)	90.2	7.9	1.9	11.4	11.1
replicate (4,#4)	90.3	8.1	1.7	13.3	16.9

 Table S8.2 – Results of the HSQC quantification for the intermediate precision experiments

	A _{NH2,6x}	A _{NAc,6x}	A _{NS,6X}	A _{NS,3S,6x}
Mean	2.06	16.09	77.34	4.5
Pr>F	0.55	0.23	0.22	0.00
CV	14.35	2.76	1.01	10.9

	Нер	DS	ChS
Mean	89.87	8.21	1.92
Pr>F	0.05	0.05	0.13
CV	0.98	7.91	15.47

	A _{NH2,6x}	A _{NAc,6x} -(G)	A _{NAc,6x} -(I)	A _{NS,6x} -(G)	A _{NS,6x} -(I)	A _{NS,6x} -(I2S)	A _{NS,3S,6x}	$A_{NAc,6x} \alpha Red$	$A_{NS,6x} \alpha Red$
Mean	2.06	14.36	0.77	9.6	9.25	58.08	4.5	0.96	-0.07
Pr>F	0.55	0.33	0.2	0.59	0.15	0.06	0.00	0.48	0.94
CV	14.35	3.55	16.72	4.58	6.47	2.14	10.9	23.02	-473.57

	G _{20H}	I _{20H}	I _{2S}
Mean	17.38	11.24	71.31
Pr>F	0.06	0.34	0.04
CV	4.65	3.67	1.02

	G-(A _{NAc,6x})	G-(A _{NS,6x})	G-(A _{NS,3S,6x})	I-(A _{Ny'})	I-(A _{Ny',6S})	I2S-(A _{NH2,6x})	I2S-(A _{Ny',3x,6x})	
Mean	6.76	7.22	3.41	3.63	7.61	2.26	69.05	
Pr>F	0.03	0.43	0.34	0.06	0.07	0.02	0.04	
CV	6.01	7.53	9.26	10.91	4.76	11.53	1.12	

	IR %65 Gun		A _{NS,6X}	A _{NS,3S,6X}	
	LK	% 65	GNR	from ² A	from ² A
Mean	6.00	74.03	2.26	76.39	5.46
Pr>F	0.11	0.00	0.71	0.47	0.43
CV	3.57	1.3	11.93	1.05	7.87

Table S9 – Results of the intermediate precision study for the HSQC quantification. Pr>F is the obtained p-value and CV is the computed coefficient of variation.

