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Abstract: The excited-state lifetimes of the anticoagulant drug warfarin (W) in water and in the
absence and presence of methyl-β-cyclodextrins (Me-β-CD) were recorded using time-resolved
fluorescence measurements. Selective excitation of the open and cyclic protonated isomers of W were
acquired with laser emitting diodes (LED) producing 320 and 280 nm excitation pulses, respectively.
Formation of the inclusion complex was checked by UV-visible absorption spectroscopy, and the
values of binding constants (2.9 × 103 M–1 and 4.2 × 102 M−1 for protonated and deprotonated forms,
respectively) were extracted from the spectrophotometric data. Both absorption and time-resolved
fluorescence results established that the interior of the macromolecular host binds preferentially the
open protonated form, red shifts the maximum of its absorption of light at ~305 nm, extends its
excited-state lifetime, and decreases its emission quantum yield (ΦF). Collectively, sequestration
of the open guest molecules decreases markedly their radiative rate constants (kr), likely due to
formation of hydrogen-bonded complexes in both the ground and excited states. Due to lack of
interactions, no change was observed in the excited-state lifetime of the cyclic form in the presence of
Me-β-CD. The host also increases the excited-state lifetime and ΦF of the drug deprotonated form
(W−). These later findings could be attributed to the increased rigidity inside the cavity of Me-β-CD.
The pKa values extracted from the variations of the UV-visible absorption spectra of W versus the pH
of aqueous solution showed that the open isomer is more acidic in both ground and excited states.
The positive shifts in pKa values induced by three derivatives of cyclodextrins: HE-β-CD, Ac-β-CD,
and Me-β-CD supported the preferential binding of these hosts to open isomers over cyclic.

Keywords: open-cyclic tautomers; molecular switching; decay-associated spectra; warfarin; excited-state
lifetime; cyclodextrins

1. Introduction

The fluorescence properties of coumarin derivatives have attracted the attention of organic
physical chemists for several decades [1]. Our research group, in particular, synthesized two coumarin
derivatives for fluorescent sensing of pH [2]. Like other fluorescent probes, coumarins display
photophysical properties that are sensitive to their local environments, such as the presence of
supramolecular host cavities [3]. Within this context, we have also exploited a supramolecular host-guest
approach alongside fluorescence behavior of a third coumain derivative, demonstrating a new sensing
method for molecular recognition of optically inactive analytes [4]. During the course of our research,
we realized the need to characterize the photophysical behaviors of warfarin (W) inside the cavities
of cyclodextrin (CD) macromolecular hosts (Scheme 1). W, which is one of the known fluorescent
coumarin derivatives, is also a highly potent anticoagulant drug commonly prescribed as COUMADIN®

for the control and prevention of blood clots [5].

Molecules 2017, 22, 1326; doi:10.3390/molecules22081326 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules22081326
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 1326 2 of 12

There have been number of studies on the structures of W in different solvents and at different
pH values by NMR, UV-visible absorption and time-resolved fluorescence [6–9]. Early studies have
concluded that the structure of drug in solution at pHs lower than its pKa ~5 presents as either
open or cyclic protonated form (predominantly as the structures in Scheme 1) and at pH higher
than its pKa, as a deprotonated form (W−; Scheme 1), whose side chain is open [6,7]. In addition to
that, the photophysical properties of W in different solvents and solvent mixtures were profoundly
investigated [8,9]. Results confirmed that the protonated open form absorbs at λ = 310 nm, whereas the
cyclic form peak appears at λ = 280 nm. The results were then exploited to examine the binding
of W to human serum albumin (HSA) [8], as well as model systems such as CDs [9]. In the later
study, only steady-state fluorescence measurements have been undertaken, which warrants a more
quantitative tool for examining the effects of supramolecular cavities. Accordingly, measurements of
fluorescence lifetimes of W in the absence and presence of CDs at different pH are highly motivated.

