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Abstract: A new malonate possessing two pyrene moieties was synthesized as a fluoroionophore,
and its structure and fluorescence spectroscopic properties were investigated. When excited at 344 nm
in acetonitrile/chloroform (9:1, v/v), the synthesized bispyrenyl malonate has the fluorescence of
intramolecular excimer (λem = 467 nm) emissions and not a pyrene monomer emission (λem = 394 nm).
A large absolute fluorescence quantum yield was obtained in the solid state (ΦPL = 0.65) rather than in
solution (ΦPL = 0.13). X-ray crystallography analysis clarified the molecular structure and alignment
of the bispyrenyl malonate in the crystal phase, elucidating its fluorescence spectroscopic properties.
Such analysis also suggests there are intramolecular C–H···π interactions and intermolecular π···π
interactions between the pyrenyl rings. Interestingly, the synthesized bispyrenyl malonate exhibits
excellent fluorescence sensing for the Cu2+ ion. Remarkable fluorescence intensity enhancement was
only observed with the addition of the Cu2+ ion.

Keywords: bispyrenyl malonate; Cu2+ ion-selective; fluoroionophore; CH···π Interaction; π···π
interaction; X-ray crystallographic analysis

1. Introduction

In recent years, research on ion sensing by fluoroionophores has attracted considerable
attention [1–5]. In fact, there have been many reports on ion sensing for the Cu2+ ion since it is
not only a toxic environmental pollutant but also an essential trace element in biological systems [6–9].
The Cu2+ ion is a well-known paramagnetic ion with an unfilled d orbital and can strongly quench
the fluorescence of a fluorophore in its proximity via electron or energy transfer [10]. Therefore,
the quenching of the fluorescence emission derived from the Cu2+ ion has mostly been reported in
literature on ion sensing for the Cu2+ ion by fluoroionophores [4,11–16]. Nevertheless, a few reports
on fluorescent enhancement with the Cu2+ ion are available [17–21].

Most fluoroionophores for cation sensing can be constructed with the recognition site having
a fluorescent moiety [9]. Pyrenes are used extensively as a fluorescent moiety due to their emission
properties [22–26]. Interestingly, fluorescent molecules with more than one pyrene moiety not only
have pyrene monomer emissions but also pyrene excimer emissions due to the strong π···π interactions
between the two pyrene moieties [27,28]. Generally, the pyrene excimer emission is observed in the
longer wavelength region and is stronger than the pyrene monomer emission. If an efficient excimer
emission signal is utilized for ion sensing, it would provide a sensitive detection method for the Cu2+

ion. In fact, ion sensing accompanied by the pyrene excimer emission signal has been reported for
various ions such as H+, Ca2+, Zn2+ , Zr4+, In3+, Pb2+, and I− ions [29–37]. There are some reports
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in which pyrene derivatives detect the Cu2+ ion by a ratiometric fluorescent response with both
monomer and excimer emissions [38–42], and where pyrene derivatives selectively recognize Cu2+ via
the excimer emission enhancement [43–47]. However, for more highly sensitive sensing, improvement
of the fluorescence quantum yield is necessary. In our previous studies, it was demonstrated that
sandwich-type ion recognition compounds indicate excellent ion selectivity and that malonate is an
excellent spacer for such compounds [48–50]. The substituents introduced into the C2-position of the
malonate spacers affect the dihedral angles between the two ion recognition moieties, although the
introduced substituents are spatially distant from the moieties [48]. In this study, we have designed
and synthesized a new malonate possessing two pyrene moieties as a fluoroionophore. The dihedral
angles between the two pyrenyl rings of the fluorescent probe are controlled by the substituents
introduced into the C2-position of the malonate spacers, thus leading to the improvement of the pyrene
excimer emissions and fluorescence quantum yield. Here, we have reported the synthesis, fluorescence
spectroscopic properties, and the structure of the bis (1-pyrenemethyl)-2-benzyl-2-methylmalonate 1.