Group	Sample	ANAc6X-G	ANAc6X-I	ANS6X-G	ANS6X-I	ANS6X-12S	ANS6X-GalA	ANS6X-Epox	ANH26X	ANAc6X	ANS3S6X	ANAc6XaRed	ANS6XaRed	A NS6X	A-6S
	G9907	15.7	0.0	9.5	10.1	56.5	1.3	0.0	1.6	17.1	3.9	0.0	0.0	77.4	73.7
	G9908	17.6	0.0	10.1	9.8	56.4	0.0	0.0	1.1	18.4	4.1	0.0	0.0	76.3	70.5
	G9909	15.5	0.0	10.3	9.5	56.9	0.0	0.0	0.0	17.6	4.1	1.2	0.0	77.3	70.4
	G9911	16.4	0.0	9.4	9.7	56.8	0.0	0.0	1.5	17.9	4.2	0.0	0.0	76.4	69.9
	G9912	14.2	0.0	9.6	8.7	59.5	0.0	0.0	1.8	15.8	4.3	0.0	0.0	78.1	72.7
	G9913	15.3	0.0	11.1	8.9	57.3	0.0	0.0	1.8	16.6	4.3	0.0	0.0	77.2	74.4
	G9914	16.3	0.0	10.4	9.3	57.0	0.0	0.0	2.0	17.6	4.0	0.0	0.0	76.5	71.8
	G9915	16.1	0.0	10.8	9.5	55.2	1.6	0.0	1.7	16.7	4.3	0.0	0.0	77.3	73.6
	69916	14.2	0.0	9.6	10.0	50.5	0.0	0.0	1.9	10.3	5.5	1.3	0.0	70.3	76.9
	69917	15.9	0.0	9.4 10.2	9.2	58.5	1.5	0.0	1.0	16.2	4.5	0.0	0.0	78.2	74.2
	69919	14.6	0.0	10.2	9.0	60.6	0.0	0.0	2.5	14.6	3.8	0.0	0.0	78.7	74.3
	69920	13.8	0.0	94	8.8	60.0	1.2	0.0	2.0	14.0	4.4	0.0	0.0	79.2	77.0
	G9921	15.1	0.0	8.8	9.1	59.0	0.0	0.0	2.1	16.5	4.7	0.0	0.0	76.8	74.5
	G9922	14.4	0.0	9.3	9.4	58.6	0.0	0.0	1.8	15.7	4.8	0.0	0.0	77.7	75.8
	G9923	15.6	0.0	9.6	9.6	57.0	0.0	0.0	1.9	16.9	4.9	0.0	0.0	76.3	74.1
	G9924	15.1	1.0	10.8	9.3	57.3	0.0	0.0	1.2	17.0	4.2	0.9	0.0	77.6	70.6
	G9925	13.4	0.0	9.2	9.3	59.7	0.0	0.0	1.8	15.1	5.1	0.0	0.0	78.0	75.7
	G9926	15.1	0.0	10.0	8.5	58.0	0.0	0.0	2.1	16.2	4.8	0.0	0.0	77.0	73.6
	G9927	17.6	0.0	9.9	9.1	55.7	0.0	0.0	1.1	19.2	4.1	0.0	0.0	75.6	69.1
	G9928	16.9	0.0	10.2	9.5	55.7	0.0	0.0	1.8	18.6	3.8	0.0	0.0	75.8	68.3
	G9929	16.0	0.0	10.1	10.5	56.6	0.0	0.0	1.9	17.7	3.7	1.2	0.0	76.8	71.0
	G9930	15.4	0.0	9.0	10.5	56.1	0.0	0.0	1.9	17.0	5.3	0.0	0.0	75.8	73.1
	69932	14.7	0.0	9.8	10.2	56.5	1.9	0.0	1.7	16.1	3.5	0.0	0.0	78.8	75.2
	69933	17.0	0.0	10.7	0.0	55.9	0.0	0.0	1.4	10.0	4.3	0.0	0.0	75.7	75.2
	69934	12.2	0.9	10.0	9.3	59.2	1.3	0.0	1.7	14.1	4.3	0.0	0.0	79.0	73.5
	69935	15.5	0.0	0.0	9.3	56.2	1.0	0.0	2.0	15.5	4.2	0.9	0.0	77.1	73.5
с	G9937	18.8	0.0	10.7	9.8	51.6	2.2	0.0	1.3	20.4	3.1	1.0	0.0	75.2	67.6
•	G9938	15.1	1.1	10.3	9.8	57.1	0.0	0.0	1.9	17.0	4.0	0.0	0.0	77.2	71.3
	G9939	15.1	1.0	10.1	8.9	58.4	0.0	0.0	2.0	16.9	3.6	0.0	0.0	77.5	71.8
	G9940	13.8	0.0	9.3	8.6	60.6	0.0	0.0	1.6	15.3	4.2	0.0	0.0	78.8	74.8
	G9941	14.6	0.0	9.7	8.8	59.1	0.0	0.0	1.6	16.3	4.0	0.0	0.0	78.0	72.9
	G9942	15.1	0.0	10.2	8.5	58.3	0.0	0.0	1.8	16.7	4.5	0.0	0.0	77.0	71.7
	G9943	14.1	0.0	9.8	10.4	57.6	0.0	0.0	2.1	16.2	3.9	1.5	0.0	77.9	69.3
	G9944	11.7	0.0	9.0	9.8	62.0	0.0	0.0	2.2	13.1	4.2	0.0	0.0	80.6	77.6
	G9945	12.5	0.0	9.4	9.0	59.8	1.1	0.0	2.1	14.1	3.9	0.0	0.0	79.9	73.7
	G9946	14.7	0.0	10.0	9.3	57.2	0.0	0.0	1.9	16.8	4.4	0.0	0.0	76.9	74.8
	G9947	14.1	0.0	10.2	9.6	58.3	0.0	0.0	2.2	15.6	3.8	0.0	0.0	78.5	72.4
