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Abstract: Linear and cyclic analogues of the α-melanocyte stimulating hormone (α-MSH) targeting
the human melanocortin receptor 1 (MC1R) are of pharmacological interest for detecting and treating
melanoma. The central sequence of α-MSH (His-Phe-Arg-Trp) has been identified as being essential
for receptor binding. To deepen current knowledge on the molecular basis for α-MSH bioactivity,
we aimed to understand the effect of cycle size on receptor binding. To that end, we synthesised
two macrocyclic isomeric α-MSH analogues, c[NH-NO2-C6H3-CO-His-DPhe-Arg-Trp-Lys]-Lys-NH2

(CycN-K6) and c[NH-NO2-C6H3-CO-His-DPhe-Arg-Trp-Lys-Lys]-NH2 (CycN-K7). Their affinities to
MC1R receptor were determined by competitive binding assays, and their structures were analysed
by 1H and 13C NMR. These results were compared to those of the previously reported analogue
c[S-NO2-C6H3-CO-His-DPhe-Arg-Trp-Cys]-Lys-NH2 (CycS-C6). The MC1R binding affinity of the
22-membered macrocyclic peptide CycN-K6 (IC50 = 155 ± 16 nM) is higher than that found for the
25-membered macrocyclic analogue CycN-K7 (IC50 = 495 ± 101 nM), which, in turn, is higher than
that observed for the 19-membered cyclic analogue CycS-C6 (IC50 = 1770 ± 480 nM). NMR structural
study indicated that macrocycle size leads to changes in the relative dispositions of the side chains,
particularly in the packing of the Arg side chain relative to the aromatic rings. In contrast to the other
analogues, the 22-membered cycle’s side chains are favorably positioned for receptor interaction.

Keywords: α-MSH analogue; cyclic peptide; melanocortin receptor; NMR; peptide structure

1. Introduction

The melanocortin receptor 1 (MC1R) belongs to a five-member subfamily of G protein-coupled
receptors (GPCR), the melanocortin receptors (MCRs) family that also includes MC2-, MC3-, MC4- and
MC5-receptors [1–5]. The human gene coding the MC1R was first cloned in 1992 [1,6]. Since then,
genetic analysis, phenotypic association and structure-function studies opened new perspectives
for the assignment of its function as a key regulator of skin biological events. It is involved in the
regulation of skin pigmentation, animal coat coloration, and melanocyte function [5,7]. Polymorphisms
in the receptor gene have been attributed to the red hair phenotype, melanoma and non-melanoma
skin cancer [7–9]. MC1R is expressed in melanocytes, melanoma cells, macrophages, and brain, as
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well as in leukocytes, where it may mediate an anti-inflammatory action [5,10]. MC2R is expressed in
the adrenal cortex, where it mediates the effects of the adrenocorticotropic hormone (ACTH) on steroid
secretion. MC3R, found in many areas of the central nervous system and peripheral tissues, modulates
energy homeostasis. MC4R is expressed predominantly in the central nervous system and regulates
both food intake and sexual function, while MC5R is expressed in numerous human peripheral tissues
and is mainly involved in exocrine function, particularly sebaceous gland secretion [5,11].

The MC1R shares the same endogenous ligands with other MCRs, and, therefore should
have similar orthosteric binding (i.e., the receptor area where the endogenous ligand binds) [5].
The orthosteric binding site is located in the transmembrane (TM) helices of MC1R, and several
negatively-charged, aromatic and aliphatic residues have been identified as crucial for ligand
binding. MC1R binds to several natural ligands, which are derived from the same precursor protein
(pro-opiomelanocortin—POMC), with the following order of potency: α-melanocyte-stimulating
hormone (α-MSH) > ACTH > β-MSH > γ-MSH [7,12].

Among the reported signaling pathways, it is noteworthy that MC1R mediates the physiological
actions of the endogenous ligand by a Gs-protein-dependent activation of the cyclic adenosine
monophosphate (cAMP) signaling pathway. The increase of cAMP levels results in the
activation of tyrosinase in melanocytes and leads to an increase of melanin production [11].
This mechanism of production and accumulation of intracellular cAMP has been used to determine
the agonist/antagonist properties of MC1R ligands [11].