In this article, time-resolved fluorescence data of W have been collected as a function of pH and
excitation wavelengths in water and inside β-CD molecular containers. We observed that excited-state
lifetime of W increases upon binding to methyl-β-cyclodextrin (methyl-β-CD) (Scheme 1) and we
were able to selectively monitor the interaction of each protonated tautomer (open vs. cyclic) with
the host molecules. We have specifically demonstrated while the length of excited-state lifetimes
of the CD-encaged W− depends on the effective viscosity of the surrounding microenvironment,
extended fluorescence lifetime of the open protonated form of W upon enclathration is explained by
the radiative-rate law. The difference in acidity between the two isomers of W is also experimentally
investigated in the ground and excited state.
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groups that could enhance interactions with W. Unfortunately, both macrocycles gave weak or no 
interactions with W, as monitored by UV–visible absorption measurements at pH 3 and 9 (Figure S1, 
Supporting Information). However, the previously examined derivative Me-β-CD gave the highest 
binding constants [10], as illustrated in Figure 1. The lack of encapsulation by other β-CD cages is 
due to size mismatch, more flexible cages and weaker non-bonded interactions with 
hydroxycoumarin derivatives [3]. The data in Figure 1 were not published before and it was 
necessary to present them here to preclude the lifetime measurements below. Two pH values (3 and 

Scheme 1. Structural formulas of protonated warfarin (W): open and cyclic isomers, deprotonated
warfarin (W−), and methyl-β-cyclodextrins (Me-β-CD) molecular container.

2. Results and Discussion

2.1. Interactions of Warfarin with Cyclodextrins

Preceding studies on the interactions of W with several CD derivatives have been taken into
consideration while planning the experiments for this part [9–12]. Accordingly, new derivatives of
β-CD were selected, namely Ac-β-CD and HE-β-CD (Chart S1, Supporting Information). The rationale
behind our selection arises from the presence of additional hydroxyl or carbonyl functional groups
that could enhance interactions with W. Unfortunately, both macrocycles gave weak or no interactions
with W, as monitored by UV-visible absorption measurements at pH 3 and 9 (Figure S1, Supporting
Information). However, the previously examined derivative Me-β-CD gave the highest binding
constants [10], as illustrated in Figure 1. The lack of encapsulation by other β-CD cages is due
to size mismatch, more flexible cages and weaker non-bonded interactions with hydroxycoumarin
derivatives [3]. The data in Figure 1 were not published before and it was necessary to present them
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here to preclude the lifetime measurements below. Two pH values (3 and 9) were selected at which W
persists as the protonated and deprotonated form (W−), respectively (see pH-titration results below).
In Figure 1A at pH 3, the acyclic open protonated form binds moderately to the host (K = 2900 M–1),
whereas W− binds weakly to CD at high pH (Figure 1B) with a binding constant of 420 M–1 in
agreement with previous reports [9,11,12]. Low binding affinities of coumarins to CD systems are not
surprising because the presence of hydroxyl group is known to hinder inclusion. Upon addition of
Me-β-CD host molecules (up to 40 equivalents) to the aqueous solutions of W at pH 3 and 9 (Figure 1),
characteristic changes in the UV-visible absorption spectra were observed with the occurrence of
several isosbestic points (311 nm, 315 nm, and 320 nm) confirming the formation of a 1:1 binding
stoichiometry. The corresponding binding constants between W and Me-β-CD at a given pH were
derived directly from the optical titration plot at a given wavelength using the formula described in
the Experimental section.
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Figure 1. UV-visible absorption titration of W (25 µM) with Me-β-CD at pH 3 (A), and pH 9 (B); the inset
shows the corresponding titration curve and the 1:1 binding fit (solid line) with K = (2.9 ± 0.3) × 103 M-1,
and K = (4.2 ± 1.0) × 102 M-1, respectively.

Earlier report in octanol/water model system at pH 7.4 concluded that cytochrome P450 2C9
(CYP2C9) stabilized the cyclic form of W [13]. Absorption spectra upon addition of different amounts of
β-CD to W in water at pH 7.4 (phosphate buffer) were later measured by Vasquez et al. [9]. Those authors
concluded that W exists predominantly in its open form when bound to β-CD. They attributed this
observation to a steric factor that forces W to remain in its open structure. Our findings at pH 3 support
selective interactions of CD with the open form, during which only the longest absorption wavelength
at 305 nm of the protonated W embedded in β-CD was affected (red shift from 305 to 306 nm), probably
for similar steric reasons to those suggested by Vasquez et al. [9].