C	G9948	19.0	0.0	10.2	8.1	56.8	0.0	0.0	1.8	20.0	3.2	0.0	0.0	75.1	68.5
	69949	14.9	0.0	9.4	0.4	52.0	0.0	0.0	2.0	15.4	4.0	0.0	0.0	77.3	74.1
B	G12131	11.0	0.0	9.7	9.0	61.6	0.0	0.0	2.0	12.6	4.0	0.0	0.0	80.2	77 7
-	G12132	15.0	0.0	10.1	8.5	56.5	1.1	0.0	1.9	16.4	5.3	0.0	0.0	76.4	74.6
в	G12133	11.1	0.0	11.2	9.9	60.4	0.0	0.0	2.8	11.6	4.9	0.0	0.0	80.7	77.6
	G12134	14.9	0.0	10.0	9.7	57.0	0.0	0.0	1.8	16.4	4.8	0.9	0.0	77.0	76.3
в	G12135	12.3	0.0	9.7	7.8	61.4	0.0	0.0	2.4	13.2	5.3	0.0	0.0	79.1	79.0
	G12136	14.0	0.0	8.4	9.2	60.5	0.0	0.0	2.3	16.1	3.7	1.4	0.0	77.8	72.8
	G12137	14.2	0.0	9.5	9.5	55.9	1.7	0.0	1.9	15.8	5.3	0.0	0.0	77.0	74.1
	G12138	12.0	0.0	8.7	9.1	60.0	0.0	0.0	3.0	13.9	5.9	1.0	0.0	77.2	77.0
	G12139	16.1	0.0	9.2	8.8	56.6	1.7	0.0	1.5	17.7	4.4	0.0	0.0	76.4	70.9
В	G12141	13.2	0.0	8.9	8.1	62.8	0.0	0.0	2.1	13.8	4.1	0.0	0.0	80.0	79.8
в	G12142	13.5	0.0	10.2	8.3	59.5	0.0	0.0	2.6	14.5	5.1	0.0	0.0	77.8	/8.0
	612147	20.0	0.0	10.2	9.1	53./	0.0	0.0	1.8	21.1 16 E	4.1	0.0	0.0	77.9	75.0
	G12149	14.0	0.0	97	0.0	57.2	0.0	0.0	2.0	10.0	4.5	0.0	0.0	77 0	72 0
	G12151	18.3	0.0	9.2	10.6	53.1	0.0	0.0	1.3	20.1	4.6	0.0	0.0	74.1	67.2
с	G12152	17.5	0.0	10.3	8.8	57.6	0.0	0.0	0.0	18.4	3.7	0.0	0.0	76.8	68.4
č	G12153	18.5	0.0	8.9	9.6	56.1	0.0	0.0	1.8	19.4	4.1	0.0	0.0	74.7	67.3
Ċ	G12154	18.6	0.0	11.0	7.6	57.0	0.0	0.0	0.0	19.3	3.9	0.0	0.0	76.8	69.4
	G12155	16.8	0.0	9.2	9.6	55.8	0.0	0.0	2.2	18.7	4.6	0.0	0.0	74.5	69.9
	G12156	19.9	0.0	10.7	9.3	55.2	0.0	0.0	0.0	19.9	3.9	0.0	0.0	76.1	63.3
	G12158	14.8	0.0	9.8	9.5	56.8	0.0	0.0	1.5	16.5	5.5	0.0	0.0	76.5	73.2
	G12161	11.8	0.0	10.0	8.5	60.7	0.0	0.0	2.6	12.2	5.9	0.0	0.0	79.3	79.2
В	G12163	15.0	1.0	9.8	8.7	56.6	0.0	0.0	2.0	16.9	5.5	0.0	0.0	75.5	74.7
-	G12164	14.1	0.0	9.1	8.8	59.6	0.0	0.0	1.9	15.8	4.5	0.0	0.0	77.8	73.9
A	612166	14.75	0	9.07	8.47	60.12	0	0	2.04	14./5	5.4	0		77.81	15.91
•	G12169	13.4	0.0	9.7	0.0 7 07	5/.9	0.0	0.0	2.0	15.4	0.∠ 5.13	0.0	1.00	80.4	75.02
A	G12170	19.4/	00	8 9	00	59.02	0.90	0.0	24	14.47	5.13	0.0	1.09	76 9	73.92
	G12174	14.8	0.0	9.5	8.6	57.9	0.0	0.0	2.4	16.6	5.2	0.0	0.0	76.0	73.1
	G12175	16.1	0.0	9.5	8 1	58 5	0.0	0.0	2.2	17.8	4.5	0.0	0.0	75.5	71 1
Δ	G12179	12.6	0.0	10.5	9.6	58.8	2.1	0.0	0.0	13.7	5.2	0.0	0.0	81.1	77.0
Â	G12180	12.72	0.89	10.25	8.64	59.59	0.97	0	0.99	13.62	5.03	0	0.92	80.37	78.9
-	G12181	15.42	0	9,59	9,22	58.41	0	õ	1.45	15.42	5.4	õ	0	77.73	77.74
	average	15.0	0.1	9.8	9.2	57.9	0.3	0.0	1.8	16.3	4.5	0.2	0.0	77.4	73.3
	median	14.8	0.0	9.8	9.2	57.9	0.0	0.0	1.9	16.3	4.4	0.0	0.0	77.3	73.7
	st.dev.	1.94	0.27	0.61	0.67	2.09	0.61	0.00	0.65	1.99	0.66	0.41	0.16	1.64	3.36
	min	11.1	0.0	8.4	7.6	51.6	0.0	0.0	0.0	11.6	3.1	0.0	0.0	72.9	63.3
	max	20.0	1.1	11.2	10.9	62.8	2.2	0.0	3.0	21.1	5.9	1.5	1.1	81.1	79.8

