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Abstract: 3-Sulfanyloxindoles were synthesised by triphenylphosphine-mediated transition-metal-
free thiolation of oxindoles using sulfonyl chlorides as sulfenylation reagents. The above reaction was
promoted by iodide anions, which was ascribed to the in situ conversion of sulfenyl chlorides into the
more reactive sulfenyl iodides. Moreover, the thiolation of 3-aryloxindoles was facilitated by bases.
The use of a transition-metal-free protocol, readily available reagents, and mild reaction conditions
make this protocol more practical for preparing 3-sulfanyloxindoles than traditional methods.
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1. Introduction

Oxindoles and their derivatives have attracted increased attention as a frequently occurring
structural motif of both natural products and bioactive compounds [1–5], with thiolation at the
C-3 position imparting anticancer [6], antifungal [7], and antitubercular activities (Figure 1) [8].
Therefore, the synthesis of 3-sulfanyloxindoles has been widely investigated, including with methods
such as cyclisation of sulfur-containing compounds [9–14], nucleophilic substitution reactions
of 3-bromooxindoles (Scheme 1, Equation (1)) [15], electrophilic thiolation of oxindoles with
sulfinothioyldibenzene (Scheme 1, Equation (2)) [16] and electrophilic thiolation of oxindoles with
N-(arylthio)phthalimides (Scheme 1, Equation (3)) [17,18]. Although electrophilic thiolation is the
most straightforward method, the need for strongly basic conditions and the limited availability of
sulfenylation reagents limit its further application.
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Figure 1. Bioactive oxindoles with thiolation at the C-3 position. 

Recently, the use of sulfonyl chlorides as sulfenylation reagents has been reported by You 
(Scheme 2, Equation (1)) [19], Zheng (Scheme 2, Equation (2)) [20] and our group (Scheme 2, Equations 
(3) and (4)) [21]. As a part of our on-going development of new sulfenylation methods [21–28], we report 
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Equations (3) and (4)) [21]. As a part of our on-going development of new sulfenylation
methods [21–28], we report here a novel tetrabutylammonium iodide-facilitated thiolation of oxindoles
with sulfonyl chlorides as sulfenylation reagents (Scheme 3).
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presence of PPh3 in 1,4-dioxane at 80 °C afforded 3-methyl-3-(p-tolylthio)indolin-2-one (3aa) in 56% 
yield (Table 1, Entry 1). In agreement with our previous studies, this transformation was facilitated 
by iodide anions [21]. Therefore, a number of classical iodides were initially screened, including 
potassium iodide (KI), ammonium iodide (NH4I), and tetrabutylammonium iodide (n-Bu4NI), with 
the highest yield observed for n-Bu4NI (Table 1, Entries 2–4). Subsequently, other solvents, such as 
1,2-dichloroethane (DCE), toluene, acetonitrile (CH3CN), and N,N-dimethylformamide (DMF) were 
tested, but none of them surpassed 1,4-dioxane (Table 1, Entries 5–8). Finally, the effects of 
temperature and concentration were examined, revealing that decreasing the reaction temperature 
to 70 °C or increasing it to 90 °C diminished the yield (Table 1, Entries 9 and 10), as was also observed 
for decreasing the concentration of 1a from 0.5 M to 0.33 M (Table 1, Entry 11). When the 
concentration of 1a was increased from 0.5 M to 1.0 M, the desired product was obtained in 86% yield 
(Table 1, Entry 12), with further concentration increases leading to diminished yields (Table 1, Entry 13). 
Notably, increasing the loadings of 2a and PPh3 to 1.5 and 3.0 equiv., respectively, did not significantly 
affect the yield (Table 1, Entry 14). Thus, the optimised reaction conditions for the thiolation of 1a 
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2. Results

Treatment of 3-methylindolin-2-one (1a) with 4-methylbenzenesulfonyl chloride (2a) in the
presence of PPh3 in 1,4-dioxane at 80 ◦C afforded 3-methyl-3-(p-tolylthio)indolin-2-one (3aa) in 56%
yield (Table 1, Entry 1). In agreement with our previous studies, this transformation was facilitated
by iodide anions [21]. Therefore, a number of classical iodides were initially screened, including
potassium iodide (KI), ammonium iodide (NH4I), and tetrabutylammonium iodide (n-Bu4NI), with
the highest yield observed for n-Bu4NI (Table 1, Entries 2–4). Subsequently, other solvents, such
as 1,2-dichloroethane (DCE), toluene, acetonitrile (CH3CN), and N,N-dimethylformamide (DMF)
were tested, but none of them surpassed 1,4-dioxane (Table 1, Entries 5–8). Finally, the effects of
temperature and concentration were examined, revealing that decreasing the reaction temperature to
70 ◦C or increasing it to 90 ◦C diminished the yield (Table 1, Entries 9 and 10), as was also observed for
decreasing the concentration of 1a from 0.5 M to 0.33 M (Table 1, Entry 11). When the concentration
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of 1a was increased from 0.5 M to 1.0 M, the desired product was obtained in 86% yield (Table 1,
Entry 12), with further concentration increases leading to diminished yields (Table 1, Entry 13). Notably,
increasing the loadings of 2a and PPh3 to 1.5 and 3.0 equiv., respectively, did not significantly affect
the yield (Table 1, Entry 14). Thus, the optimised reaction conditions for the thiolation of 1a were as
follows: 1a (0.5 mmol), 2a (0.6 mmol), PPh3 (1.0 mmol), n-Bu4NI (0.1 mmol), and 1,4-dioxane (0.5 mL)
at 80 ◦C.