2.2. Optical Measurements and Host-Induced pKa Shifts

A very recent experimental and theoretical investigations by Nowak et al. on several hydroxycouamrin
derivatives concluded that different hydroxyl group locations should affect the value of pKa [14].
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Motivated by this work, we looked at the changes of UV-visible absorption spectral profiles of free
and CD-bound W in aqueous solutions as a function of pH values (Figure S2, Supporting Information).
Me-β-CD-induced pKa shifts corresponding to the deprotonation processes of the hydroxyl group in the
coumarin ring (Scheme 1) have already been studied before by Nowak et al. yet our inspiration here
specifically comes from the expected dependence of the extracted pKa values on the selected wavelength in
the corresponding titration plots (see Experimental section) [10]. Accordingly, repeating these experiments
besides those corresponding to the new β-CD derivatives should enforce our understanding whether
changing the position of hydroxyl group in the open and cyclic isomers would affect their pKa values
or not. Figure 2 illustrates the extracted pH titration plots for the cyclic (280 nm) and open (305 nm) W
forms from data in Figure S2, Supporting Information. Positive shifts were observed upon addition of all
CD derivatives in aqueous solution under similar conditions of ionic strength effects (see experimental
section) [15]. Regardless of the type of isomer, Me-β-CD-assisted pKa shifts are always larger than those
induced by Ac-β-CD (∆pKa ~0.9 vs. ~0.7 for open forms and ~0.6 vs. ~0.3 for cyclic forms).The HE-β-CD
induced the least pKa shifts (∆pKa ~0.4 for open forms, and no shift observed in case of cyclic).
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Figure 2. UV-visible absorption spectra of W in aqueous solutions at different pH values from 2–10 in
water and inside the cavities of HE-β-CD, Ac-β-CD, and Me-β-CD. The experimental fitting errors for
the labeled pKa values and the corresponding spectra are shown in Figure S2, Supporting Information.

The host-induced pKa shifts reflect the changes in the binding affinities of drug to β-CD derivatives
in the ground states (see Me-β-CD as an example at pH 3 and 9 in Figure 1), rationalized by preferential
interactions of host towards the protonated form over the deprotonated one [16]. Similarly, the difference
in the low binding constant values of the other two β-CD cages to each W species (although indicating
no significant inclusion) is reflected in the increase in pKa (Figure 2) and thus attributed to the preference
for binding of host to protonated W species over deprotonated ones [4,16].

Nowak et al. [10] attributed the strongest pKa shifts in Me-β-CD to the presence of a methyl
group that may have preferentially interacted with the CD cavity. More important to the focus of our
paper is the observation that sequestration of drug into the three β-CD hosts increased the pKa of the
open isomer more than that of cyclic form, supporting the selective complexation with open form as
concluded above. In addition to that, the open form of free W appears to be more acidic in ground
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state (pKa 5.1 vs. 5.3), presumably due to the extended electron delocalization in the final charged
product (W−) [14].

2.3. Excitation, pH, and Cyclodextrin Dependence of Warfarin Steady-State Fluorescence

Our paper specifically aimed at investigating the dependence of fluorescence of W on pH and
excitation wavelength in the absence and presence of Me-β-CD, the host which has sufficiently
interacted with W by virtue of the above absorption measurements. Fluorescence pH titration
experiments were performed as illustrated in Figure 3. Different pKa values were obtained upon
exciting W in water at 280 and 320 nm (pKa 6.1 vs. 5.7), which is attributed to the deprotonation of the
hydroxyl proton (Scheme 1), with the open form being more acidic than the cyclic one.
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and 280 nm (B); the inset shows the experimental fit to a sigmoidal function (solid line), which gives
pKa = 5.70 ± 0.07, and 6.14 ± 0.05, respectively. Slit widths were 5 nm for excitation and 10 nm for
emission monochromators in spectra B.