Table S10 - Molar percentages of glucosamine residues of 75 porcine crude heparin samples.NB: 0 value means <LOD</td>

Group	Sample	G_ANAc6X	G_ANS6X	G_ANS3S6X	I_ANY	I_ANY6S	I2S_ANH26X	I2S_ANY3X6X	G2OH	G2S	120H	125
	G9907	7.5	6.8	3.6	3.5	8.1	2.8	67.7	17.9	0.0	11.7	70.4
	G9908	10.5	6.2	3.6	3.5	6.8	1.4	68.0	20.2	0.0	10.4	69.4
	G9909	9.7	6.7	2.8	3.2	7.8	1.8	67.9	19.2	0.0	11.0	69.8
	G9911	11.0	7.1	2.8	3.2	6.9	1.5	67.5	20.9	0.0	10.1	69.1
	G9912	6.8	7.2	3.5	3.5	7.9	2.2	68.9	17.6	0.0	11.3	71.1
	G9913	6.5	7.3	3.8	4.1	7.1	1.8	69.4	17.6	0.0	11.2	71.2
	G9914	7.8	6.6	3.7	3.4	7.8	2.7	68.1	18.1	0.0	11.1	70.8
	G9915	6.9	7.5	3.0	3.3	6.9	2.3	70.1	17.4	0.0	10.2	72.4
	G9916	6.3	7.4	4.2	2.8	7.9	2.4	69.0	17.9	0.0	10.7	71.4
	G9917	5.4	6.9	3.9	3.4	7.8	2.2	70.4	16.1	0.0	11.2	72.7
	G9918	6.5	8.0	4.1	3.6	6.2	2.8	68.8	18.6	0.0	9.8	71.6
	G9919	6.5	7.1	4.2	2.0	7.9	2.4	70.0	17.8	0.0	9.9	72.4
	G9920 G9921	6.6	6.5	3.0	3.2	7.5	2.1	71.2	16.1	0.0	10.6	73.3
	69921	6.4	6.0	3.0	3.1	7.5	19	70.2	16.2	0.0	11.0	73.2
	69922	7.4	6.9	4.4	3.5	6.4	24	60.5	18.2	0.0	0.0	72.1
	69924	93	74	3.8	33	6.5	17	68.0	20.5	0.0	97	69.8
	69925	6.2	6.5	4.9	3.3	7.4	2.3	69.4	17.6	0.0	10.8	71.7
	G9926	6.9	6.0	4.1	3.8	7.4	2.2	69.7	17.0	0.0	11.2	71.9
	G9927	9.6	7.9	3.3	3.3	7.1	2.1	66.7	20.7	0.0	10.5	68.8
	G9928	9.2	8.4	2.9	3.8	7.6	2.1	65.9	20.6	0.0	11.4	68.1
	G9929	8.4	7.8	3.2	3.4	7.4	1.9	67.8	19.4	0.0	10.8	69.7
	G9930	6.5	7.7	3.9	3.5	8.9	2.7	66.9	18.0	0.0	12.4	69.6
	G9932	6.5	6.9	3.7	3.4	7.9	2.4	69.2	17.1	0.0	11.3	71.6
	G9933	8.8	7.7	3.6	3.2	6.5	2.1	68.1	20.1	0.0	9.6	70.3
	G9934	6.1	7.7	2.8	3.2	8.0	1.4	70.8	16.6	0.0	11.2	72.2
	G9935	7.8	7.1	2.3	3.3	7.9	1.6	70.0	17.2	0.0	11.2	71.6
	G9936	8.2	6.9	3.1	3.4	7.4	2.4	68.6	18.2	0.0	10.9	71.0
С	G9937	10.9	7.3	2.9	3.3	7.7	1.7	65.5	21.1	0.0	10.9	67.2
	G9938	8.0	6.9	3.9	3.6	7.2	2.1	68.4	18.8	0.0	10.8	70.4
	G9939	7.9	6.3	3.4	3.9	6.6	2.5	69.4	17.6	0.0	10.5	71.9
	69940	0.0	7.4	3.0	3.2	1.1	2.0	68.0	17.0	0.0	10.9	71.3
	69941	6.9	7.0	3.4	3.2	0.2	2.2	60.9	17.5	0.0	10.7	71.1
	69942	8.6	7.9	3.6	3.9	0.0	2.1	66.1	10.5	0.0	11.7	68.4
	69944	4.4	7.5	3.5	23	6.8	2.5	73.2	15.0	0.0	9.1	75.9
	69945	6.4	72	2.7	3.5	73	27	70.2	16.3	0.0	10.8	72.9
	G9946	6.4	7.6	3.2	3.6	7.5	2.0	69.8	17.2	0.0	11.0	71.8
	G9947	7.5	8.6	2.8	3.0	8.2	2.2	67.6	19.0	0.0	11.2	69.8