Structure–bioactivity studies have shown that all endogenous ligands contain a conserved
His-Phe-Arg-Trp sequence that has been attributed to melanocortin receptor selectivity and
stimulation [5,7,12–14]. This high degree of pharmacophore homology makes it difficult to design
highly selective ligands for one receptor subtype. Nevertheless, MC1R is known to be expressed at the
surface of human melanocytes, and overexpressed at the surface of murine and human melanoma
cells, while MC2R-MC5R has higher expression levels in the brain and the nervous system. Thus,
MC2R-MC5R off-target interactions are unlikely because presumably most ligands will not be able
to cross the blood-brain barrier [15–17]. Taken together, these findings supported the development
of strategies to specifically target MC1R without significant side effects.

Among these strategies, a great deal of research has focused on the design of α-MSH peptide
analogues because the receptor participates in several signaling pathways and since non-peptide
or small ligands are not available to mimic the physiological action of the linear tridecapeptide
α-MSH [11].

Aimed at enhancing the biological stability, potency and specificity of the endogenous
ligand, a library of α-MSH analogues has been designed for imaging and therapeutic
applications [14,18]. Among them, the 19-membered alkylthioaryl-bridged macrocyclic α-MSH
analogue c[S–NO2–C6H3–CO–His–DPhe–Arg–Trp–Cys]–NH2 (PG10N) was reported as a potent
full agonist for all human MCRs [19]. Recently, we found that the addition of a Lys at the C-terminus
of the parent peptide PG10N led to impaired binding of analogue CycS-C6 (Figure 1 and Table 1).
However, replacement of the alkylthioaryl-bridge (CycS-C6) by an alkylaminoaryl-bridge (CycN-K6)
led to a 22-membered macrocyclic peptide with increased affinity towards MC1R (Table 1 and Figure 1).

These observations, which suggest that the size of the macrocycle might play a role for
receptor binding, prompted us to experimentally analyse the structural factors that may affect the
MC1R-interaction properties of these macrocyclic α-MSH analogue peptides. Since we have already
reported the NMR structure of the alkylthioaryl-bridged analogue CycS-C6 [20], we proceeded to
perform the NMR structural study of the alkylaminoaryl-bridged macrocyclic peptide CycN-K6
in aqueous solution. Furthermore, we examined the affinity for receptor MC1R and extended the
NMR study to the 25-membered alkylaminoaryl-bridged macrocyclic peptide CycN-K7 (Figure 1).
This peptide, initially obtained as a sub-product in the synthesis of CycN-K6, is interesting because
of its larger macrocycle size and since it is an isomer of CycN-K6.
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Figure 1. Structural formulas of the cyclic α-melanocyte stimulating hormone (α-MSH) analogues 
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Table 1. Sequences, cycle size and MC1R binding affinities (IC50) of cyclic α-MSH analogues. 
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CycN-K6 c[NH–NO2–C6H3–CO–His–DPhe–Arg–Trp–Lys]–Lys–NH2 22 155 ± 16 
CycN-K7 c[NH–NO2–C6H3–CO–His–DPhe–Arg–Trp–Lys–Lys]–NH2 25 495 ± 101 

1 Data for PG10N and for CycS-C6 were taken from [19] and [20], respectively. 
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involved in cyclization (Figure 1). Once their chemical shifts (δ) were assigned (see Section 4 and 
Tables S1 and S2, Supplementary Materials), the identity of the Lys residue involved in cyclization 
could be confirmed unambiguously by 1H and 13C δ values of the Lys Cεε’H2 groups (Tables S1 and 
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Figure 1. Structural formulas of the cyclic α-melanocyte stimulating hormone (α-MSH) analogues
CycS-C6, CycN-K6, and CycN-K7.

Table 1. Sequences, cycle size and MC1R binding affinities (IC50) of cyclic α-MSH analogues.