This could be ascribed to extended electron delocalization in the excited-state structure of the
corresponding deprotonated form in parallel to the behaviors of isomers in the ground-state [14].
It must be noted that open and cyclic forms, despite having similar emission maxima, gave different
emission profiles when excited at 280 nm instead of 320 nm (Figure S3, Supporting Information),
confirming the persistence of intramolecular proton transfer from the open form to the cyclic tautomer
(Scheme 1) in the excited state.

As far as the effects of CDs on emission of W, we observed a three-fold fluorescence enhancement
of the encaged W− by Me-β-CD at pH 9 (Figure 4; excitation at 320 nm) with binding affinity of
266 M−1 in agreement previous reports [9,11,12]. However, the protonated (open or cyclic) forms
at pH 3 showed very weak enhancement in fluorescence upon addition of 10 equivalents of host
(Figure S4, Supporting Information). Such contradictory results warranted further investigation using
time-resolved fluorescence spectroscopy.
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2.4. Fluorescence Lifetime Measurements/Decay-Associated Spectra (DAS)

We resorted to time-resolved fluorescence measurements to rationalize the lack of fluorescence
enhancement of protonated W upon incorporation in Me-β-CD. We also sought to separate the
complexation effects of host molecules on each protonated isomer (open vs. cyclic) by monitoring
the change in excited-state lifetimes of W upon selective excitation of each form at 320 and 280 nm.
In previous reports in organic solvents, the two forms were simultaneously excited at 300 nm [8].
Emission decays collected every 10 nm across the entire emission spectra of free W at pH 3 upon
excitation at 320 and 280 were globally fitted to a monoexponential decay function, as shown in
Figures S5 and S6 in the Supporting Information and tabulated in Table 1.

Table 1. Spectroscopic and photophysical data of W at 25 µM in the absence and presence of Me-β-CD
(1.0 mM). The DAS maximum for each lifetime is given in bracket.

Drug Forms λabs/nm ε/M−1·cm–1 λex/nm λem/nm τ1/ns
(λem/nm)

τ2/ns
(λem/nm)

Free
(pH 3) 305 10 680 320 358 <0.1

282 12 820 280 358 <0.1
Free

(pH 9) 309 13 532 320 390 <0.1

Complex
(pH 3) 306 10 102 320 a 358 <0.1

(358)
2.0 ± 0.4 b

(375)
Complex

(pH 9) 309 13 580 320 390 <0.1
(390)

1.22 ± 0.02 b

(390)
a With excitation at 280 nm, no change in excited-state lifetime was observed. b Values are presented as mean ± standard

deviation. The estimated experimental error was 20% and 1.6% for the complex lifetimes at pH 3 and 9, respectively.

The excited-state lifetimes of free W appear within our instrument resolution of ~90 ps in
agreement with similar reports [8,17]. However, when Me-β-CD complexes were excited at pH 3 both
monoexponential and biexponential decays were observed (Figures S7 and S8, Supporting Information).
Although addition of CD at pH 3 did not affect the position of peaks (390 nm), the excited-state lifetime
increased, but only when the complex was excited at 320 nm, not 280 (Figure 5, Figures S7 and S8,
Supporting Information), supporting that Me-β-CD host favors the open tautomer form. Even though
we collected emission decays of drugs in Figure 5 upon addition of 40 equivalents of host (limited by
its solubility in water of about 10 mM), complete formation of complex has not been achieved due to
its relatively weak binding constants.
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quantum yields (Ф) upon complexation of W to Me-β-CD, as illustrated in Table 2. The variations of 
kr values in the absence and presence of CD are difficult to explain because of the unreliable 
measurement of lifetimes in water. However, the red shifts of emission peaks of W upon 
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Figure 5. Emission decays collected at 370 nm for W at 25 µM in the absence and presence of Me-β-CD
(1.0 mM) upon exciting at 280 nm (A) and 320 nm (B). No change in fluorescence lifetime upon
excitation at 280 nm. IRF is the instrument response function of ~90 ps.

