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Abstract: Sterols play a unique role for the structural and dynamical organization of
membranes. The current study reports data on the membrane properties of the phytosterol
(3B,50,22E)-stigmasta-7,22-dien-3-3-ol («-spinasterol), which represents an important component
of argan oil and have not been investigated so far in molecular detail. In particular, the impact of
a-spinasterol on the structure and organization of lipid membranes was investigated and compared
with those of cholesterol. Various membrane parameters such as the molecular packing of the
phospholipid fatty acyl chains, the membrane permeability toward polar molecules, and the formation
of lateral membrane domains were studied. The experiments were performed on lipid vesicles using
methods of NMR spectroscopy and fluorescence spectroscopy and microscopy. The results show that
a-spinasterol resembles the membrane behavior of cholesterol to some degree.

Keywords: cholesterol; x-spinasterol; membrane structure; membrane permeability; lateral domains;
NMR; fluorescence

1. Introduction

The structural organization of cellular membranes is determined by a number of physico-chemical
interactions between the individual membrane components, which allow membranes to realize the
unique functions they play in complex cellular homeostasis. Of these interactions, the interplay
between cholesterol and the other membrane constituents (phospholipids and membrane proteins) is of
special relevance in mammals, as cholesterol, due to its unique structure, is able to significantly modify
important membrane properties such as dynamic formation of lateral membrane domains, also called
rafts [1-4], molecular packing of the acyl chains of phospholipids [5], and membrane permeability [6,7].
While in mammalians, cholesterol is the molecule playing the decisive role for bringing about these
specific membrane properties, in fungi and plants, other sterols such as ergosterol, campesterol,
sitosterol, stigmasterol, and (33,5c,22E)-stigmasta-7,22-dien-3-f3-ol (x-spinasterol) take over the role of
cholesterol. These sterols, which are structurally somewhat similar to cholesterol, have received special
attention because of their putatively positive impact on human health. To understand this influence in
molecular detail, several studies have investigated their cellular and pharmacological activities e.g.,
for preventing and treating the impacts of physiological dysregulations like in cardiovascular and
neurodegenerative diseases [8].

a-Spinasterol, which is found in argan oil (from Argania spinose) and in seed oil (from cactus
pear, Opuntia ficus indica), is a component of natural food ingredients. e.g., argan oil is used as a
traditional food ingredient in the “Amazigh diet’ and provides about 25% of the total diet fat intake
to the indigenous consumers [9]. Several studies have underlined the health benefits of this oil, e.g.,

Molecules 2017, 22, 1390; d0i:10.3390 / molecules22081390 www.mdpi.com/journal/molecules


http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules22081390
http://www.mdpi.com/journal/molecules

Molecules 2017, 22, 1390 20of 11

its reducing capacity for the plasma LDL-cholesterol level [10]. In searching for the components
responsible for these positive effects, x-spinasterol was proposed to be one of the main mediator
molecules. This phytosterol differs from cholesterol by (i) an additional ethyl group and double bond
in the aliphatic side chain; and (ii) the position of the double bond in the tetracyclic ring system
(Figure 1). Investigating the physiological effect(s) of «-spinasterol, several studies showed that it
modulates mitochondrial activity and gene expression of nuclear receptors [11,12], exhibits antitumor,
antioxidative, and anti-inflammatory activities [13,14], and influences serum concentrations and
metabolism of cholesterol in rats [15].

Figure 1. Chemical structures of (a) cholesterol and (b) x-spinasterol.

To understand the physiological role of a-spinasterol in more detail, its influence on membrane
properties is of specific interest. However, to the best of our knowledge, the membrane behavior of
a-spinasterol, especially in comparison with cholesterol has not been investigated so far. Therefore,
we characterized the influence of x-spinasterol on important membrane parameters and compared
its membrane behavior to that of cholesterol. To this end, the influence of x-spinasterol on (i) the
molecular packing of membrane lipids; (ii) the membrane permeability of lipid bilayers; and (iii) its
ability to support lateral membrane domains was investigated by using methods of NMR spectroscopy
and fluorescence spectroscopy and microscopy. Our data reveal that x-spinasterol shows membrane
properties, which are similar to those of cholesterol, but the impact for some of the investigated
parameters is different.