Peptide Sequence Cycle Size IC50 (nM)

PG10N 1 c[S–NO2–C6H3–CO–His–DPhe–Arg–Trp–Cys]–NH2 19 3.7 ± 0.5
CycS-C6 1 c[S–NO2–C6H3–CO–His–DPhe–Arg–Trp–Cys]–Lys–NH2 19 1770 ± 480
CycN-K6 c[NH–NO2–C6H3–CO–His–DPhe–Arg–Trp–Lys]–Lys–NH2 22 155 ± 16
CycN-K7 c[NH–NO2–C6H3–CO–His–DPhe–Arg–Trp–Lys–Lys]–NH2 25 495 ± 101

1 Data for PG10N and for CycS-C6 were taken from [19,20], respectively.

2. Results

2.1. Affinity of Peptides CycN-K6 and CycN-K7 to MCR1

The binding affinities of the peptides CycN-K6 and CycN-K7 to MC1R were tested in
a competitive binding assay using [125I]-[Nle4,DPhe7]-α-MSH ([125I]-NDP-α-MSH) as radioligand
and murine melanoma B16F1 cells (Figure S1, Supplementary Materials), as previously described for
other α-MSH analogues [20]. Table 1 lists the IC50 values obtained for those two peptides, and for the
19-membered macrocyclic peptides PG10N and CycS-C6 [19,20]. Strikingly, the 25-membered peptide
CycN-K7 turned out to have less affinity for the receptor than the 22-membered peptide CycN-K6,
which, however, exhibits more affinity than the 19-membered peptide CycS-C6. This indicates that
the relationship between cycle size and receptor affinity is not straightforward. Therefore, a detailed
structural comparison of these three peptides is required to understand the molecular basis for their
binding to receptor MC1R.

2.2. NMR Characterization of CycN-K6 and CycN-K7 and Comparison to CycS-C6

Peptides CycN-K6 and CycN-K7 are structural isomers, which differ in the Lys side chain
involved in cyclization (Figure 1). Once their chemical shifts (δ) were assigned (see Section 4 and
Tables S1 and S2, Supplementary Materials), the identity of the Lys residue involved in cyclization
could be confirmed unambiguously by 1H and 13C δ values of the Lys Cεε’H2 groups (Tables S1 and
S2), and by the Nuclear Overhauser effects (NOEs) between the p-NO2-benzoic acid ring and the Lys
side chain (Figure 2 and Table S3, Supplementary Materials).

As previously found in peptide CycS-C6 [20], these two macrocyclic peptides show many δ

values that differ strongly from the random coil δ values. For instance, the chemical shift deviations
(∆δ = δobserved − δrandom coil, ppm) obtained for 1Hα, 13Cα and 13Cβ atoms lie clearly outside the
random coil range (Figure 3 and Figure S2, Supplementary Materials), which shows that peptides
CycN-K6 and CycN-K7 form ordered conformations in aqueous solution. Moreover, the sign of
the observed deviations, which are negative in ∆δHα and ∆δCβ, and positive in ∆δCα for most
residues (Figure 3 and Figure S2), is indicative of turn-like conformations. Concerning side chain
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protons, the up-field shifts exhibited by Arg (Table 2) indicate that these side chain protons experience
anisotropic effects from the ring currents of one or more aromatic residues, as was also observed
in peptide CycS-C6 [20]. Despite these common general characteristics, the detailed examination of
NMR parameters highlights the existence of important differences between peptides CycN-K6 and
CycN-K7, and also among these peptides and the previously reported CycS-C6 [20]. The differences
are observed both at the cycle backbone and at certain side chains. The most remarkable differences
at cycle backbone are observed for residues His and Arg, for which peptide CycN-K6 exhibits ∆δHα

values of opposite sign relative to those observed in peptides CycS-C6 and CycN-K7 (Figure 3 and
Table 2). In addition, 3JαN coupling constants, which have a well-established relationship with φ

angles, displayed differences among the three peptides. DPhe residue shows a small 3JαN value (<5 Hz)
in peptide CycS-C6 [20], which is typical of the i + 1 residue in β-turns, but values about 6–7 Hz in
peptides CycN-K6 and CycN-K7 (Table 2). In contrast, the 3JαN value is small for the His residue in
peptide CycN-K6, and displays a large value, which is characteristic of extended chains, in peptide
CycS-C6 (Table 2). This suggests that the residues forming a β-turn structure differ between peptide
CycS-C6 and CycN-K6. No residue shows a small value in the case of peptide CycN-K7 (Table S4),
probably because its larger macrocyclic size imposes less restrictions on mobility. It seems obvious that
the differences in macrocycle conformations should translate into changes in the relative dispositions
of the side chains. Thus, the magnitudes of the Arg up-field shifted 1H δ differ significantly among
the three peptides, and follow the decreasing order CycS-C6 > CycN-K7 > CycN-K6 (Table 2). These
differences must arise from changes in the packing of the Arg side chain relative to the aromatic rings,
as confirmed in the calculated structures (see below). All these conformational variations account for
the differences in affinity to receptor MC1R (Table 1).
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Table 2. Distinctive NMR parameters in peptides CycS-C6, CycN-K7, and CycN-K6 1.