с	G9948	8.3	8.0	3.3	3.4	7.2	2.4	67.4	19.6	0.0	10.6	69.8
-	G9949	7.3	6.3	2.4	3.4	6.8	2.0	71.8	16.0	0.0	10.2	73.8
	G9950	5.4	7.1	3.4	3.2	7.3	2.7	70.9	15.9	0.0	10.5	73.6
в	G12131	5.5	6.6	4.1	2.4	5.8	3.2	72.3	16.2	0.0	8.2	75.5
	G12132	7.1	6.8	4.0	3.1	7.0	2.3	69.7	17.9	0.0	10.2	72.0
в	G12133	4.7	6.5	4.0	2.6	6.7	3.9	71.7	15.1	0.0	9.3	75.6
	G12134	7.4	6.1	4.0	2.5	5.8	2.6	71.5	17.6	0.0	8.3	74.1
в	G12135	4.6	7.1	3.1	2.6	6.8	3.0	72.7	14.9	0.0	9.4	75.7
	G12136	5.9	7.6	3.4	3.1	6.5	2.8	70.7	16.9	0.0	9.6	73.5
	G12137	7.4	6.9	4.1	3.6	7.9	2.4	67.8	18.4	0.0	11.5	70.1
	G12138	5.5	7.3	4.1	3.2	7.1	3.0	69.8	16.9	0.0	10.3	72.8
-	G12139	9.0	0.0	3.1	3.0	1.2	1.0	59.1	10.9	0.0	10.2	70.9
в в	G12141	4.2	6.0	2.0	2.4	6.0	3.1	73.7	14.0	0.0	0.4	76.6
в	612142	4.5	7.0	3.5	2.1	0.0	2.9	64.2	24.0	0.0	42.0	76.5
	612147	6.4	6.0	2.6	3.5	7.0	23	74.2	15.8	0.0	10.6	73.6
	G12150	7.8	6.6	3.7	3.1	7.3	2.3	69.1	18.1	0.0	10.4	71.4
	G12151	11.1	6.6	3.0	3.0	8.1	1.8	66.4	20.7	0.0	11.1	68.2
с	G12152	10.0	7.3	4.5	3.4	7.0	1.6	66.2	21.8	0.0	10.4	67.8
č	G12153	7.8	8.2	2.9	3.2	8.3	0.0	68.7	18.9	0.0	11.5	69.6
С	G12154	9.8	6.5	5.8	3.8	6.9	1.8	65.6	22.0	0.0	10.7	67.3
	G12155	8.6	7.4	4.5	3.5	7.6	2.0	66.5	20.4	0.0	11.1	68.5
	G12156	11.4	6.9	4.1	4.5	7.7	2.2	63.2	22.4	0.0	12.2	65.4
	G12158	7.6	7.5	4.0	2.2	7.8	1.9	69.0	19.1	0.0	10.0	70.9
	G12161	5.1	6.6	4.0	2.3	6.3	2.9	72.9	15.6	0.0	8.5	75.8
в	G12163	8.1	6.5	4.0	3.0	7.6	2.7	68.2	18.5	0.0	10.6	70.9
	G12164	6.2	6.7	3.6	3.2	7.1	1.6	71.6	16.5	0.0	10.3	73.2
A	G12166	6.28	7.41	3.02	2.86	6.34	1.74	72.35	16.71	0	9.2	74.08
-	G12169	6.9	6.9	4.8	3.8	7.4	2.3	67.8	18.6	0.0	11.3	70.1
A	G12170	6.61	5.76	2.61	2.76	5.73	ND	75.77	14.99	0.75	8.49	75.77
	G12174	7.3	7.5	3.4	3.1	7.2	1.9	69.6	18.2	0.0	10.3	/1.5
	612175	8.2	/.1	4.0	3.0	7.5	2.5	67.8	19.2	0.0	10.5	/0.3
-	G121/7	1.3	8.8	3.4	3.3	7.6	2.2	67.4	19.5	0.0	10.9	69.6 72 F
A .	G121/9	5.0	0.0	2.3	2.2	/.1 6 ==	1.46	75.34	14.04	0.0	9.4	76 79
~	G12180	6 36	6.04	2.00	2.04	7 35	1.40	71 39	16.49	0	10 36	73 15
	average	7.3	7.1	3.5	3.2	7.2	2.2	69.4	18.0	0_0	10.5	71.5
	median	7.1	7.1	3.6	3.3	7.3	2.2	69.1	17.9	0.0	10.6	71.4
	st.dev.	1.67	0.63	0.63	0.50	0.64	0.59	2.40	1.92	0.09	0.92	2.49
	min	4.2	5.8	2.3	2.0	5.7	0.0	63.2	14.0	0.0	8.2	65.4
	max	11.4	8.8	5.8	4.5	8.9	3.9	75.8	22.4	0.8	12.4	76.8