Table 1. Optimisation of 3-methylindolin-2-one (1a) thiolation by 4-methylbenzenesulfonyl chloride
(2a) in the presence of PPh3. a
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a Reaction conditions: 1a (0.5 mmol), 2a (0.6 mmol), PPh3 (1.0 mmol), and additive (0–0.1 mmol)) in an appropriate
solvent (0.3–1.5 mL) for 12 h at the indicated temperature. b Yield of product isolated after silica gel chromatography.
c 2 (0.75 mmol) and PPh3 (1.25 mmol) were used.

The optimised conditions were used to investigate the substrate scope of sulfenylation. As shown
in Table 2, a series of substituted 3-alkyloxindoles could be coupled with various sulfonyl chlorides to
afford the corresponding oxindole thioethers in moderate to excellent yields, with 3-alkyl-(1a, 1c–1g),
3-benzyl-(1h and 1i), and 5-bromo-substituted (1b) oxindoles being well tolerated. In the case of
aromatic sulfonyl chlorides, both electron-donating and electron-withdrawing groups, as well as
diverse ortho-, meta-, and para-substituents (2b–2e) were tolerated. Notably, for electronic effect,
aliphatic sulfonyl chlorides (2f and 2g) provided the desired thiolation products in a relatively low
yield compared with aromatic sulfonyl chlorides.

To further extend the substrate scope of this reaction, we explored the thiolation of
3-aryl-substituted oxindoles with sulfonyl chlorides using 3-(p-tolyl)indolin-2-one (4a) and
3-chlorobenzenesulfonyl chloride (2h) as model substrates in the presence of PPh3 under optimised
reaction conditions. However, no desired product (5ah) was obtained (Table 3, Entry 1). Fortunately,
when the reaction was carried out at 60 ◦C, 5ah was obtained in 44% yield (Table 3, Entry 2). As a
further optimisation, potassium carbonate was employed as a base to activate the substrate, affording a
significantly improved yield, especially when the reaction was carried out at 40 ◦C (Table 3, Entries 5–8).
Subsequently, other bases, base loadings, additives, thiolation reagents, and reductants were tested,
with the optimal reaction condition identified as: 4a (0.25 mmol), 2h (0.3 mmol), PPh3 (0.5 mmol),
n-Bu4NI (0.05 mmol), K2CO3 (0.125 mmol), and 1,4-dioxane (1.0 mL) at 40 ◦C.
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a Reaction conditions: 4a (0.25 mmol), 2 h (0.3 mmol), PPh3 (0.5 mmol), and n-Bu4NI (0.05 mmol) in 1,4-dioxane
(0.5–1.5 mL) for indicated time and at specified temperature. b Yield of product isolated after silica gel
chromatography. c n-Bu4NI (0.125 mmol) was used. d2h (0.375 mmol) and PPh3 (0.75 mmol) were used.
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With the new optimised conditions in hand, the generality of the thiolation reaction was examined
using various 3-aryloxindoles and arylsulfonyl chlorides (Figure 2), with the desired sulfenylation
products (5aa–5ca) obtained in moderate yields.Molecules 2017, 22, 1208 5 of 11 
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3. Discussion

Based on our previous work [21], a plausible reaction mechanism was proposed (Scheme 4),
featuring the initial reduction of sulfonyl chloride 2 by PPh3 to sulfenyl chloride F via intermediates
A–E. F is converted into sulfenyl iodide G in the presence of iodide anions. Finally, electrophilic
thiolation of oxindoles 1 by G gives the corresponding oxindole thioethers.
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4. Materials and Methods

4.1. General Methods and Material

All solvents were distilled prior to use. Unless otherwise noted, chemicals were used as received
without further purification. For chromatography, 200−300 mesh silica gel was employed. 1H- and
13C-NMR spectra were recorded at 400 MHz and 100 MHz respectively. Chemical shifts are reported
in ppm using tetramethylsilane as internal standard (see supplementary). HRMS was performed on
an FTMS mass instrument. Melting points are reported as uncorrected.