Accordingly, the corresponding DAS spectra in Figure 6 (see Experimental section) are best
interpreted by assuming contributions from both free and CD-complexed drug. The emission of free
drug at pH 3 dominates the emission spectrum with an emission band centered at 358 nm (Figure 6A).
The corresponding complex at this pH has an emission peak at 375 nm with a longer excited-state
lifetime of 2.0 ns, yet much lower emission quantum yields (0.006 vs. 0.0005 in Table 2).
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Table 2. Fluorescence quantum yield ΦF, radiative rate constant kr, and non-radiative rate constant knr

of different W species.

Drug Forms λex/nm ΦF (×10–3) a kr (× 107 s–1) b knr (×109 s–1) b τ/ns
(Mean)

W
OPEN 320 6.0 ± 0.1 >6 >10 <0.1

W− 320 12 ± 0.1 >12 >10 <0.1
W-Me-β-CD

OPEN 320 0.5 ± 0.1 0.02 0.50 2.0

W−-Me-β-CD 320 24 ± 0.1 2.0 0.81 1.22
a Measured using W in phosphate-buffered saline (PBS, pH ~7.4, 10 mM sodium phosphate) as the standard (ΦF

= 0.012) [9], and calculated using the known equation [18]: ∅unk = ∅std

(
Iunk
Aunk

)(
Astd
Istd

)(
nunk
nstd

)2
, where n is the

refractive indices for the standard (std) and experimental (unk) solvents, I is the fluorescence integral of the emission
between 300 and 550 nm, and A is the absorbance at the excitation wavelength. The error estimated as standard
deviation of the mean was approximately 10% for the fluorescence quantum yields. b Calculated using the known
equations: ∅ = kr

kr+knr
, τ = 1

kr+knr
, knr =

1−∅
τ , and kr =

∅
τ .

Association of each extracted lifetime to each species by the DAS method enables us to track the
changes in the corresponding radiative (kr) and non-radiative rate (knr) constants alongside emission
quantum yields (Φ) upon complexation of W to Me-β-CD, as illustrated in Table 2. The variations of kr

values in the absence and presence of CD are difficult to explain because of the unreliable measurement
of lifetimes in water. However, the red shifts of emission peaks of W upon complexation to Me-β-CD
hosts at pH 3 despite their non-polar hydrophobic and rigid cavity along with concomitant significant
decrease of the kr values by ~2 orders of magnitude, from kr = ~6 × 107 to 2 × 105 s-1, means that the
enhancement in excited-state lifetimes is best described by a radiative-rate law [18].

This argument is supported by the boarder UV-visible spectrum of W when compared to that
spectrum in water upon inclusion to CD, as shown in Figure 1A and in light of Strickler-Berg
equation [18]. Karlsson et al. [8] pointed out the possibility of attributing the longer lifetime of
W observed in ethanol (0.45 ns, λex = 295 nm) to the formation of solute-solvent hydrogen-bonded
complexes. Dondon et al. [17] also posited that for other 4-hydroxycoumarin derivatives similar
hydrogen-bonded complexes could have formed between the coumarin lactone group and the CD
secondary hydroxyl groups. It transpires that there is a plausible explanation to the fluorescence
behaviors of protonated W-CD systems that similar hydrogen-bonded complexes have formed between
CD secondary hydroxyl group and the carbonyl group of open form, which the cyclic form lacks. It is
worth to mention that the low binding affinity of our W-CD system in the present study limits its
potential use for biomedical applications as a large fraction of free guest will always persist at any
concentration of the added host. However, understanding the factors that enhance the binding
constants of W with CDs such as the formation of hydrogen bonded complexes [8,17] and the
presence of methyl groups [10] alongside the investigation of pH effects on the complex stability
should preclude further studies in the future on W-CD systems for the establishment of pH-driven
stimuli-responsive systems.