Table S11 - Molar percentages of uronic acids residues of 75 porcine crude heparin samples.NB: 0 value means <LOD</td>

Group	Sample	Нер	DS	ChS	DS2S*	ChS6S*
	69907	94.3	4.6	1.0	0.0	0.0
	69908	86.9	6.5	6.6	0.0	34.7
	63300	00.5	0.5	0.0	0.0	34.7
	69909	85.8	7.1	7.1	0.0	40.6
	G9911	86.6	5.9	7.5	0.0	38.2
	G9912	89.9	7.8	2.3	12.4	28.8
	G9913	90.2	7.6	2.2	10.2	23.3
	G9914	88.2	9.2	2.6	10.5	27.1
	60045	04.2	6.7	10	0.0	
	09915	91.3	0.7	1.9	0.0	0.0
	69916	89.3	8.3	2.4	0.0	25.8
	G9917	87.3	10.5	2.1	9.2	17.0
	G9918	92.7	6.6	0.0	0.0	0.0
	G9919	95.0	4.3	0.0	0.0	0.0
	69920	80.3	8.0	1.9	10.9	34.4
	60024	97.7	0.5	2.7	10.5	29.4
	09921	87.7	5.0	2.7	10.7	20.4
	G9922	88.1	10.0	1.9	11.1	40.3
	G9923	83.6	13.5	2.9	9.5	33.8
	G9924	88.6	6.2	5.2	0.0	39.1
	G9925	87.7	11.0	1.2	9.0	0.0
	G9926	90.2	9.0	0.0	8.1	0.0
	60027	00.4	7.0	2.5	40.8	26.7
	63521	50.4	7.0	2.5	10.0	20.7
	G9928	91.3	6.0	2.7	0.0	41.8
	G9929	90.4	7.0	2.7	8.7	23.7
	G9930	89.2	8.7	2.1	0.0	0.0
	G9932	92.7	6.1	1.3	0.0	0.0
	G9933	89.2	7.6	3.2	0.0	33.3
	69934	08.4	1.4	0.0	0.0	0.0
	63334	50.1	1.4	0.0	0.0	0.0
	69935	98.5	1.7	0.0	0.0	0.0
	G9936	87.8	8.4	3.7	7.5	16.0
C	G9937	86.5	11.2	2.2	8.8	20.1
	G9938	89.6	7.8	2.6	13.1	30.3
	G9939	91.0	6.9	2.1	12.7	31.3
	69940	87.9	9.7	24	11.7	22.0
	60044	00.0		4.2		22.0
	09941	90.0	0.9	1.2	0.0	0.0
	G9942	91.0	7.3	1.6	7.6	13.4
	G9943	83.6	13.0	3.5	10.8	26.3
	G9944	88.9	10.5	0.0	9.1	0.0
	G9945	90.5	8.9	0.0	8.3	0.0
	69946	88.8	8 7	2.5	11.9	25.6
	63340	00.0	0.7	2.5	11.5	23.0
-	69947	93.3	5.6	1.1	0.0	0.0
C	G9948	82.6	9.8	7.7	10.8	35.9
	G9949	91.1	7.4	1.5	0.0	0.0
	G9950	87.8	10.4	1.7	12.8	34.0
в	G12131	84.6	13.5	1.8	8.8	18.2
	612132	89.5	85	20	13.1	18 7
P	642422	84.7	12.9	4 5	0.5	0.0
	012133	04.7	13.0	1.5	5.5	0.0
_	G12134	09.0	0.7	1.5	0.0	0.0
В	G12135	88.0	11.4	0.0	12.9	0.0
	G12136	88.2	10.2	1.6	5.6	19.8
	G12137	91.3	6.1	2.6	0.0	30.9
	G12138	91.7	7.9	0.0	11.6	0.0
	G12139	94.4	4.7	0.9	0.0	43.6
R	G12141	83.5	14.9	17	11.3	0.0
	612141	03.5	14.5	1.7	11.5	0.0
в	G12142	01.0	16.6	1.0	12.5	0.0
	G12147	85.2	8.7	6.0	6.1	41.7
	G12149	90.8	7.2	2.0	8.2	26.3
	G12150	90.5	8.1	1.4	10.9	0.0
	G12151	91.9	5.0	3.0	0.0	33.1
С	G12152	79.9	13.5	6.6	7.1	46.4
ċ	G12153	83.7	10.3	6.0	0.0	32.1
č	012100	96.4	7.9	6.0	0.0	24.6
U.	012154	86.1	7.8	0.2	0.0	24.8
	G12155	89.4	8.3	2.3	0.0	0.0
	G12156	85.0	8.7	6.3	0.0	39.6
	G12158	87.2	9.6	3.2	9.7	37.5
	G12161	86.7	12.0	1.3	12.3	0.0
в	G12163	89.1	9.3	1.6	12.8	42.7
-	612164	80.8	9.4	0.0	0.0	0.0
•	612104	03.0	0.4 1 FC	0.0	0.0	0.0
~	012100	50.44	1.56			
_	G12169	87.7	a.a	2.4	12.1	32.8
A	G12170	99.17	0	0	0	0
	G12174	87.9	10.0	2.2	7.5	49.7
	G12175	88.4	9.3	2.3	14.6	33.7
	G12177	87 2	9.7	3.2	11 5	23.6
•	612177	100.0	0.7	0.2	0.0	23.0
~	646466	100.0	0.0	0.0	0.0	0.0
A	G12180	98.67	U 	0	0	0
	G12181	82.43	16.52	1.05	10.15	0
	average	89.3	8.3	2.3	6.2	18.5
	median	89.2	8.7	2.0	8.1	22.0
	st.dev.	4,10	3,38	1.95	5,32	16.62
	min	79 9	0.0	0.0	0.0	0.0
		100.0	16.6	7 7	14 6	46.7
	тах	100.0	10.0	1.1	14.0	43./