2. Results and Discussion

2.1. Synthesis

The synthesis of bispyrenyl malonate 1 proceeded from the starting 2-benzyl-2-methyl-malonic
acid diethyl ester obtained by the introduction of the benzyl group to commercially available
methylmalonic acid diethyl ester. The synthetic route of bispyrenyl malonate 1 is depicted in
Scheme 1. Disubstituted malonic acid dichloride was synthesized by the reaction of the corresponding
disubstituted malonic acid with (COCl)2 in benzene [49]. Subsequently, the reaction of the disubstituted
malonic acid dichloride with 1-pyrenylmetanol in benzene led to the desired bispyrenyl malonate 1 in
a 66% isolated yield. The thus-obtained bispyrenyl malonate 1 (C45H32O4) was fully characterized by
1H-NMR, 13C-NMR, FTIR, and HRMS. Detailed data on bispyrenyl malonate 1 are described in the
Experimental Section. For comparison, bispyrenyl malonate 2 was prepared from the corresponding
2-methyl-2-naphthalenylmethyl-malonic acid diethyl ester.
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2.2. Absorption and Fluorescence Properties

The UV-absorption spectra and fluorescence emission spectra of bispyrenyl malonate 1
(1.0 × 10–5 M) measured using an acetonitrile/chloroform (9:1, v/v) solution are shown in Figure 1.
The maximum absorption bands of bispyrenyl malonate 1 are located at 342 and 326 nm (Figure 1a).
Bispyrenyl malonate 1 itself shows a broad fluorescence band at 467 nm (excitation wavelength:
λex = 344 nm) (Figure 1b). It indicates that bispyrenyl malonate 1 has the fluorescence of intramolecular
excimer (λem = 467 nm) emissions and not a pyrene monomer emission (λem = 394 nm) even
when bispyrenyl malonate 1 is present in the solution. The absolute quantum yields of bispyrenyl
malonate 1 at room temperature were also recorded on an absolute PL quantum yield (ΦPL)
measurement system. The absolute fluorescence quantum yields of bispyrenyl malonate 1 were
ΦPL = 0.13 in acetonitrile/chloroform (9:1, v/v) solution and ΦPL = 0.65 in solid (excitation wavelength:
λex = 344 nm). Interestingly, the large absolute fluorescence quantum yield of bispyrenyl malonate 1
could be obtained in the solid phase rather than in solution.
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Figure 1. (a) UV absorption (blue line) and (b) Fluorescence spectra (red line) of bispyrenyl malonate 1
(10 µM) in acetonitrile/chloroform (9:1, v/v) (excitation wavelength: λex = 344 nm).

2.3. X-ray Structural Studies

X-ray crystallography analysis clarified the molecular structure and alignment of bispyrenyl
malonate 1 in the crystal phase, as shown in Figures 2 and 3. The structure was determined in the
orthorhombic space group P212121 (no. 19) and anisotropic displacement parameters were applied for
the ordered non-H atoms in the structures. The X-ray crystallographic data are summarized in Table 1
and the selected bond lengths and angles are listed in Table 2.

Structural characterizations of bispyrenyl malonate 1 were carried out by single-crystal X-ray
structure determination to elucidate the fluorescence spectroscopic properties. As shown in Figure 2b,
the calculated positions of the hydrogen atoms on the pyrenyl C (32) and C (34) atoms are practically
facing the π-electrons of the other pyrenyl ring. The interaction distances (d1 and d2) between the
hydrogens and the pyrenyl moiety are 2.58 and 2.60 Å, suggesting intramolecular C–H···π interactions
in the crystal structure (edge-to-face interactions). These distances associated with the C–H···π
interactions are sufficiently close to form an excimer [51]. The dihedral angles between the two
pyrenyl moieties resulting from the C–H···π interactions are 83.05(6)◦. The results of this single
crystal X-ray study on bispyrenyl malonate 1 support the present fluorescence spectroscopic properties.
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Bispyrenyl malonate 1 in solution exhibits the fluorescence of intramolecular pyrene excimer emission
(λem = 467 nm) due to the structural influence from the intramolecular C–H···π interaction between
the two pyrene moieties.