4.2. Synthesis of Oxindoles

1c–1i were synthesized according to the literature procedures [29].



Molecules 2017, 22, 1208 6 of 11

4.2.1. 5-Bromo-3-methylindolin-2-one (1b)

3-methylindolin-2-one (441 mg, 3 mmol) in acetonitrile (5 mL) was cooled to −15◦C. NBS (534 mg,
3 mmol) was added. After stirring for 1 h, the reaction was diluted with water (10 mL) and extracted
with EtOAc (20 mL) for three times. The combined organic phase was washed with brine, dried over
Na2SO4 and concentrated under reduced pressure to give a residue which was purified by silica gel
column chromatography to afford compound 1b (454 mg, 67%) as a white solid.

4.2.2. 3-(p-Tolyl)indolin-2-one (4a)

Indoline-2,3-dione (1.47 g, 10 mmol) in THF (20 mL) was cooled to −15◦C. NaH (60%/mineral oil,
600 mg, 15 mmol) was added. After stirring for 30 min, p-tolylmagnesium bromide (1.0 M/THF, 10 mL,
10 mmol) was added. The reaction mixture was allowed to warm to room temperature and stirred
for 1h. Then the reaction was quenched with NH4Cl (aq) (30 mL) and extracted with Et2O (50 mL)
for three times. After stirring for 1 h, the reaction was diluted with water (10 mL) and extracted with
EtOAc (20 mL) three times. The combined organic phase was washed with brine, dried over Na2SO4

and concentrated under reduced pressure to give a residue, which was purified by silica gel column
chromatography to afford compound 1b (454 mg, 67%) as a yellow solid.

4.3. General Procedure for the Synthesis of 3aa, 3ab, 3ac, 3ad, 3ae, 3af, 3ag, 3ba, 3ca and 3da

Oxindole (0.5 mmol), sulfonyl chloride (0.6 mmol), PPh3 (1.0 mmol), n-Bu4NI (0.1 mmol) and dry
1,4-dioxane (0.5 mL) were mixed in an oven dried sealed tube. The mixture was stirred at 80 ◦C for
12 h. Then, the solvent was evaporated under reduced pressure and the residue was purified by silica
gel column chromatography (PE:EA = 5:1 or PE:EA = 3:1) to afford the pure product.

4.4. General Procedure for the Synthesis of 3ea, 3fa, 3ga, 3gb, 3ha and 3ia

Oxindole (0.25 mmol), sulfonyl chloride (0.3 mmol), PPh3 (0.5 mmol), n-Bu4NI (0.05 mmol) and
dry 1,4-dioxane (0.25 mL) were mixed in an oven dried sealed tube. The mixture was stirred at 80 ◦C
for 6–30 h. Then, the solvent was evaporated under reduced pressure and the residue was purified by
silica gel column chromatography (PE:EA = 5:1, PE:EA = 4:1 or PE:EA = 3:1) to afford the pure product.

4.5. General Procedure for the Synthesis of 5aa, 5ai, 5ah, 5ba and 5ca

Oxindole (0.25 mmol), sulfonyl chloride (0.3 mmol), PPh3 (0.5 mmol), n-Bu4NI (0.05 mmol), K2CO3

(0.125 mmol) and dry 1,4-dioxane (1.0 mL) were mixed in an oven-dried sealed tube. The mixture was
stirred at 40 ◦C for the time indicated. Then, the solvent was evaporated under reduced pressure and
the residue was purified by silica gel column chromatography (PE:EA = 5:1 or PE:EA = 3:1) to afford
the pure product.

3-Methyl-3-(p-tolylthio)indolin-2-one (3aa). After purification by silica gel column chromatography
(PE:EA = 5:1), compound 3aa was isolated as a white solid (116 mg, 86%); m.p. = 151–152 ◦C; Rf
(PE:EA = 3:1) = 0.32; 1H-NMR (400 MHz, CDCl3): δ 8.39 (s, 1H), 7.35 (d, J = 7.4 Hz, 1H), 7.15 (td, J = 7.7
Hz, 1.3 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.07 (td, J = 7.5 Hz, 1.0 Hz, 1H), 6.91 (d, J = 7.9 Hz, 2H), 6.70
(d, J = 7.7 Hz, 1H), 2.24 (s, 3H), 1.69 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 179.3, 139.8, 139.6, 136.3,
132.1, 129.2, 128.6, 126.4, 124.2, 122.6, 109.7, 54.9, 21.4, 21.2; HRMS (ESI) m/e calcd. for C16H15NOS
(M + H)+ 270.0947, found 270.0947.