Table S12 – GAG compositions of 75 porcine crude heparin samples. DS2S* and ChS6S* indicate the percentage of IdoA2S and ChS6S (chondroitin C) of dermatan and chondroitin components, respectively. NB: 0 value means <LOD

Groun	Female	I B	GND		av Car	SDE0
Group	Jampie		ONK	UNANAC	UNJEI	JDEG
	69907	5.0	2.4	0.0	0.0	2.29
	G9908	5.1	2.2	0.0	0.0	2.24
	G9909	5.4	3.1	0.0	0.0	2.26
	69911	47	2.4	0.0	0.0	2 24
	00010		2.4	0.0	0.0	2.24
	G9912	6.6	2.3	0.0	0.0	2.30
	G9913	6.5	2.5	0.0	3.1	2.31
	G9914	6.8	2.7	0.0	5.2	2.27
	69915	59	2 5	0.0	0.0	2 3 2
	00010	5.5	2.0	0.0	0.0	2.02
	69916	5.2	2.6	0.0	0.0	2.36
	G9917	5.6	2.7	0.0	9.6	2.36
	G9918	6.2	2.4	0.0	0.0	2.31
	G9919	6.1	2.5	0.0	0.0	2.33
	60020	6.2	2.0	0.0	E 7	2.00
	03320	0.5	2.0	0.0	5.7	2.30
	G9921	6.7	2.3	0.0	7.2	2.34
	G9922	6.2	2.5	0.0	0.0	2.35
	G9923	6.0	2.6	0.0	0.0	2.32
	G9924	5.1	2.6	0.0	0.0	2.26
	69925	5.5	24	0.0	8 2	2 36
	69925	3.3	2.7	0.0	0.2	2.30
	G9926	6.2	2.4	0.0	0.0	2.32
	G9927	6.3	2.6	0.0	0.0	2.22
	G9928	6.3	2.7	0.0	13.5	2.20
	G9929	5.4	2.2	0.0	0.0	2.25
	60030	5.4	2.4	0.0	0.0	2 20
	03930	5.4	2.1	0.0	0.0	2.29
	G9932	5.6	2.6	0.0	0.0	2.33
	G9933	5.5	2.9	0.0	0.0	2.23
	G9934	4.3	2.3	0.0	7.9	2.36
	G9935	5.1	2.1	0.0	10.0	2.32
	69036	5.9	2 6	0.0	0.0	2 20
-	65530	3.0	2.0	0.0	0.0	2.30
C	G9937	4.1	2.8	0.0	17.7	2.16
	G9938	6.8	2.6	0.0	8.0	2.27
	G9939	6.6	2.5	0.0	4.5	2.28
	G9940	6.0	2.0	0.0	6.3	2.33
	60044	6.4	2.5	0.0	6.2	2.20
	05541	0.4	2.5	0.0	0.3	2.30
	G9942	6.6	2.6	0.0	5.0	2.29
	G9943	6.2	3.7	0.0	8.2	2.23
	G9944	5.5	2.3	0.0	0.0	2.42
	G9945	5.7	2.6	0.0	0.0	2.34
	60046	E 9		0.0	42 5	2.22
	09940	5.0	2.2	0.0	12.5	2.32
	G9947	5.5	2.4	0.0	0.0	2.28
С	G9948	7.1	2.7	0.0	12.5	2.20
	G9949	5.2	2.6	0.0	0.0	2.37
	69950	6.5	28	0.0	4.0	2 35
	633350	0.0	2.0	0.0	2.0	2.00
B	012131	0.1	2.1	0.0	3.9	2.43
	G12132	5.7	2.1	0.0	0.0	2.34
в	G12133	5.5	2.0	0.0	0.0	2.44
	G12134	5.8	2.1	0.0	0.0	2.37
в	G12135	5.9	1.8	0.0	0.0	2.44
-	642426	6.0	4.0	0.0	0.0	2.22
	612130	0.2	1.5	0.0	0.0	2.52
	G12137	6.5	2.3	0.0	0.0	2.32
	G12138	6.0	2.6	0.0	0.0	2.39
	G12139	5.9	2.0	0.0	0.0	2.27
R	G12141	5.6	22	0.0	0.0	2 45
	640440	5.0	2.2	0.0	0.0	2.43
в	G12142	5./	2.1	0.0	0.0	2.43
	G12147	6.2	2.0	0.0	5.3	2.14
	G12149	5.7	2.3	0.0	0.0	2.35
	G12150	6.4	2.3	0.0	0.0	2.31
	G12151	5 2	3.0	0.0	8.4	2 10
~	642450	6.4	3.0	0.0	0.4	2.13
L.	012152	0.1	2.2	0.0	0.0	2.20
C	G12153	5.6	0.0	0.0	0.0	2.20
С	G12154	6.2	0.0	0.0	0.0	2.21
	G12155	6.0	2.4	0.0	0.0	2.22
	G12156	6.2	0.0	0.0	0.0	2 4 2
	012130	0.2	0.0	0.0	0.0	2.13
	G12158	6.4	1.9	0.0	11.4	2.32
	G12161	5.4	2.0	0.0	12.5	2.46
в	G12163	6.4	2.5	0.0	0.0	2.32
	G12164	6.4	2.9	0.0	0.0	2.34
^	612466	4 60	2 4 7	ND	100	2 20
A	612100	4.09	2.17	NU	100	2.39
	G12169	6.4	2.6	0.0	10.6	2.32
Α	G12170	5.63	2.76	ND	100	2.43
	G12174	6.3	1.9	0.0	6.8	2.33
	649475	0.0		0.0	0.0	2.00
	G121/5	6.2	2.1	0.0	0.0	2.30
	G12177	7.0	2.4	0.0	7.8	2.25
Α	G12179	4.4	1.7	0.0	100.0	2.42
Α	G12180	4.36	2.02	ND	100	2.46
~	642484	6 20	2.02	ND		2.40
	612181	0.39	2.02	UN	U	2.39
	average	5.9	2.3	0.0	8.3	2.3
	median	6.0	2.4	0.0	0.0	2.3
	st.dev.	0.65	0.58	0.00	22.35	0.08
	st.dev.	0.65	0.58	0.00	22.35	0.08