Furthermore, pyrenyl moieties also participate in intermolecular π···π interactions with each
of their neighboring molecules. Figure 2c shows that the pyrenyl moiety is present in a face-to-face
manner with an interplanar distance of ca. 3.5 Å between the two pyrenyl moieties. The distance
is within the range of the typical distance for π···π interactions (3.5 Å) [52]. The molecular packing
diagrams of bispyrenyl malonate 1 in Figure 3 indicate that the molecules are linked by the π·· π
stacking formed between the pyrenyl moieties with adjacent molecules. As shown in Figure 3c, pyrenyl
moieties arrange in a herringbone motif that combines edge-to-face contacts (interaction distance = ca.
2.6 Å), the face-to-face π···π stacking (interaction distance = ca. 3.5 Å), and the offset π ·· π stacking
(center-center distance = 9.51 Å) [53]. The intramolecular C–H···π interaction and the intermolecular π··
π interaction stabilize the structure of bispyrenyl malonate 1. A large absolute fluorescence quantum
yield of bispyrenyl malonate 1 was obtained in the solid state (ΦPL = 0.65) rather than in solution
(ΦPL = 0.13) due to the influence of the intramolecular C–H···π interaction and the intermolecular π··
π interaction in the solid state.
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Table 1. X-ray crystallographic data for bispyrenyl malonate 1.

Formula C45H32O4

Formula weight 636.75
Crystal system Orthorhombic

Space group P212121 (no. 19)
a, Å 9.50566(17)
b, Å 12.5344(2)
c, Å 27.0375(5)

α, deg 90
β, deg 90
γ, deg 90
V, Å3 3221.46(10)

Z 4
Dcalc, g cm-3 1.313

µ(Cu Kα), cm-1 6.569
T, ◦C −1.0

λ(Cu Ka), Å 1.54187
R1 a 0.0620

wR2 b 0.1780
a R1 = ∑‖Fo| − |Fc‖/∑|Fo|. b wR2 = [∑w(Fo

2 − Fc
2)2/∑w(Fo

2)2]1/2.

Table 2. Selected bond lengths (Å) and angles (deg) for bispyrenyl malonate 1.

Bond Lengths

O(1)–C(1) 1.212(5) O(2)–C(1) 1.348(5)
O(2)–C(2) 1.453(6) O(21)–C(21) 1.208(5)

O(22)–C(21) 1.331(5) O(22)–C(22) 1.463(5)
C(1)–C(41) 1.512(6) C(2)–C(3) 1.502(6)
C(22)–C(23) 1.500(6) C(21)–C(41) 1.542(6)
C(41)–C(42) 1.573(7) C(41)–C(43) 1.512(7)
C(43)–C(44) 1.520(7)

Bond Angles

C(1)–O(2)–C(2) 115.8(3) C(2)–C(3)–C(16) 121.5(4)
O(1)–C(1)–O(2) 122.3(4) O(21)–C(21)–C(41) 122.0(4)
O(2)–C(1)–C(41) 112.0(3) O(22)–C(22)–C(23) 108.9(3)
C(2)–C(3)–C(4) 118.4(4) C(22)–C(23)–C(36) 121.1(4)

O(21)–C(21)–O(22) 124.9(4) C(1)–C(41)–C(42) 108.4(4)
O(22)–C(21)–C(41) 113.0(4) C(21)–C(41)–C(42) 105.6(4)
C(22)–C(23)–C(24) 118.7(4) C(21)–C(41)–C(43) 111.7(4)
C(1)–C(41)–C(21) 107.0(4) C(41)–C(43)–C(44) 113.4(4)
C(1)–C(41)–C(43) 110.7(4) C(43)–C(44)–C(49) 119.6(4)