2. Results

2.1. The Influence of a-Spinasterol on Lipid Chain Packing

To investigate the effect of a-spinasterol on lipid chain packing and its capability to induce
lipid condensation, static >H-NMR measurements using chain deuterated 1-palmitoyl-ds;-2-oleoyl-sn-
glycero-3-phosphocholine (POPC-ds;) were performed. Lipid condensation describes the preferential
interaction of cholesterol with saturated lipid chains that leads to an increase in phospholipid chain
length and a decrease in the cross-sectional area per molecule in the membrane. The obtained NMR
spectra of the membranes in the presence of 10 and 20 mol % «-spinasterol exhibit the typical NMR
powder line shape of lamellar liquid-crystalline lipid membranes (spectra not shown). The NMR
spectra were deconvoluted by dePakeing, and order parameters were determined as described in the
literature [16,17]. The lipid chain order parameters from POPC membranes in the absence and in the
presence of o-spinasterol are shown in Figure 2. For comparison, the order parameters of POPC-d3;
in the presence of 10 and 20 mol % cholesterol are also shown (from [18]). Since 2H-NMR order
parameters represent a very reliable and highly reproducible way of obtaining information about the
lipid chain dynamics, please note that the error of measurements in these plots is smaller than symbol
size. a-Spinasterol clearly fails to induce the same lipid condensation effect as the same amount of
cholesterol does. The chain order parameters in the presence of 20 mol % «-spinasterol are comparable
to the effect of only 10 mol % cholesterol. This difference is also reflected in the lipid chain length,
which was calculated for the individual samples (Table 1). Since the condensation effect of 10 mol %
a-spinasterol in the membrane is not simply half of that for 20 mol %, a saturation behavior has to be
assumed as it was observed for other sterols (but not for cholesterol) [19].
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Figure 2. 2H-NMR chain order parameter of the sn-1 chain of POPC-d3; in the presence of 10 and
20 mol % o-spinasterol. For comparison, the chain order parameters of pure POPC-d3; and POPC-d3;
membranes in the presence of 10 and 20 mol % cholesterol are shown (data adopted from [18]). The error
of measurement is smaller than the symbol size.

Table 1. Lipid chain length calculated according to the mean torque model [20,21].

Sample Chain Length/A
10 mol % «-spinasterol/POPC-d3; 12.2
20 mol % «-spinasterol/POPC-d3; 124
pure POPC-d3; 11.7
10 mol % cholesterol/POPC-d3; 125
20 mol % cholesterol/POPC-d3; 13.2

2.2. Influence of a-Spinasterol on Membrane Permeability

The influence of x-spinasterol on membrane permeability was determined using a fluorescence
assay, which measures the permeation of dithionite ions across lipid membranes [18,22]. The rate
constants for dithionite permeation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) large
unilamellar vesicles (LUVs) in the absence or in the presence of either cholesterol or x-spinasterol are
shown in Figure 3. A comparison of pure lipid vesicles in the absence and in the presence of cholesterol
reveals that this sterol caused the well-known decrease of permeability toward polar molecules [23].
The rate constants in the presence of x-spinasterol were similar to those of cholesterol underlining that
the phytosterol has a comparable impact on reducing membrane permeability.
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Figure 3. Rate constants (kp) for the permeation of dithionite across large unilamellar vesicle (LUV)
membranes composed of POPC in the absence and in the presence of 20 mol % cholesterol or
a-spinasterol at 37 °C. All single values of the rate constant are shown which were determined
from two independent samples each threefold measured.
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2.3. Influence of a-Spinasterol on the Formation of Lateral Domains in Giant Unilamellar Vesicles (GUV's)

We continued to investigate whether o-spinasterol is also able to induce the formation of lateral
membrane domains as cholesterol does. It has been well established that cholesterol triggers the
formation of liquid disordered (Id) and ordered (lo) domains e.g., in GUVs or multilamellar vesicles
(MLVs) consisting of equimolar amounts of phospholipid, cholesterol, and sphingomyelin, and
representing the canonical lipid raft mix [4,24-28]. In line with this, we observed lateral domains in
1,2-dioeloyl-sn-glycero-3-phosphocholine (DOPC)/sphingosylphosphorylcholine (SSM)/ cholesterol
GUVs (Figure 4a). The domain structure was visualized by additionally labeling the membrane with
the 1d marker 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)
(ammonium salt) (N-Rh-DOPE). The fluorescence microscopic images show membrane regions of low
and of high fluorescence intensity, representing the lo and ld phases, respectively. When cholesterol
was substituted by «-spinasterol, the vesicles show a similar lateral domain pattern (Figure 4b).

a

Figure 4. Confocal fluorescence images of Giant Unilamellar Vesicles (GUVs) containing
DOPC/SSM/ cholesterol (1:1:1) (a) or DOPC/SSM/ a-spinasterol (1:1:1) (b). The GUV membranes
were labeled with N-Rh-DOPE (0.5 mol %) that sorts preferentially into liquid disordered (I1d) domains.
Bar corresponds to 10 pm.