3-[(4-Methoxyphenyl)thio]-3-methylindolin-2-one (3ab). After purification by silica gel column
chromatography (PE:EA = 3:1), compound 3ab was isolated as a pink solid (128 mg, 90%);
m.p. = 153–154 ◦C; Rf (PE:EA = 3:1) = 0.27; 1H-NMR (400 MHz, CDCl3): δ 7.67 (s, 1H), 7.36 (d, J = 7.4 Hz,
1H), 7.17–7.13 (m, 3H), 7.07 (td, J = 7.6 Hz, 1.0 Hz, 1H), 6.67–6.62 (m, 3H), 3.72 (s, 3H), 1.69 (s, 3H);
13C-NMR (100 MHz, CDCl3): δ 179.6, 160.7, 140.0, 137.9, 132.1, 128.6, 124.1, 122.6, 120.7, 113.9, 109.8,
55.1, 55.1, 21.1; HRMS (ESI) m/e calcd. for C16H15NO2S (M + H)+ 286.0896, found 286.0896.
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3-Methyl-3-(m-tolylthio)indolin-2-one (3ac). After purification by silica gel column chromatography
(PE:EA = 5:1), compound 3ac was isolated as a pale solid (83 mg, 62%); m.p. = 106–107 ◦C;
Rf (PE:EA = 3:1) = 0.45; 1H-NMR (400 MHz, CDCl3): δ 7.71 (s, 1H), 7.22 (t, J = 7.2 Hz, 2H), 7.17–7.09
(m, 3H), 7.02 (t, J = 7.5 Hz, 1H), 6.94 (td, J = 7.6 Hz, 1.1 Hz, 1H), 6.69 (d, J = 7.7 Hz, 1H), 2.30 (s, 3H),
1.74 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 179.6, 143.7, 139.9, 137.5, 131.9, 130.2, 129.6, 129.4, 128.7,
125.7, 124.1, 122.4, 109.9, 55.0, 21.7, 21.0; HRMS (ESI) m/e calcd. for C16H15NOS (M + H)+ 270.0947,
found 270.0946.

3-((3,5-Dichlorophenyl)thio)-3-methylindolin-2-one (3ad). After purification by silica gel column
chromatography (PE:EA = 5:1), compound 3ad was isolated as a white solid (110 mg, 68%);
m.p. = 176–177 ◦C; Rf (PE:EA = 5:1) = 0.30; 1H-NMR (400 MHz, d6-DMSO): δ 10.50 (s, 1H), 7.56
(s, 1H), 7.38 (d, J = 7.4 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 1.8 Hz, 2H), 7.03 (t, J = 7.5 Hz, 1H),
6.71 (d, J = 7.7 Hz, 1H), 1.58 (s, 3H); 13C-NMR (100 MHz, d6-DMSO): δ 177.0, 141.1, 133.9, 133.6, 133.1,
130.7, 129.3, 129.0, 124.1, 122.1, 109.7, 54.8, 21.3; HRMS (ESI) m/e calcd. for C15H11Cl2NOS (M + H)+

324.0011, found 324.0010.

3-((4-Bromophenyl)thio)-3-methylindolin-2-one (3ae). After purification by silica gel column
chromatography (PE:EA = 5:1), compound 3ae was isolated as a white solid (136 mg, 82%);
m.p. = 135–137 ◦C; Rf (PE:EA = 3:1) = 0.40; 1H-NMR (400 MHz, CDCl3): δ 7.65 (s, 1H), 7.38 (d, J = 7.4 Hz,
1H), 7.25–7.23 (m, 2H), 7.17 (td, J = 7.7 Hz, 1.3 Hz, 1H), 7.11–7.07 (m, 3H), 6.68 (d, J = 7.7 Hz, 1H), 1.70
(s, 3H); 13C-NMR (100 MHz, CDCl3): δ 179.0, 139.8, 137.7, 131.7, 131.6, 129.0, 128.9, 124.4, 124.2, 122.8,
110.0, 55.1, 21.5; HRMS (ESI) m/e calcd. for C15H12BrNOS (M + H)+ 333.9895, found 333.9895.

3-(Cyclopropylthio)-3-methylindolin-2-one (3af). After purification by silica gel column
chromatography (PE:EA = 5:1), compound 3af was isolated as a white solid (48 mg, 44%);
m.p. = 122–124 ◦C; Rf (PE:EA = 3:1) = 0.30; 1H-NMR (400 MHz, CDCl3): δ 9.57 (s, 1H), 7.34 (d, J = 7.4 Hz,
1H), 7.24 (td, J = 7.6 Hz, 0.8 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 7.7 Hz, 1H), 1.67 (s, 3H),
1.62–1.56 (s, 1H), 0.72–0.66 (s, 1H), 0.63–0.51 (m, 2H), 0.35–0.28 (m, 1H); 13C-NMR (100 MHz, CDCl3):
δ 181.3, 140.1, 132.5, 128.6, 123.9, 122.8, 110.1, 52.5, 21.9, 10.1, 7.53, 5.65; HRMS (ESI) m/e calcd. for
C12H13NOS (M + H)+ 220.0790, found 220.0789.