C(21)–O(22)–C(22) 115.7(3) C(42)–C(41)–C(43) 113.0(4)
O(1)–C(1)–C(41) 125.6(4) C(43)–C(44)–C(45) 121.3(5)
O(2)–C(2)–C(3) 108.9(4)

2.4. Fluorescence Response

The fluorescence response to various cations (Li+, Na+, NH4
+, Mg2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+,

Cu2+, Zn2+, Ag+, and Cd2+) of bispyrenyl malonate 1 was examined. The fluorescence spectra were
recorded in acetonitrile/chloroform (9:1, v/v) solutions at a concentration of 1.0 × 10–5 M (excitation
wavelength: λex = 344 nm). Figure 4a shows the fluorescence spectra of bispyrenyl malonate 1 in the
absence or presence of 1 equiv. of each respective cation. The maximal emission peaks of bispyrenyl
malonate 1 are located at 467 nm. Only the addition of the Cu2+ ion to the solution of bispyrenyl
malonate 1 led to an enhancement of the fluorescence intensity. The maximal emission peak of
bispyrenyl malonate 1 at 467 nm slightly shifted (to 463 nm) in the presence of 1 equiv. of the Cu2+ ion.
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As shown in Figure 4b, the fluorescence intensity at 467 nm in the presence of 1 equiv. of the Cu2+ ion
was stronger than that of bispyrenyl malonate 1 itself. In addition, no fluorescence intensities of the
solutions of bispyrenyl malonate 1 and 1 equiv. of the Cu2+ ion were changed in the presence of 1 equiv.
of other metal ions (Figure S1). These results demonstrate that bispyrenyl malonate 1 exhibits high
Cu2+ ion-selectivity even if in the presence of competitive cations. Although the addition of Cu2+ ions
(from 0 to 100 equiv.) to the solution of bispyrenyl malonate 1 led to an increase in the fluorescence
intensities of bispyrenyl malonate 1, no quantitative relationship between the fluorescence intensities
of bispyrenyl malonate 1 and the concentrations of the Cu2+ ions was observed.
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λex = 344 nm).

Based on the solubility of bispyrenyl malonate 1, a mixed solution (acetonitrile/chloroform/
methanol/water = 7:1:1:1, v/v) was applied as the aqueous solution for further investigations. Under
this aqueous condition, the proposed bispyrenyl malonate 1 showed a large fluorescence of the pyrene
monomer emission and a small fluorescence of the pyrene excimer emission. The addition of the Cu2+

ions decreased the fluorescence of the pyrene monomer emission and increased the fluorescence of
the pyrene excimer emission (Figure 5). It is notable that specific fluorescence responses of bispyrenyl
malonate 1 to the Cu2+ ions were exhibited even if in aqueous conditions.
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Figure 5. Fluorescence spectra of bispyrenyl malonate 1 (10 µM) in the presence of 1 equiv. of Cu2+ in
acetonitrile/chloroform/methanol/water (7:1:1:1, v/v) (excitation wavelength: λex = 344 nm).

In our previous studies, it was demonstrated that the malonate spacer possessing the methyl and
naphthalenylmethyl groups as C2-position introduced substituents also increased the ion-selectivity of
the sandwich-type ion recognition compounds [49]. Thus, bispyrenyl malonate 2 possessing the methyl
and naphthalenylmethyl groups as substituents was also prepared by a similar method (Scheme 1)
and, for comparison, the fluorescence spectra of bispyrenyl malonate 2 were measured in the absence
and presence of 1 equiv. of each respective cation (Figure S2). Fluorescence spectra findings on
bispyrenyl malonates 1 and 2 demonstrated that they exhibit similar Cu2+ ion-selectivity. However,
the ion-selectivity against the examined cations of bispyrenyl malonate 1 was slightly superior to
that of bispyrenyl malonate 2. This is assumed to be because the substituents introduced into the
C2-position of the malonate spacers affect the dihedral angles between the two pyrenyl rings, although
the introduced substituents are spatially distant from the pyrenyl rings.