CycS-C6 2 CycN-K6 CycN-K7 Random Coil 3

Cycle size (number atoms) 19 22 25
3JαN His (Hz) 4 7.9 4.2 6.0 5.5–7.4 5

3JαN DPhe (Hz) 4 4.8 6.6 6.2 5.5–7.4 5

δ Hα His (ppm) 4.96 4.68 4.85 4.73
δ Hα Arg (ppm) 3.99 4.42 4.13 4.34
δ Hββ’ Arg (ppm) 1.12, 1.38 1.48, 1.69 1.41, 1.60 1.76, 1.86
δ Hγγ’ Arg (ppm) 0.59, 0.79 1.02, 1.02 0.94, 1.08 1.63, 1.63
δ Hδδ’ Arg (ppm) 2.78, 2.78 2.48, 2.82 2.71, 2.85 3.20, 3.20

1 Experimental conditions: H2O/D2O 9:1 v/v at pH 2.5 and 25 ◦C. 2 Data taken from [20]. 3 Values taken from [21].
4 Experimental errors in 3JαN are ± 0.4 Hz. 5 Range reported for non-structured model pentapeptides [22].

Molecules 2017, 22, 1189  5 of 12 

 

Table 2. Distinctive NMR parameters in peptides CycS-C6, CycN-K7, and CycN-K6. 1 

 CycS-C6 2 CycN-K6 CycN-K7 Random coil 3 
Cycle size (number atoms) 19 22 25  

3JαN His (Hz) 4 7.9 4.2 6.0 5.5–7.4 5 
3JαN DPhe (Hz) 4 4.8 6.6 6.2 5.5–7.4 5 
δ Hα His (ppm) 4.96 4.68 4.85 4.73 
δ Hα Arg (ppm) 3.99 4.42 4.13 4.34 
δ Hββ’ Arg (ppm) 1.12, 1.38 1.48, 1.69 1.41, 1.60 1.76, 1.86 
δ Hγγ’ Arg (ppm) 0.59, 0.79 1.02, 1.02 0.94, 1.08 1.63, 1.63 
δ Hδδ’ Arg (ppm) 2.78, 2.78 2.48, 2.82 2.71, 2.85 3.20, 3.20 

1 Experimental conditions: H2O/D2O 9:1 v/v at pH 2.5 and 25 °C. 2 Data taken from [20]. 3 Values taken 
from [21]. 4 Experimental errors in 3JαN are ± 0.4 Hz. 5 Range reported for non-structured model 
pentapeptides [22]. 

 

Figure 3. ΔδHα (ΔδHα = δHαobserved − δHαRC, ppm) plot as a function of sequence for peptides CycS-C6 
(black bars), CycN-K6 (white bars), and CycN-K7 (grey bars) in aqueous solution at pH 2.5 and 25 
°C. Residue 6 is Cys in CycS-C6 and Lys in CycN-K6 and CycN-K7. Dashed lines indicate the random 
coil (RC) range. Random coil values were taken from [21]. 

2.3. NMR Solution Structures of Analogues CycN-K6 and CycN-K7 

According to the qualitative analysis of the NMR data, peptides CycS-C6 [20], CycN-K6 and 
CycN-K7 present some conformational differences. The size of the macrocycle seems to affect the 
cycle conformation, which, in turn, induces changes in the relative positions of aromatic and 
positively-charged side chains. To achieve a detailed comparison of the three-dimensional 
arrangement of the side chains in the three peptides, we proceeded to calculate the structures of 
peptides CycN-K6 and CycN-K7 from the experimental NMR parameters (see Materials and 
methods). The solution structure of CycS-C6 had been previously determined following the same 
calculation protocol [13]. The structural ensembles of the three peptides are represented in Figure 4. 
Peptide CycS-C6, which has the smallest cycle size (19 atoms), has the lowest RMSD value (0.4 Å). 
Thus, as expected, the smaller macrocycle restricts the most the available conformations. However, 
CycN-K7, which has the biggest cycle size (25 atoms), has a slightly lower RMSD (0.7 Å) than peptide 

Figure 3. ∆δHα (∆δHα = δHα
observed − δHα

RC, ppm) plot as a function of sequence for peptides
CycS-C6 (black bars), CycN-K6 (white bars), and CycN-K7 (grey bars) in aqueous solution at pH 2.5
and 25 ◦C. Residue 6 is Cys in CycS-C6 and Lys in CycN-K6 and CycN-K7. Dashed lines indicate the
random coil (RC) range. Random coil values were taken from [21].