3-(Butylthio)-3-methylindolin-2-one (3ag). After purification by silica gel column chromatography
(PE:EA = 5:1), compound 3ag was isolated as a yellow liquid (66 mg, 56%); Rf (PE:EA = 3:1) = 0.42;
1H-NMR (400 MHz, CDCl3): δ 8.67 (s, 1H), 7.33 (d, J = 7.4 Hz, 1H), 7.23 (td, J = 7.7 Hz, 1.2 Hz, 1H), 7.09
(td, J = 7.6 Hz, 0.7 Hz, 1H), 6.93 (d, J = 7.7 Hz, 1H), 2.44 (dt, J = 11.6 Hz, 7.3 Hz, 1H), 2.28 (dt, J = 11.6 Hz,
7.4 Hz, 1H), 1.67 (s, 3H), 1.41–1.36 (m, 2H), 1.32–1.25 (m, 2H), 0.79 (t, J = 7.3 Hz, 3H); 13C-NMR
(100 MHz, CDCl3): δ 180.1, 139.7, 132.3, 128.7, 124.0, 123.0, 109.8, 50.8, 30.8, 28.8, 22.4, 22.0, 13.5; HRMS
(ESI) m/e calcd. for C13H17NOS (M + H)+ 236.1103, found 236.1103.

5-Bromo-3-methyl-3-(p-tolylthio)indolin-2-one (3ba). After purification by silica gel column
chromatography (PE:EA = 3:1), compound 3ba was isolated as a pale solid (156 mg, 90%); m.p.
= 167–168 ◦C; Rf (PE:EA = 3:1) = 0.33; 1H-NMR (400 MHz, CDCl3): δ 8.58 (s,1H), 7.43 (d, J = 1.9 Hz, 1H),
7.28 (dd, J = 8.2 Hz, J = 2.0 Hz, 1H), 7.12 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 7.9 Hz, 2H), 6.60 (d, J = 8.3 Hz,
1H), 2.26 (s, 3H), 1.68 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 179.6, 139.9, 138.9, 136.2, 134.1, 131.4,
129.3, 127.2, 125.8, 115.1, 111.5, 55.0, 21.2, 21.2; HRMS (ESI) m/e calcd. for C16H14BrNOS (M + H)+

348.0052, found 348.0052.

3-Ethyl-3-(p-tolylthio)indolin-2-one (3ca). After purification by silica gel column chromatography
(PE:EA = 5:1), compound 3ca was isolated as a white solid (106 mg, 79%); m.p. = 178–179 ◦C; Rf (PE:EA
= 3:1) = 0.37; 1H-NMR (400 MHz, CDCl3): δ 7.91 (s, 1H), 7.32 (d, J = 7.4 Hz, 1H), 7.15 (td, J = 7.6 Hz,
1.3 Hz, 1H), 7.12 (d, J = 8.1 Hz, 2H), 7.07 (td, J = 7.5 Hz, 1.0 Hz, 1H), 6.91 (d, J = 7.9 Hz, 2H), 6.67
(d, J = 7.7 Hz, 1H), 2.24 (s, 3H), 2.23–2.09 (m, 2H), 0.76 (t, J = 7.4 Hz, 3H); 13C-NMR (100 MHz, CDCl3):
δ 179.0, 140.8, 139.5, 136.4, 123.0, 129.1, 128.5, 126.0, 124.4, 122.5, 109.8, 60.0, 28.5, 21.2, 9.23; HRMS (ESI)
m/e calcd. for C17H17NOS (M + H)+ 284.1103, found 284.1105.
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3-Propyl-3-(p-tolylthio)indolin-2-one (3da). After purification by silica gel column chromatography
(PE:EA = 5:1), compound 3da was isolated as a pale solid (74 mg, 81%); m.p. = 152–153 ◦C; Rf (PE:EA
= 3:1) = 0.40; 1H-NMR (400 MHz, CDCl3): δ 8.67 (s, 1H), 7.32 (d, J = 7.3 Hz, 1H), 7.15 (td, J = 7.6 Hz,
1.3 Hz, 1H), 7.10 (d, J = 8.1 Hz, 2H), 7.06 (td, J = 7.5 Hz, 0.8 Hz, 1H), 6.89 (d, J = 7.9 Hz, 2H), 6.70
(d, J = 7.6 Hz, 1H), 2.22 (s, 3H), 2.17–2.01 (m, 2H), 1.20–1.05 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H); 13C-NMR
(100 MHz, CDCl3): δ 178.9, 140.6, 139.5, 136.4, 130.4, 129.1, 128.5, 126.0, 124.5, 122.5, 109.7, 59.4, 37.4,
21.2, 18.3, 14.0; HRMS (ESI) m/e calcd. for C18H19NOS (M + H)+ 298.1260, found 298.1267.