Emission decays collected at pH 9 (Figures S9 and S10, Supporting Information) gave DAS
spectra (Figure 6B) that demonstrated opposite effects induced by the addition of macromolecular
host. In agreement with previous reports [9,11,12], the complex at pH 9 excited at 320 nm has a higher
emission yield than that of free drug with excited-state lifetime of 1.22 ns and no change in peak position
at 390 nm (Table 2). Vasquez et al. suggested encapsulation of deprotonated W− forms by Me-β-CD
suppresses considerably the vibronic modes that provide pathways for non-radiative transitions
between the excited and ground states of W, causing a decrease in the rates of the non-radiative
decay processes. Indeed, our calculation supports these findings within the context of energy-gap
law. The knr values of W in Table 2 decreased ~12 times upon inclusion in the hydrophobic interior of
Me-β-CD, whereas kr values decrease only ~6 times. The increase in lifetimes and associated decrease



Molecules 2017, 22, 1326 9 of 12

in knr of other 4-hydroxycoumarin derivatives [17] from below 0.5 ns to 1.1–1.3 ns (depending on the
derivative) were also observed upon sequestration of dyes into β-CD macromolecules.

3. Experimental Section

3.1. Reagents

Wafarin (W), acetyl-β-cyclodextrin (Ac-β-CD), methyl-β-cyclodextrin (Me-β-CD), and (2-
hydroxyethyl)-β-cyclodextrin (HE-β-CD) (purity 99%) were purchased from Sigma-Aldrich Chemie
GmbH (Taufkirchen, Germany). Millipore water used to prepare the solutions had a conductivity
of less than 0.05 µS. The pH values of the solutions were adjusted (±0.2 units) by adding adequate
amounts of HCl or NaOH.

3.2. Absorption/Steady-State Fluorescence Spectroscopy

The UV-visible absorption spectra were measured between 200 and 500 nm on a Cary-300 instrument
(Agilent, Santa Clara, CA, USA) at room temperature. Fluorescence spectra measurements were scanned
at room temperature, between 300 and 550 nm on a Cary-Eclipse fluorimeter. Slit widths were 5 nm for
both excitation and emission monochromators, unless otherwise specified. The pH values were recorded
using a pH meter (WTW 330i equipped with a WTW SenTix Mic (Xylem Analytics Germany Sales GmbH
& Co., KG, WTW, Weilheim, Germany) Quartz cuvettes (1.0 cm, 4.0 mL) were used in all spectroscopic
measurements and were obtained from Starna Cells Inc. (Atascadero, CA, USA).

3.3. pH-Titration Studies

The pH titration by UV-visible absorption spectroscopic method was accomplished by measuring
the pH values of about 3 mL solutions contained in a rectangular quartz cuvette with 1-cm optical
path length, and the absorption spectra were then recorded. The concentrations of W and Me-β-CD
were 25 µM and 3.5 mM, respectively. To adjust the pH, microliter volumes from 0.01 and 0.1 M NaOH
and HCl solutions were pipetted consecutively to achieve the indicated pH values. The pKa value
was determined finally from fitting the titration data at a selected wavelength to a sigmoidal formula
derived from Henderson-Hasselbalch and Beer-Lambert laws. The fitting algorithm was provided by
the SigmaPlot software (version 6.1; Systat Software, Inc., San Jose, CA, USA).

3.4. Steady-State Binding Titration Studies

In the titration experiments, the total concentrations of the W were kept constant and that of the
host was gradually increased. The pH of a certain volume of H2O was first adjusted to either ~3 or
~9 in which a stock solution of W was prepared to give a final concentration of 25 µM. A calculated
weight of β-CD derivatives was added to the same solution of W to prepare the stock solution of the
complex (3.5 mM). The solutions with the final concentrations of β-CD were prepared by gradually
adding increment volumes of the complex’s stock solution to 2.4 mL of the free W directly in the
quartz cuvettes. The absorption or fluorescence spectra were measured for each solution. The signals
at certain wavelength were plotted as a function of host’s total concentrations. The intermolecular
interaction between β-CD and W may be quantified by the affinity constant referred to as the association
equilibrium (K):
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[W − β− CD]

[W][β− CD]
(2)

CWF = [W] + [W-β-CD] (3)

Cβ-CD = [β-CD] + [W-β-CD], (4)
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where CW and Cβ-CD mean the total concentrations of W and β-CD, respectively. It can be written that:

Y (Reading at certain λ) = constant 1* [W] + constant 2* [W-β-CD] (5)

Using Equations (2)–(5), we obtain:

∆Y =
∆(constant)Cβ−CD

2

KCW − 1 − KCβ−CD +
√
(1 − KCW + KCβ−CD)

2 + 4KCW

+ 1
(6)

where ∆Y = optical changes at a given λ; ∆(constant) = the difference between the molar absorptivity of
free and β-CD-complexed W in the case of absorption titration, and K = binding constant. The binding
constants (K) were then evaluated by using the nonlinear formula of Equation (6). Constant 2 was left
as a floating parameter in the analysis by Levenberg-Marquardt algorithm, which was provided by the
SigmaPlot software.