Fluorescence intensity enhancement of the bispyrenyl malonates by the Cu2+ ions could be
interpreted as follows: the binding of the Cu2+ ion to ester moieties of a bispyrenyl malonate is
considered to shorten the distance between the intramolecular pyrenyl rings, resulting in fluorescence
intensity enhancement of the pyrene excimer emissions. Such fluorescence intensity enhancement was
also influenced by the counter anions, i.e., fluorescence intensity enhancement of bispyrenyl malonate
2 by the addition of the Cu2+ ions in the case of nitrate was markedly weaker than that in the case
of perchlorate.

3. Experimental Section

3.1. Reagents and Chemicals

All reagents were commercially available in the highest grade and used for the syntheses of
malonates as such unless otherwise specified. Ethyl alcohol and pyridine were dried over molecular
sieve 4 Å. Benzene was dried over sodium and distilled. All reactions were carried out under dry
nitrogen. Acetonitrile was supplied from Wako Pure Chemical Industries Ltd. (Chuo-ku, Osaka, Japan)
in the spectrochemical analysis grade for the absorption and fluorescence spectrometries. Chloroform
was supplied from Wako Pure Chemical Industries, Ltd. in high performance liquid chromatography
grade. Metal cations were added to a solution of a malonate derivative as perchlorate salts for the
absorption and fluorescence spectrometries.

3.2. Apparatus

The 1H- and 13C-NMR spectra were recorded at 300 or 400 and 75 or 100 MHz, respectively.
Samples for NMR spectra were examined in CDCl3 solutions at 25.0 ◦C on a Varian 300 MHz
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(XL-300) (Agilent Technologies Inc., Santa Clara, CA, USA) or a JEOL 400 MHz (JMTC-400) (JEOL
Ltd., Akishima, Tokyo, Japan) NMR spectrometers. Chemical shifts are given in δ (ppm) relative
to deuterated solvents (13C-NMR) or to TMS (1H-NMR) as an internal standard. IR spectra were
run in KBr discs on a Shimazu FTIR-8600 spectrometer (Shimazu Corporation, Nagagyo-ku, Kyoto,
Japan). High-resolution mass (HRMS) spectra (positive mode of EI mass) were recorded on a JEOL
JMS-DX-303 (JEOL Ltd., Akishima, Tokyo, Japan). UV-Vis spectra were recorded on a Shimazu
MPS-2000 Spectrophotometer (Shimazu Corporation, Nagagyo-ku, Kyoto, Japan). Fluorescence
emission spectra were recorded on a Shimazu RF-5300PC(S) Luminescence Spectrometer (Shimazu
Corporation, Nagagyo-ku, Kyoto, Japan). Absolute fluorescence quantum yields were determined with
a Hamamatsu Photonics Quantaurus-QY C11347-01 calibrated integrating sphere system (Hamamatsu
Photonics K.K., Hamamatsu, Shizuoka, Japan).

3.3. Syntheses

Bispyrenyl malonate 1 was prepared by the synthetic routes depicted in Scheme 1. Disubstituted
malonic acid dichloride (2-benzyl-2-methyl-malonyl dichloride) was prepared by the same method
reported previously [49]. Subsequently, the reaction of the disubstituted malonic acid dichloride
with 1-pyrenylmetanol in benzene gave a desired bispyrenyl malonate 1. Bispyrenyl malonate 2 was
prepared by similar method.