3-Isopropyl-3-(p-tolylthio)indolin-2-one (3ea). After purification by silica gel column chromatography
(PE:EA = 5:1), compound 3ea was isolated as a white solid (47 mg, 63%); m.p. = 162–163 ◦C;
Rf (PE:EA = 5:1) = 0.32; 1H-NMR (400 MHz, CDCl3): δ 8.45 (s, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.14
(td, J = 7.6 Hz, 1.2 Hz, 1H), 7.07–7.03 (m, 3H), 6.85 (d, J = 7.8 Hz, 2H), 6.66 (d, J = 7.6 Hz, 1H), 2.47
(h, J = 6.8 Hz, 1H), 2.20 (s, 3H), 1.28 (d, J = 7.0 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H); 13C-NMR (100 MHz,
CDCl3): δ 179.2, 140.8, 139.3, 136.2, 129.2, 129.1, 128.4, 126.0, 125.5, 122.2, 109.7, 64.1, 33.8, 21.1, 18.0,
17.7; HRMS (ESI) m/e calcd. for C18H19NOS (M + H)+ 298.1260, found 298.1259.

3-Isopentyl-3-(p-tolylthio)indolin-2-one (3fa). After purification by silica gel column chromatography
(PE:EA = 5:1), compound 3fa was isolated as a white solid (64 mg, 78%); m.p. = 159–160 ◦C;
Rf (PE:EA = 5:1) = 0.30; 1H-NMR (400 MHz, CDCl3): δ 7.91 (s, 1H), 7.32 (d, J = 7.3 Hz, 1H), 7.14
(td, J = 7.6 Hz, 1.2 Hz, 1H), 7.10–7.05 (m, 3H), 6.90 (d, J = 7.9 Hz, 2H), 6.65 (d, J = 7.6 Hz, 1H), 2.23
(s, 3H), 2.20–2.04 (m, 2H), 1.51–1.44 (m, 1H), 1.09–0.86 (m, 2H), 0.81 (d, J = 6.6 Hz, 6H), 0.80 (s, 3H);
13C-NMR (100 MHz, CDCl3): δ 178.9, 140.6, 139.5, 136.4, 130.4, 129.1, 128.4, 126.0, 124.4, 122.5, 109.7,
59.4, 33.5, 33.2, 28.1, 22.4, 22.2, 21.2; HRMS (ESI) m/e calcd. for C20H23NOS (M + H)+ 326.1573, found
326.1570.

3-Cyclohexyl-3-(p-tolylthio)indolin-2-one (3ga). After purification by silica gel column chromatography
(PE:EA = 4:1), compound 3ga was isolated as a white solid (56 mg, 67%); m.p. = 216–217 ◦C;
Rf (PE:EA = 3:1) = 0.47; 1H-NMR (400 MHz, d6-DMSO): δ 10.2 (s, 1H), 7.35 (d, J = 7.4 Hz, 1H),
7.11 (t, J = 7.3 Hz, 1H), 7.00–6.93 (m, 5H), 6.58 (d, J = 7.6 Hz, 1H), 2.19 (s, 3H), 2.04 (d, J = 12 Hz, 1H),
1.96 (d, J = 11.8 Hz, 1H), 1.76 (d, J = 12.2 Hz, 1H), 1.59–1.53 (m, 3H), 1.35–1.10 (m, 3H), 1.04–0.97 (m, 1H),
0.86–0.76 (m, 1H); 13C-NMR (100 MHz, d6-DMSO): δ 176.5, 141.8, 138.7, 135.7, 129.2, 129.0, 128.4, 126.0,
125.1, 121.4, 109.1, 63.2, 43.3, 27.6, 27.2, 25.9, 25.7, 25.7, 20.6; HRMS (ESI) m/e calcd. for C21H23NOS
(M + H)+ 338.1573, found 338.1572.

3-Cyclohexyl-3-((4-methoxyphenyl)thio)indolin-2-one (3gb). After purification by silica gel column
chromatography (PE:EA = 5:1), compound 3gb was isolated as a white solid (52 mg, 65%);
m.p. = 198–199 ◦C; Rf (PE:EA = 3:1) = 0.42; 1H-NMR (400 MHz, CDCl3): δ 7.76 (s, 1H),
7.45 (d, J = 7.3 Hz, 1H), 7.13 (td, J = 7.6 Hz, 1.1 Hz, 1H), 7.08–7.04 (m, 3H), 6.60 (d, J = 7.7 Hz,
1H), 6.57 (d, J = 8.8 Hz, 2H), 3.68 (s, 3H), 2.21 (m, 2H), 1.83 (d, J = 12.6 Hz, 1H), 1.64 (d, J = 10.6 Hz, 2H),
1.42–1.22 (m, 4H), 1.13–0.88 (m, 2H); 13C-NMR (100 MHz, CDCl3): δ 179.0, 160.4, 140.7, 137.9, 129.9,
128.3, 125.6, 122.2, 120.0, 113.7, 109.6, 64.3, 55.0, 43.7, 28.3, 27.8, 26.5, 26.2, 26.1; HRMS (ESI) m/e calcd.
for C21H23NO2S (M + H)+ 354.1522, found 354.1522.