2.3. NMR Solution Structures of Analogues CycN-K6 and CycN-K7

According to the qualitative analysis of the NMR data, peptides CycS-C6 [20], CycN-K6 and
CycN-K7 present some conformational differences. The size of the macrocycle seems to affect
the cycle conformation, which, in turn, induces changes in the relative positions of aromatic and
positively-charged side chains. To achieve a detailed comparison of the three-dimensional arrangement
of the side chains in the three peptides, we proceeded to calculate the structures of peptides CycN-K6
and CycN-K7 from the experimental NMR parameters (see Materials and methods). The solution
structure of CycS-C6 had been previously determined following the same calculation protocol [13].
The structural ensembles of the three peptides are represented in Figure 4. Peptide CycS-C6, which has
the smallest cycle size (19 atoms), has the lowest RMSD value (0.4 Å). Thus, as expected, the smaller
macrocycle restricts the most the available conformations. However, CycN-K7, which has the biggest
cycle size (25 atoms), has a slightly lower RMSD (0.7 Å) than peptide CycN-K6 (0.8 Å), whose cycle size
(22 atoms) is intermediate between CycS-C6 and CycN-K7. Although the difference in RMSD value
between CycN-K6 and CycN-K7 is very small, it is interesting to note that increasing or decreasing
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the cycle size in the antimicrobial peptide Gramicidin S results in a well-defined antiparallel β-sheet or
a less-defined distorted structure depending on the number of cycle residues [23]. Apart from this,
the main differences among the structures lie in the relative position of the side chains (Figure 4),
in particular the Trp side chain shows quite a different orientation in the three peptides (Figure S3,
Supplementary Materials). These differences should account for the distinct affinities to MC1R receptor
exhibited by the three peptides.
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Figure 4. 3D NMR structures of peptides CycS-C6 [20], CycN-K6 and CycN-K7. (a) Ensemble
of the 20 lowest target function calculated structures. Side chains are colored in cyan for His, green
for DPhe, magenta for Trp, and blue for Arg and Lys. Backbone atoms are displayed in grey and
the thioaryl-bridge in yellow. (b) Electrostatic surface of a representative conformer of each peptide
overlaid onto the corresponding structure. Blue color indicates positively-charged areas. The MC1R
transmembrane helices (TM1, TM2, TM3, TM6 and TM7), which are close to the essential peptide
side chains (His, DPhe, Arg and Trp) in the reported MC1R/peptide model [24], are indicated. In the
represented views, TM6 and TM3 lie behind CysS-C6 and CycN-K7, respectively.

3. Discussion

Based on sequence homology, the structure of the MC1R receptor consists of seven transmembrane
helices, TM1 to TM7 [12,25], which are very probably arranged in the helical bundle characteristic
of the GPCR superfamily. In the proposed model for the complex between the human MC1R receptor
and a rigid cyclic melanocyte-stimulating hormone core peptide c[His–DPhe–Arg–Trp–Gly], the ligand
lies into an inner channel of the helical bundle, and close to the extracellular loops. In that model [24],
the guanidinium group of the Arg residue interacts with a cluster of negatively-charged residues and
polar residues at TM1 and TM7 helices; the DPhe aromatic ring lies in a hydrophobic cavity between
TM1 and TM2 helices; the Trp indole moiety interacts with a hydrophobic cluster formed by residues
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from TM3, TM6, and TM7 helices, and it might be hydrogen-bonded to an Asp at TM3 helix; and the
His imidazole group points towards the extracellular loops and contacts with residues at TM2 helix.
Helices TM4 and TM5 do not participate in the binding [24,26].