1-Pyrenylmethanol (4.6 g) was dissolved in dry benzene (200 mL). Dry pyridine (3.0 mL) was
added to the solution and stirred for 1 h. In a dark room, the dry benzene solution (35 mL) of
2-benzyl-2-methylmalonyl dichloride (2.4 g) was added dropwise to the solution. The reaction solution
was stirred for 24 h at room temperature and refluxed for 72 h. 0.5 M hydrochloric acid aqueous
solution (120 mL) was added to the reaction solution. The solution was extracted with chloroform
(100 × 3 mL). The organic layer was dried over anhydrous magnesium sulfate, filtrated, and
evaporated under reduced pressure. The residue was thoroughly washed with hexane and
methanol. The purification was performed by liquid chromatography (CHEMCOSORB 5-ODS-H) with
methanol–chloroform (8.5:3), to obtain bis(1-pyrenemethyl)-2-benzyl-2-methylmalonate 1 (4.4 g, 66%
isolated yield); pale yellow crystal; IR (KBr): 1737.7, 1272.9 cm-1. 1H-NMR (300 MHz NMR, CDCl3):
1.39 (s, 3H), 3.25 (s, 2H), 5.62 (d, 2H, J = 12.90 Hz), 5.67 (d, 2H, J = 12.90 Hz), 6.92–6.99 (m, 2H), 7.02–7.14
(m, 3H), 7.67 (d, 2H, J = 7.80 Hz), 7.80–7.96 (m, 12H), 8.01 (dd, 4H, J = 7.80 and 1.80 Hz). 13C-NMR
(75 MHz NMR, CDCl3): 19.7, 41.1, 55.2, 65.4, 122.3, 124.2, 124.3, 124.4, 125.2, 125.2, 125.7, 126.8, 126.9,
127.1, 127.5, 127.9, 128.1, 128.8, 130.1, 130.3, 130.9, 131.3, 135.8, 171.6. HRMS (EI+): m/z calcd. for
C45H32O4 636.2301, found 636.2296.

1-Pyrenylmethanol (5.56 g) was dissolved in dry benzene (170 mL). Dry pyridine (5.5 mL) was
added to the solution and stirred for 1 h. In a dark room, the dry benzene solution (30 mL) of
2-methyl-2-naphthalenylmethyl-malonyl dichloride (3.50 g) was added dropwise to the solution and
stirred for 72 h at room temperature. The reaction solution was filtrated and evaporated under reduced
pressure. 0.5 M hydrochloric acid aqueous solution (30 mL) was added to the residue. The solution
was extracted with chloroform (100 × 3 mL) and washed with water (50 × 2 mL). The organic layer
was dried over anhydrous magnesium sulfate, filtrated, and evaporated under reduced pressure. The
residue was washed with hexane, ethyl acetate–hexane (1:1), and methanol to gain the crude yellow
solid. The purification was performed by liquid chromatography (CHEMCOSORB 5-ODS-H) with
ethyl acetate-hexane (1:20), to obtain bis(1-pyrenylmethyl)-2-methyl-2-naphthalenylmethyl-malonate
2 (0.17 g, 2% isolated yield); yellow crystal; IR(KBr): 1737.9, 1234.4 cm−1. 1H-NMR (400 MHz NMR,
CDCl3): 1.45 (s, 3H), 3.43 (s, 2H), 5.67 (dd, 4H, J = 12.6 and 18.0 Hz), 7.04–7.70 (m, 7H), 7.77–8.05 (m,
18H). 13C-NMR (100 MHz NMR, CDCl3): 20.0, 41.4, 55.4, 65.6, 122.4, 124.3, 124.4, 124.5, 125.3, 125.3,
125.5, 125.8, 125.8, 127.1, 127.2, 127.4, 127.5, 127.6, 128.0, 128.3, 128.9, 129.0, 130.4, 131.0, 131.5, 132.3,
133.2, 133.4, 171.7. HRMS (FAB+): m/z calcd. for C49H34O4 686.2457, found 686.2452.
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3.4. X-ray Crystallographic Analysis