4-((2-Oxo-3-(p-tolylthio)indolin-3-yl)methyl)benzonitrile (3ha). After purification by silica gel column
chromatography (PE:EA = 3:1), compound 3ha was isolated as a white solid (56 mg, 60%);
m.p. = 238–239 ◦C; Rf (PE:EA = 3:1) = 0.26; 1H-NMR (400 MHz, d6-DMSO): δ 10.17 (s, 1H), 7.56
(d, J = 8.3 Hz, 2H), 7.45 (d, J = 7.0 Hz, 1H), 7.11 (d, J = 8.2 Hz, 4H), 7.07–7.03 (m, 3H), 7.00 (td, J = 7.5 Hz,
0.8 Hz, 1H), 6.44 (d, J = 7.5 Hz, 1H), 3.52 (d, J = 12.9 Hz, 1H), 3.35 (d, J = 12.9 Hz, 1H), 2.24 (s, 3H);
13C-NMR (100 MHz, d6-DMSO): δ 175.8, 141.3, 141.2, 139.4, 136.1, 131.6, 130.9, 129.2, 128.9, 128.1, 125.6,
125.0, 121.5, 118.5, 109.6, 109.4, 59.2, 39.9, 20.7; HRMS (ESI) m/e calcd. for C23H18N2OS (M + H)+

371.1212, found 371.1213.

3-(4-Chlorobenzyl)-3-(p-tolylthio)indolin-2-one (3ia). After purification by silica gel column
chromatography (PE:EA = 5:1), compound 3ia was isolated as a white solid (75 mg, 79%);



Molecules 2017, 22, 1208 9 of 11

m.p. = 217–218 ◦C; Rf (PE:EA = 3:1) = 0.50; 1H-NMR (400 MHz, d6-DMSO): δ 10.1 (s, 1H), 7.42
(d, J = 7.1 Hz, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 7.07–7.02 (m, 3H), 6.97 (t, J = 6.7
Hz, 1H), 6.92 (d, J = 8.4 Hz, 2H), 6.45 (d, J = 7.6 Hz, 1H), 3.40 (d, J = 13.0 Hz, 1H), 3.26 (d, J = 13.0 Hz,
1H), 2.24 (s, 3H); 13C-NMR (100 MHz, d6-DMSO): δ 176.1, 141.5, 139.4, 136.1, 134.4, 131.7, 131.5, 129.0,
128.8, 128.5, 127.8, 125.8, 125.05, 121.5, 109.3, 59.4, 39.5, 20.8; HRMS (ESI) m/e calcd. for C22H18ClNOS
(M + H)+ 380.0870, found 380.0870.

3-(p-Tolyl)-3-(p-tolylthio)indolin-2-one (5aa). After purification by silica gel column chromatography
(PE:EA = 5:1), compound 5aa was isolated as a white solid (37 mg, 42%); m.p. = 196–197 ◦C; Rf (PE:EA
= 3:1) = 0.41; 1H-NMR (400 MHz, CDCl3): δ 7.65 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 7.4 Hz,
1H), 7.17 (d, J = 8.5 Hz, 2H), 7.16–7.10 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 7.9 Hz, 2H), 6.64
(d, J = 7.6 Hz, 1H), 2.34 (s, 3H), 2.22 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 177.8, 140.3, 139.6, 138.0,
136.2, 133.2, 130.8, 129.3, 129.1, 128.6, 127.9, 126.5, 126.3, 122.5, 110.1, 62.8, 21.2, 21.0; HRMS (ESI) m/e
calcd. for C22H19NOS (M + H)+ 346.1260, found 346.1260.

4-((2-Oxo-3-(p-tolyl)indolin-3-yl)thio)benzonitrile (5ai). After purification by silica gel column
chromatography (PE:EA = 5:1), compound 5ai was isolated as a pale solid (37 mg, 41%); m.p. = 178–181
◦C; Rf (PE:EA = 3:1) = 0.36; 1H-NMR (400 MHz, CDCl3): δ 7.64 (s, 1H), 7.56 (d, J = 8.3 Hz, 2H),
7.42 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.24–7.19 (m, 3H), 7.12
(t, J = 7.6 Hz, 1H), 6.71 (d, J = 7.7 Hz, 1H), 2.35 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 177.0, 139.9,
138.7, 137.1, 135.5, 132.3, 131.7, 129.8, 129.6, 129.35, 127.72, 126.3, 123.0, 118.2, 112.5, 110.3, 62.6, 21.1;
HRMS (ESI) m/e calcd. for C22H16N2OS (M + H)+ 357.1056, found 357.1058.