In order to compare the distribution of N-Rh-DOPE in both domains between cholesterol-
and o-spinasterol-containing vesicles quantitatively, the fluorescence intensities of membrane areas
localized in lo and 1d domains were determined calculating a lo/1d ratio (see Materials and Methods).
To avoid the results to be influenced by slight variations of the lipid composition of different vesicles [4],
a total of 60 single GUVs of each lipid mixture were analyzed. Figure 5 shows that N-Rh-DOPE mainly
accumulates in the disordered domain for both vesicle species as seen from the very low lo/1d values.
However, for a-spinasterol a larger lo/1d ratio was measured indicating that this sterol is not able to
fully mimic cholesterol in this regard.
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Figure 5. Distribution of the lipid analog N-Rh-DOPE (0.5 mol %) between the lo and the 1d domain in
GUVs consisting of DOPC/SSM/ cholesterol (1:1:1) (black column) or DOPC/SSM/ «-spinasterol (1:1:1)
(gray column). From images as shown in Figure 4, fluorescence intensities of N-Rh-DOPE localized
in lo and 1d domains were determined and a lo/1d ratio was calculated (see Materials and Methods).
The data represent the mean + SE of 60 vesicles, p-value < 3% (corresponding to *).
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3. Discussion

In the current study, we investigated by how much the plant sterol a-spinasterol reproduces
the very unique membrane properties of cholesterol in lipid membranes by comparing the influence
of both sterols on lipid chain order, membrane permeability, and formation of lateral membrane
domains. Comparing the membrane properties of cholesterol with those of other sterols supports the
molecular understanding of the unique impact of cholesterol on membranes and its physiological
roles. Such molecules comprise precursors in the cholesterol synthesis, naturally occurring sterols, and
artificial fluorescence and EPR analogues of cholesterol [19,29-35]. Previous biophysical investigations
indicated that already small alterations in the structure of the sterol molecule cause significant
differences in the membrane properties of the respective molecule [2,6,36-39].

The data reported in this study also support the unique structure-function relationship of
native cholesterol and reveal differences of x-spinasterol with regard to membrane effects. First,
a-spinasterol, like cholesterol, condenses the fatty acyl chains of phospholipids by increasing their
degree of order. However, comparing the data on a quantitative level, the phytosterol a-spinasterol
was less effective than the mammalian sterol cholesterol: about twice the x-spinasterol concentration
was necessary to approximately achieve the same lipid chain condensation as induced by cholesterol.
a-Spinasterol features several structural differences compared to cholesterol. With regard to these
features, we hypothesize that the additional ethyl group and double bond localized in the aliphatic
side chain of the molecule mainly cause the decreased ordering effect of the sterol. Those structural
modifications decrease the ability of x-spinasterol to intercalate among and to order the POPC
acyl chains and possibly represent defects leading to a less dense packing of the molecules in the
membrane. Another phytosterol, stigmasterol, having the same modifications in the alkyl side chain
like x-spinasterol but the double bond in the ring system at the same position as cholesterol, can
also not fully mimic cholesterol with regard to membrane ordering [19]. Notably, this impact was
concentration dependent in that stigmasterol caused similar membrane ordering like cholesterol up
to a concentrations of about 10 mol %, but had a decreased influence at higher concentration [19].
Here, we observed for a-spinasterol a smaller influence compared to cholesterol also at 10 mol %.
These differences might be explained by the different position of the single double bond in the sterol
tetracyclic ring, which is the same for stigmasterol and cholesterol, but different for x-spinasterol.
Those modifications may influence the van der Waals interactions between lipid chains and the
respective sterol. Nevertheless, with regard to the amount of cholesterol in plasma membranes, mainly
the larger sterol concentrations are physiologically relevant.

Second, despite the reduced ability of o-spinasterol to affect the ordering of fatty acyl chains, the
phytosterol resembles endogenous cholesterol in decreasing the permeability of POPC membranes
toward the polar molecule dithionite. Interestingly, Schuler and coworkers found that stigmasterol
causes not only a low efficiency in lipid ordering, but also a decreased water permeability across
lipid membranes [29]. However, in this study, the authors (i) used membranes consisting of
soybean PC; (ii) determined water permeation indirectly by measuring osmotic swelling of vesicles;
and (iii) investigated only sterol concentrations up to 15 mol %.