Considering this complex network of interactions, the structural differences among the three
peptides (Figure 4 and Figure S3, Supplementary Materials) can explain their distinct affinity to
MC1R (Table 1). As we previously reported [20], the extra-cyclic Lys present in CycS-C6 strongly
decreases affinity to MC1R (Table 1). Likely, this additional long and positively-charged Lys side chain
impedes suitable accommodation of the side chains of the cycle residues at the MC1R binding pocket.
The extra-cyclic Lys might interfere either by steric hindrance or by competing with the Arg binding site.
Strikingly, the MC1R affinity of CycN-K6, which also has an extra-cyclic Lys, but a larger cycle, is about
ten-fold higher than in CycS-C6 (Table 1). Indeed, this result prompted us to characterize the structure
of peptide CycN-K6 (see Introduction). As we hypothesized [20], the differences in the size of the cycle
give rise to different relative arrangements of all the side chains. These differences can be appreciated
for the His/DPhe, DPhe/Arg, Arg/Trp, and DPhe/Trp pairs in Figure 4. For example, the aromatic
rings of DPhe3 and Trp5 extend outwards from the same macrocycle face in CycS-C6 (61 ± 24◦) but
from different sides in CycN-K6 (99 ± 38◦). Considering that DPhe and Trp aromatic rings bind to
different sub-sites in the MC1R receptor [24], it seems likely that these rings’ position on different cycle
faces in CycN-K6 will predispose them to interact favorably with MC1R. In contrast, the alignment
of these aromatic rings on the same cycle face in CycS-C6 predisposes them unfavorably for binding,
and it can be expected that part of the CycS-C6/MC1R binding energy will have to be “spent” to
change their orientation. These expectations are supported by the higher MC1R affinity of CycN-K6
compared to CycS-C6 (Table 1). In the case of peptide CycN-K7, which shows an intermediate affinity
value between the other two peptides, the orientation of the DPhe and Trp rings (69 ± 20◦) is more
similar to CycS-C6 than CycN-K6 (see also Figure S3, Supplementary Materials).

Analogously, the other residue pairs are probably better predisposed in CycN-K6 to interact with
the MC1R receptor. For instance, it can be seen in Figure 4 that the Arg/DPhe and DPhe/His pairs
display quite different arrangements in the three peptides. Since the DPhe aromatic ring interacts
with residues at the TM1 and TM2 helices, Arg with residues at TM1, and His with residues at TM2,
positioning these three side chains in a conformation that resembles their orientation when bound to
the MC1R receptor should facilitate complex formation. Based on this line of reasoning, we can infer
that the melanocortin core residues (His, DPhe, Arg, and Trp) in CycN-K6 are favorably arranged to
bind the MC1R receptor.

Evidently, the conformation of the free and MC1R-bound peptides could differ. Then, considering
peptides whose side chains are not favorably predisposed to bind the receptor, we can expect that
flexible peptides will bind better than rigid ones. This is because less binding energy will be “spent”
forcing a flexible peptide to adopt the proper orientation as compared to a rigid one. Indeed, some cases
in which the most flexible variant of a peptide is more active than those more structurally restricted
have been reported [27,28]. Although RMSD value is not a dynamic parameter, in general, low RMSD
values correspond to well-defined, and usually mostly rigid structures, whereas high RMSD values are
found for less-defined, and more-flexible conformers. Accordingly, the structure of the 19-membered
macrocycle CycS-C6 is better defined, and therefore is likely to be more rigid, than those of the 22- and
25-macrocycles CycN-K6, and CycN-K7, respectively. Hence, if receptor binding requires structural
re-arrangements, these two peptides will adapt more easily than CysS-C6. This explains the lower
affinity for MC1R by CysS-C6 in comparison with CycN-K7, even though the side chains of these two
peptides dispose differently from CycN-K6, and more similarly between them.

Coming back to the Lys residue, which is present in the three peptides, and strongly decreases
affinity to MC1R (see above CysS-C6 vs. PG10N; Table 1); the distribution of the positively-charged
residues (Arg4 and Lys6/7; Figure 4) differs among the three peptides. Thus, the fact that
the detrimental effect of Lys is not so drastic in CycN-K6, and CycN-K7 could be explained by its
disfavoring effect being offset by other favorable factors, such as a suitable pre-arrangement of the side
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chains in CycN-K6; and by the higher flexibility of these larger macrocycles, which makes feasible
for the Lys side chain to be placed so that it does not disturb the favorable key interactions of the
conserved melanocortin core residues. The conformational space available for Lys6 in CycN-K7, which
is within the cycle, must be more restricted than for Lys7 in CycN-K6, which is outside the cycle
(Figures 1 and 4), and likely contributes to the lower MC1R affinity of CycN-K7 relative to CycN-K6
(Table 1).