3-((3-Chlorophenyl)thio)-3-(p-tolyl)indolin-2-one (5ah). After purification by silica gel column
chromatography (PE:EA = 5:1), compound 5ah was isolated as a white solid (65 mg, 71%);
m.p. = 192–193 ◦C; Rf (PE:EA = 3:1) = 0.40; 1H-NMR (400 MHz, CDCl3): δ 7.68 (s, 1H), 7.58 (d, J = 8.2 Hz,
2H), 7.43 (d, J = 7.3 Hz, 1H), 7.22–7.12 (m, 5H), 7.19 (d, J = 7.8 Hz, 2H), 7.00 (t, J = 7.9 Hz, 1H),
6.68 (d, J = 7.6 Hz, 1H), 2.35 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 177.3, 140.1, 138.4, 135.7, 134.1,
133.7, 132.5, 131.9, 130.1, 129.6, 129.4, 129.3, 129.1, 127.9, 126.4, 122.8, 110.2, 62.8, 21.1; HRMS (ESI) m/e
calcd. for C21H16ClNOS (M + H)+ 366.0713, found 366.0711.

5-Bromo-3-(p-tolyl)-3-(p-tolylthio)indolin-2-one (5ba). After purification by silica gel column
chromatography (PE:EA = 3:1), compound 5ba was isolated as a white solid (51 mg, 48%);
m.p. = 213–215 ◦C; Rf (PE:EA = 3:1) = 0.32; 1H-NMR (400 MHz, CDCl3): δ 7.99 (s, 1H), 7.54 (d, J = 8.4 Hz,
2H), 7.43 (d, J = 2.0 Hz, 1H), 7.28 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.0
Hz, 2H), 6.91 (d, J = 7.9 Hz, 2H), 6.55 (d, J = 8.3 Hz, 1H), 2.35 (s, 3H), 2.23 (s, 3H); 13C-NMR (100 MHz,
d6-DMSO): δ 175.2, 140.5, 139.7, 137.8, 135.7, 133.0, 132.5, 131.7, 129.4, 129.3, 128.5, 127.5, 126.2, 113.4,
111.8, 62.2, 20.8, 20.7; HRMS (ESI) m/e calcd. for C22H18BrNOS (M + H)+ 424.0365, found 424.0363.

3-(3-Methoxyphenyl)-3-(p-tolylthio)indolin-2-one (5ca). After purification by silica gel column
chromatography (PE:EA = 5:1), compound 5ca was isolated as a white solid (35 mg, 39%);
m.p. = 175–176 ◦C; Rf (PE:EA = 3:1) = 0.33; 1H-NMR (400 MHz, CDCl3): δ 7.93 (s, 1H), 7.40 (d, J = 7.3 Hz,
1H), 7.31–7.11 (m, 4H), 7.11–7.07 (m, 3H), 6.86 (d, J = 7.6 Hz, 3H), 6.66 (d, J = 7.6 Hz, 1H), 3.81 (s, 3H), 2.21
(s, 3H); 13C-NMR (100 MHz, CDCl3): δ 177.1, 159.7, 140.1, 139.8, 137.7, 136.2, 130.6, 129.5, 129.2, 128.7,
126.4, 122.6, 120.4, 114.1, 113.7, 109.9, 62.8, 55.3, 55.3, 21.2; HRMS (ESI) m/e calcd. for C22H19NO2S
(M + H)+ 362.1209, found 362.1208.

5. Conclusions

We have developed a new synthesis of oxindole thioethers by triphenylphosphine-mediated
deoxygenation-thiolation of oxindoles with sulfonyl chlorides as sulfenylation reagents. The above
reaction was facilitated by iodide anions, possibly due to the in situ conversion of sulfenyl chlorides to
the more reactive sulfenyl iodides. Sulfenylation of 3-aryloxindoles required the presence of a base.
The use of a transition-metal-free protocol, readily available reagents, and mild reaction conditions
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allow this protocol more practical to prepare 3-sulfanyloxindoles than traditional methods. This study
demonstrated the potential of sulfonyl chlorides as novel, readily accessible, and environmentally
friendly sulfenylation reagents for direct thiolation of electron-rich heterocycles.

Supplementary Materials: The following are available online, 1H-NMR and 13C-NMR of compound 3aa–3gb
and 5aa–5ca.
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