Third, x-spinasterol triggered the formation of lateral domains in GUV membranes. Comparing the
distribution of a fluorescence marker between these domains, the extent of the distribution was slightly
lower for a-spinasterol compared to cholesterol. The presence and physiological relevance of lateral
membrane domains in biological membranes, especially plasma membranes, have been investigated
since the 80’s. For that, numerous approaches have been applied using model membranes as well as
manipulated and untreated biological membranes [1,40-43]. Whereas, with regard to the latter, the first
studies were mainly performed on mammalian cells, meanwhile the presence of those domains have
also been proposed for plant cells [44—46]. This indicates that phytosterols are also able to realize the
unique interactions with certain phospholipids in plant cells leading to the formation of segregated
membrane components. The order of these domains and their stability depends on the structure of the
respective partitioning sterol [47-51]. Interestingly, to the best of our knowledge those studies have not
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used the GUV assay in which the lateral distribution of fluorescent lipids is determined by fluorescence
microscopy, an approach which has been widely applied for cholesterol and related sterols. Using GUVs,
it is shown here that «-spinasterol mimics cholesterol in triggering phase separation in the trinary
lipid mixture DOPC, SSM, and sterol. This role of a-spinasterol for domain formation is supported
by another study finding an enrichment of this sterol in Triton X-100-insoluble membranes isolated
from plasma membranes of Medicago truncatula roots [52]. Several studies proposed for the structurally
related sterol stigmasterol (see above) a lower efficiency to promote the formation of liquid-ordered
domains compared to cholesterol [47,49,51]. From this, it can be concluded that the different position of
the double bond in the sterol ring of a-spinasterol and stigmasterol plays the crucial role for explaining
their different lateral distribution. It should be mentioned that our data focus on the canonical equimolar
raft mixture of DOPC/SSM/ cholesterol [4]. It is conceivable that other combinations of the three lipids
may produce an altered domain formation as domain formation is triggered by the interactions between
the individual lipids, the probability for such stabilizing or destabilizing interactions to occur of course
varies within the ternary phase diagram.

Summarizing the data underlines that x-spinasterol is able to modulate important membrane
properties similar to cholesterol, however, to a different extent for some of these parameters. Our study
may contribute to understand the basis for the positive effects of x-spinasterol when used as food
ingredient or medical therapeutics. The results show that on the structural level of lipid membranes,
this sterol is able to partially take over the role of natural cholesterol. However, the importance of
cholesterol for physiological processes is much more complex. Therefore, more experiments also
covering higher organization levels of life are required.

4. Materials and Methods

4.1. Materials

All lipids, POPC, DOPC, SSM, POPC-d3;, 1-palmitoyl-2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-
4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC), N-Rh-DOPE, and cholesterol were
purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). «-Spinasterol was from Tocris
Biosciences (Bristol, UK). All other chemicals were purchased from Sigma-Aldrich (Taufkirchen,
Germany) and were used without further purification.

4.2. Preparation of NMR Samples

a-Spinasterol and POPC-d3; were dissolved in chloroform at a molar ratio of 1:4 (mol/mol).
After evaporation of the solvent, the samples were re-dissolved in cyclohexane and lyophilized
overnight at high vacuum. The obtained fluffy powder was hydrated with 40 wt. % deuterium-depleted
water; the samples were equilibrated by several freeze-thaw cycles and gentle centrifugation and finally
transferred into 5 mm glass vials.

4.3. 2H-NMR Experiments

The ?H-NMR experiments were performed on a Bruker DRX300 NMR spectrometer (Bruker
BioSpin, Rheinstetten, Germany) at a resonance frequency of 46.1 MHz for 2H using a solids probe with
a 5-mm solenoid coil. ?H-NMR spectra were acquired using a quadrupolar echo pulse sequence [53]
with a relaxation delay of 1 s. The two 71/2 pulses with a typical length of around 3.2 ps were separated
by a 50 us delay. The spectral width was 500 kHz. 2H-NMR spectra were dePaked and smoothed
order parameters were determined as described previously [16]. From these order parameters the
lipid chain extent as a measure of the lipid chain length was calculated according to the mean torque
model [20,21].
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4.4. Preparation of LUVs

LUVs were prepared by the extrusion method [54]. Aliquots of lipids were dissolved in chloroform
and dried in a rotating round-bottom flask under vacuum until a lipid film was formed. Lipids were
resuspended at first in a small volume of ethanol (final ethanol concentration was below 1% (v/v)).
Subsequently, HBS (HEPES buffered saline, 145 mM NaCl and 10 mM HEPES, pH 7.4) was added
to reach a final lipid concentration of 1 mM and the mixture was vortexed. To prepare LUVs, this
suspension was subjected to five freeze-thaw cycles followed by extrusion of the lipid suspension
10 times through 0.1 um polycarbonate filters at 40 °C (extruder from Lipex Biomembranes Inc.,
Vancouver, BC, Canada; filters from Costar, Nucleopore, Tiibingen, Germany).