Taken together, our results have shown that appropriate side chain orientations, as proposed by
Cho and coworkers [29], and conformational flexibility play an important role in the binding affinity
to melanocortin receptors. Upon the increase of the cycle size, the side chain orientations and the cycle
flexibility are changed, and as a consequence binding affinity is affected.

4. Materials and Methods

4.1. Peptide Synthesis

Peptides c[NH–NO2–C6H3–CO–His–DPhe–Arg–Trp–Lys]–Lys–NH2 (CycN-K6) and c[NH–NO2–
C6H3–CO–His–DPhe–Arg–Trp–Lys–Lys]–NH2 (CycN-K7) were prepared following modified
protocols from the literature [19]. Details for peptide CycN-K6 were previously reported [20]. In
the case of peptide CycN-K7, the linear peptide NH2–His(Trt)–DPhe–Arg(Pbf)–Trp(Boc)–Lys(ivDde)–
Lys(Mtt)–NH2 was assembled to the MBHA Rink Amide resin (Novabiochem, Lisbon, Portugal)
by Fmoc-based solid-phase peptide synthesis in a CEM 12-channel automated peptide
synthesizer (CEM Corporation, Matthews, NC, USA) using 1-hydroxibenzotriazole hydrate
(HOBT)/O-(benzotriazole-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HBTU) as
coupling agents, and capped with fluoronitrobenzoic acid as previously described [19]. Prior to
the cyclization step, the NH-Mtt protecting group of Lys was removed with dilute TFA (1% in CH2Cl2)
without cleavage of the peptide from the resin. As described for peptides CycS-C6 and CycN-K6 [20],
cyclization was performed by treating the supported peptide with 5 equiv. of K2CO3 in DMF at 25 ◦C
with gentle shaking for 36 h. Next, the peptide resin was washed with DMF (2×), H2O (3×), DMF
(3×), H2O (2×), CH3OH (3×), and CH2Cl2 (3×) and then vacuum-dried. Cleavage of the peptide
from the resin was accomplished by treatment with a mixture of 95 % TFA, 2.5 % TIS, and 2.5 % H2O
(5 mL) for 2 h. The cleavage solution, which contains the crude peptide, was separated from the resin
by filtration and concentrated by partial evaporation of the solvent using a stream of N2 gas The crude
peptide CycN-K7 was precipitated and washed with diethyl ether, vacuum-dried, and dissolved in
H2O prior to lyophilisation. Finally, semi-preparative purification and evaporation of solvents from
the corresponding fractions yielded peptide CycN-K7 as a green solid.

Peptide CycN-K6, c[NH–NO2–C6H3–CO–His–DPhe–Arg–Trp–Lys]–Lys–NH2 (MW C51H66N16O9

1047.1): calculated m/z for [M + 2H]2+ 524.5, found 524.5, tR = 9.3 min.
Peptide CycN-K7, c[NH–NO2–C6H3–CO–His–DPhe–Arg–Trp–Lys–Lys]–NH2 (MW C51H66N16O9

1047.1): calculated m/z for [M + 2H]2+ 524.5, found 524.5, tR = 9.5 min.

4.2. Competitive Binding Assays

NDP-α-MSH was radioiodinated as described [20]. To determine the inhibitory concentration
of 50 % (IC50) values for the α-MSH analogues, competitive binding assays with [125I]NDP-α-MSH in
B16F1 melanoma cells were carried out in triplicate following the previously described procedure [20].
IC50 values were calculated from the plots of the percentage of [125I]NDP-α-MSH bound to the cells vs.
the concentrations of displacing peptides by using GraphPad Prism software (GraphPad Software Inc.,
La Jolla, CA, USA).

