Electronic supplementary information (ESI) of the manuscript entitled "Fluorescent polystyrene films operating in TICT mechanism for the detection of volatile organic compounds by Mirko Borelli, Giuseppe Iasilli, Pierpaolo Minei, Andrea Pucci

Corresponding author: Andrea Pucci, Dipartimento di Chimica e Chimica Industriale, Universitàdi Pisa, Pisa, Italy; e-mail: andrea.pucci@unipi.it

Figure S1. UV-Vis absorption and emission ($\lambda_{exc.} = 410 \text{ nm}$) of $1 \cdot 10^{-5}$ M JCBF in chloroform

Figure S2. Förster-Hoffmann relationship of 1·10⁻⁵ M JCBF solutions in methanol/glycerol mixtures with different glycerol volume contents

Figure S3. UV-Vis absorption and emission ($\lambda_{exc.} = 410 \text{ nm}$) of 0.5 mg/mL P(STY-co-JCBF)(0.34) in chloroform

Figure S4. (a) UV-Vis absorption and (b) emission ($\lambda_{exc.}$ = 410 nm) of 0.5 mg/mL P(STY-co-JCBF) in chloroform

Figure S5. (a) UV-Vis absorption and (b) emission ($\lambda_{exc.} = 410 \text{ nm}$) of P(STY-co-JCBF) thin films

Figure S6. Variation of the fluorescence maximum intensity of P(STY-co-JCBF)(0.34) film as a function of successive cycles of chloroform exposure

Figure S7. Fluorescence variation for all the P(STY-co-JCBF)(m) films as a function of progressive concentration of chloroform (ppm). See figure 6 for the exact concentration.