4.5. Preparation of GUVs

GUVs were prepared using the electro swelling method [55]. Lipid mixtures were prepared from
stock solutions in chloroform. Finally, 100 nmol of the domain forming lipid mixture of DOPC, SSM,
and cholesterol or a-spinasterol (1:1:1, molar ratio) including 0.5 mol % of the 1d domain marker
N-Rh-DOPE were dissolved in chloroform and spotted onto custom-built titan chambers. These were
placed on a heater plate at 50 °C to facilitate solvent evaporation, and subsequently put under high
vacuum for at least 1 h for evaporation of remaining traces of solvent. Lipid-coated slides were
assembled using a spacer of Parafilm (Pechiney Plastic Packaging, Chicago, IL, USA) for insulation.
The electro swelling chamber was filled with 1 ml sucrose buffer (250 mM sucrose, 15 mM NalN3,
osmolarity of 280 mOsm/kg) and sealed with plasticine. An alternating electrical field of 10 Hz rising
from 0.02 V to 1.1 V in the first 56 min was applied for 2.5 h at 55 °C.

4.6. Permeation Assay

The permeation of dithionite ions across lipid membranes was measured as described [18,22].
LUVs containing POPC and 0.5 mol % NBD-PC without and with 20 mol % of cholesterol or
a-spinasterol were prepared. The NBD fluorescence intensity of 33 uM LUVs was recorded in a
cuvette at 540 nm (Aex = 470 nm, slit width for excitation and emission 4 nm) at 37 °C using an Aminco
Bowman Series 2 spectrofluorometer. After 30 s, sodium dithionite was added from a 1 M stock
solution in 100 mM Tris (pH 10.0) to give a final concentration of 50 mM. Dithionite ions rapidly
quench the fluorescence of analog molecules localized in the outer leaflet, which is reflected by a
rapid initial decrease of fluorescence intensity (kinetics not shown). Subsequently, the fluorescence
intensity decreased slowly caused by a slow permeation of dithionite ions across the bilayer. By that
process, dithionite reacted with the NBD-PC molecules in the inner leaflet. After 300 s, Triton X-100
(0.5% (w/v) final concentration) was added, enabling complete reaction of dithionite with NBD-PC,
resulting in a complete loss of fluorescence. The curves were normalized to the fluorescence intensities
before addition of dithionite and were fitted to a bi-exponential equation. From the fittings, the
rate constants for the rapid fluorescence decrease (representing reduction of NBD-PC in the outer
leaflet) and those for the slow decrease (representing permeation of dithionite across the bilayer) were
determined. The latter ones were used as the parameter for membrane permeability. Note, that the
slow fluorescence decay could also be explained by a transbilayer movement of NBD-PC from the
inner to the outer leaflet (flip-flop). However, the transbilayer movement of phospholipids in lipid
bilayers is very slow, with half times in the time scale of hours.

4.7. Confocal Laser Scanning Microscopy

For microscopy, a Visitron VisiScope scanning disk confocal laser microscope (Visitron
Systems, Puchheim, Germany) with a 60x oil objective and an Andor iXon 888 EMCCD camera
(1024 x 1024 pixels, Andor, Belfast, UK) were used. N-Rh-DOPE was excited by a 561 nm diode laser.
GUVs were mixed 1:1 with 250 mM glucose buffer (5.8 mM NaH,PO;, 5.8 mM Nap,HPOy,, osmolarity
of 300 mOsm/kg, pH 7.2) in poly-lysine coated glass bottom culture dishes (MatTek Corporation,
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Ashland, MA, USA). Vesicles were allowed to settle down some minutes before acquisition of z-stacks
with 1 um step size.

4.8. Image Analysis

For image analysis, the equatorial plane of a vesicle was used. Distribution of N-Rh-DOPE across
the 1d and lo domain was measured as described in [56]. Four regions of interest (RO, squares) with
equal areas were positioned on each, the 1d and the lo domain (membrane ROIs). For all positions,
another squared ROI near the membrane ROIs were used to determine background signal. The mean
fluorescence intensity of each membrane ROI was calculated and corrected by subtraction of the
corresponding mean background ROI intensity. The mean value of all lo regions of a single GUV was
divided by the mean value all 1d regions.
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