3.5. Time-Resolved Fluorescence Measurements

The emission decays of W in the absence and presence of Me-β-CD at different pH values were
collected using a LifeSpec II spectrometer (Edinburgh, Kirkton Campus, UK) based on the TCSPC
method with excitation at 280 and 320 nm using two Edinburgh (Kirkton Campus, UK) laser diodes
with repetition rate at 20 MHz and time resolution of ~90 picoseconds (ps). A red-sensitive high-speed
PMT detector (H5773-04, Hamamatsu Photonics K. K., Hamamatsu, Japan) and a colour filter standard
set (Edinburgh, Kirkton Campus, UK) with cut-off wavelength of 330 nm were used. Emission decays
were collected every 10 nm over the entire emission spectra of W and W-β-CD complex in aqueous
solution with a dwell time of 50 s at each wavelength. The concentration of W and Me-β-CD were 25 µM
and 1.0 mM, respectively. The data were globally fitted with mono-exponential and bi-exponential
model functions depending on the tested sample, then convoluted with instrument response function
(IRF) of ~90 ps. The time-resolved data were specifically analyzed using Edinburgh FAST software
(Figures S5–S10, Supporting Information) in which decay-associated spectra (DAS) were constructed
from the extracted intensity-contribution fraction (f i) calculated from the pre-exponential amplitudes
(Bi), as follows:

I(t) = ∑
i

Biexp(−t/τi) (7)

fi =
Biτi

∑j Bjτj
(8)

Target analysis utilizing the Glotaran software [19] were performed to confirm the kinetic
expression for the population transfer of the two excited states that belong to free and CD-complexed W.
Similar results were obtained by target analysis to those obtained by FAST (data not shown). The final
results revealed that the two excited states decay monoexponentially in parallel, which validates the
interpretation of DAS in our work as described above.

4. Conclusions

In this work, quantitative time-resolved fluorescence spectra of W measured using a picosecond
diode laser with selective excitation of protonated isomers at 280 and 320 nm were conducted utilizing
advanced lifetime analysis to give more specific information about the structures and kinetic behavior of
excited-states of protonated and deprotonated drugs in water and inside CDs. We observed an increase
in excited-state lifetime of the open protonated form upon its selective binding to Me-β-CD, over the
cyclic form. The lifetime of the deprotonated form also increased upon inclusion. The increase in
lifetime of the open protonated form was explained by radiative rate law, while that of the deprotonated
form by energy-gap law. We have also demonstrated the higher acidity of the open form. With the aid
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of absorption and time-resolved fluorescence spectroscopies, we postulate the selective formation of
hydrogen-bonded complexes in both the ground and excited states between the open form and the host.

Fluorescence properties of W inside CDs in aqueous solutions at different pH values have
attracted attention on several occasions due to their implications for bioanalytical quantification of
W in commercial pesticides [12,20,21] and biological liquids [22]. Recent studies have also exploited
W-CD systems as fluorescent probes and site markers in drug-protein interactions [23,24]. In addition
to the fluorescence properties, better understanding of the interactions of W with CDs in the ground
and excited states at different pH values should lead, in the future, to better modulation of drugs’ pKa

values and open-cyclic switchable properties in solution [10,11] and in different microheterogeneous
environments that could advance their analytical separation by electrophoresis [15] and liquid
chromatography [25,26], as well as their formulations [27] and clinical/biomedical applications [28].
Our results should, therefore, lead to better understanding of the role of CD on manipulating the
open-cyclic switchable structure/function of this anticoagulant drug in ground and excited states.

Supplementary Materials: The following are available online at www.mdpi.com/1420-3049/22/8/1326/s1,
Figures S1–S10: Supporting Information.
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