 Table S13 - Linkage region and sulfation degree of 75 porcine crude heparin samples. NB: 0 value means <LOD</th>

The alignment algorithm was developed by a modification of the algorithm contained in the R "ptw" (Parametric Time Warping) alignment package⁽¹⁾ and works as follows: if the original abscissa is 1, ..., n, then the signal of the aligned spectrum at k will be equal to the intensity of the original spectrum at

$$s(k) = k + \sum_{i=1}^{d} a_i \cdot \sin\left(\pi \frac{i(k-1)}{n-1}\right)$$

The user has to select d and the initial values for the a_i coefficients, which are optimized by the software by minimizing the distance between the aligned spectrum and the reference spectrum.

If s(k) is not an integer, the algorithm interpolates between the intensities at the two integers closest to s(k).

The equally spaced abscissa values (ppm) of the NMR spectrum are mapped to and from 1, ..., n in the obvious way before and after the application of the algorithm.

⁽¹⁾ T.G. Bloemberg, J. Gerretzen, H.J.P. Wouters, J. Gloerich, M. van Dael, H.J.C.T. Wessels, L.P. van den Heuvel, P.H.C. Eilers, L.M.C. Buydens, R. Wehrens, Improved parametric time warping for proteomics, Chemometr. Intell. Lab. 2010, 104, 65-74. DOI: 10.1016/j.chemolab.2010.04.008. R. Wehrens, T.G. Bloemberg, P.H.C. Eilers, Fast parametric time warping of peak lists, Bioiformatics 2015, 31, 3063-3065. DOI: 10.1093/bioinformatics/btv299.

Figure S9 – Alignment algorithm. Black lines=reference spectrum. Pink lines=PMHC spectra. Grey lines=OMHC spectra. Dark brown lines=BMHC spectra. Light brown lines=BLCH spectra. Top panels shows spectra before alignment. Bottom panels show spectra after alignment.