The suitable single crystal of bispyrenyl malonate 1 was obtained on slow solvent evaporation
of the mixed solutions of methanol and chloroform. A measurement for bispyrenyl malonate 1 was
made on a Rigaku R-AXIS RAPID diffractometer (Rigaku Corporation, Akishima, Tokyo, Japan)
using graphite monochromated Cu Kα radiation. The structure of bispyrenyl malonate 1 was
solved by direct methods [54] and expanded using Fourier techniques. A calculation was performed
using the Crystal Structure [55] crystallographic software package except for the refinement, which
was performed using SHELXL Version 2014/7 (http://shelx.uni-ac.gwdg.de/SHELX/) [56]. The
non-hydrogen atoms were refined anisotropically. The H atoms were refined using the riding model.
Crystallographic data are summarized in Table 1. Crystallographic data for the structures reported in
this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary
publication no. CCDC–1570537 for 1. Copies of the data can be obtained free of charge on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +44-1223/336-033; E-mail:
deposit@ccdc.cam.ac.uk].Suitable crystals for X-ray studies of derivative 2 and the corresponding
complexes with the Cu2+ ions could not be obtained.

3.5. UV-Vis and Fluorescence Spectroscopy

UV-visible absorption spectra and fluorescence emission spectra were recorded at room
temperature. A 1 × 1 cm quartz cuvette was used for the spectroscopic analysis. The stock solution
(100 µM) of bispyrenyl malonate 1 in CH3CN/CHCl3 (9:1, v/v) was prepared for UV–visible and
fluorescence spectroscopic analysis and diluted to a final concentration of 10 µM by mixing 10 µM stock
solutions of inorganic perchlorates (LiClO4, NaClO4, NH4ClO4, Mg(ClO4)2, Cr(ClO4)3, Mn(ClO4)2,
Fe(ClO4)2, Co(ClO4)2, Ni(ClO4)2, Cu(ClO4)2, Zn(ClO4)2, AgClO4, and Cd(ClO4)2). CH3CN/CHCl3
solutions of inorganic perchlorates were added to the solution of bispyrenyl malonate 1 that
corresponded to 1 equiv. of metal ions. Although the maximal absorption peak of bispyrenyl malonate 1
is located at 342 nm, the excitation wavelengths at 344 nm was chosen for fluorescence spectroscopic
analysis because the fluorescence intensity of the pyrene excimer emission at 467 nm became strongest.
The emission spectra from ca. 350 to 770 nm were collected (every 1 nm). Excitation and emission slits
width were 5 nm.

4. Conclusions

A novel bispyrenyl malonate compound 1 was successfully synthesized and its molecular
structure confirmed by X-ray crystallographic analysis. Bispyrenyl malonate 1 crystallizes in the
orthorhombic space group P212121 (no. 19). In the crystal structure of bispyrenyl malonate 1, there
are intramolecular C–H···π interactions between the hydrogen atoms on the pyrenyl C(32) and C(34)
atoms and π-electrons of the other pyrenyl ring. The interaction distances between the hydrogens
and pyrenyl moiety were 2.58 and 2.60 Å, respectively. In the acetonitrile/chloroform (9:1, v/v)
solution, bispyrenyl malonate 1 exhibits an intramolecular excimer emission (λem = 467 nm) arising
from the non-covalent C–H···π interactions between the pyrenyl moieties. Furthermore, the two
pyrenyl moieties also participate in intermolecular π···π interactions with each of their neighboring
molecules. The interplanar distance of the two pyrenyl moieties in a face-to-face manner was ca.
3.5 Å. The absolute fluorescence quantum yields of bispyrenyl malonate 1 in solution and in the solid
state were ΦPL = 0.13 and 0.65, respectively. The thus-obtained bispyrenyl malonate 1 acted as a
highly selective fluoroionophore for the Cu2+ ion. Such enhancement of the fluorescence intensity of
bispyrenyl malonate 1 was observed only in selective Cu2+ ion sensing.

Supplementary Materials: The following are available online, Figure S1: Fluorescence response of bispyrenyl
malonate 1 to the Cu2+ ions in the presence of competitive cations. Figure S2: Fluorescence response of bispyrenyl
malonate 2. Figure S3: 1H- and 13C-NMR, HRMS, and FTIR spectra of bispyrenyl malonate 1. Figure S4: 1H- and
13C-NMR, HRMS and FTIR spectra of bispyrenyl malonate 2.

http://shelx.uni-ac.gwdg.de/SHELX/
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