4.3. NMR Sample Preparation

Samples for acquisition of NMR spectra at approximately 1 mM peptide concentration
were prepared by solving the lyophilized peptides (~0.5 mg) in 0.5 ml H2O/D2O (9:1 v/v).
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Sodium-2,2-dimethyl-2-silapentane-5-sulfonate (DSS) was added as an internal reference. A glass
microelectrode was used to measure pH, which was adjusted to 2.5 by adding minimal amounts
of NaOD or DCl. The pH readings were not corrected for isotope effects.

4.4. Acquisition of NMR Spectra

A Bruker (Bruker Española S.A, Madrid, Spain) AV-600 spectrometer operating at a proton
frequency of 600.13 MHz and equipped with a cryoprobe was used to acquire NMR spectra.
The temperature of the NMR probe was calibrated using a methanol sample. 1D and 2D spectra, i.e.,
1H,1H-COSY (phase-sensitive correlated spectroscopy), 1H,1H-TOCSY (total correlated spectroscopy),
and 1H,1H-ROESY (rotating frame nuclear Overhauser spectroscopy) were recorded and processed
as previously reported [20,30]. 1H–13C and 1H–15N heteronuclear single quantum coherence spectra
(HSQC) were acquired at natural abundance of the heteronuclei. 13C and 15N δ-values were indirectly
referenced by multiplying the spectrometer frequency that corresponds to 0 ppm in the 1H spectrum,
assigned to internal DSS reference, by 0.25144953 and 0.101329118, respectively [31].

4.5. NMR Spectral Assignment

1H resonances were assigned by analysis of 2D 1H,1H-COSY, 1H,1H-TOCSY, and 1H,1H-ROESY
spectra using the program Sparky [32] and following standard sequential assignment methods [33,34].
Next, the 13C and 15N resonances were straightforwardly assigned from the cross-correlations observed
in the corresponding HSQC spectra between the proton and the bound carbon or nitrogen, respectively.
Supplementary Tables S1 and S2 list all chemical shifts for peptides CycN-K6 and CycN-K7. The 3JαN

coupling constants were measured at the doublet signals observed for the HN amide protons in
the 1D 1H-NMR spectra acquired in aqueous solution at pH 2.5 and 25 ◦C. They are listed at
Supplementary Table S3.

4.6. Structure Calculation

The three dimensional structures were calculated from distance restraints derived from
the cross-peaks present in 1H,1H-ROESY spectra of the peptides CycN-K6 and CycN-K7 (Figure S4)
and using torsion angle dynamics as implemented in the CYANA program (P. Guntert’s group,
Institute of Biophysical Chemistry, Goethe-University, Frankfurt am Main, Germany) [35,36]. The peak
lists for 1H,1H-ROESY spectra were generated by interactive peak picking, and the peak volumes
obtained by the automatic integration function of Sparky [32]. The CYANA protocol consisted of seven
iterative cycles of automatic assignment of distance restraints and structure calculation, followed
by a final standard structure calculation. In addition, a negative value for the torsion angle phi
for all amino acids, except for DPhe, plus the distance restraints needed for cyclization between
Lys6 or Lys7 and the p-NO2-benzoic acid linker were used during the NOE assignment/structure
calculation cycles. In each cycle, the structure calculation started from 100 randomized conformers
and the standard CYANA-simulated annealing schedule was used with 10,000 torsion angle dynamics
steps per conformer. The final structures, which are the ensemble of the 20 structures with the lowest
target functions, were visualised and analysed using the MOLMOL program [37].

Supplementary Materials: The following are available online, Figure S1: Competitive binding curves for
CycN-K6 and CycN-K7, Figure S2: Bar plots showing the ∆δCα and ∆δCβ values as a function of sequence
for CycS-C6, CycN-K6, and CycN-K7, Figure S3: Overlay of representative structures for CycS-C6, CycN-K6,
and CycN-K7 highlighting the relative dispositions of DPhe, Arg and Trp side chains, Figure S4: 1H,1H-ROESY
spectral region of CycN-K6 and CycN-K7, Table S1: 1H, 13C and 15N chemical shifts for CycN-K6, Table S2: 1H,
13C and 15N chemical shifts for CycN-K7, Table S3. NOEs between p-NO2-benzoic acid unit and its adjacent
residues His and Lys in CycN-K6 and CycN-K7, Table S4. 3JαN coupling constants measured for CycS-C6,
CycN-K6 and CycN-K7, Table S5. Structural statistics for the solution NMR structures of CycN-K6 and CycN-K7.
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