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Abstract: A series of pyrimidine derivatives 4a–i were synthesized and evaluated for their binding
affinities towards 5-HT2C receptors. With regard to designed molecules 4a–i, the influence of the
size of alkyl ether and the absolute configuration of a stereogenic center on the 5-HT2C binding
affinity and selectivity was studied. The most promising diasteromeric mixtures 4d and 4e were
selected in the initial radioligand binding assay and they were further synthesized as optically active
forms starting from optically active alcohols 5d and 5e, prepared by an enzymatic kinetic resolution.
Pyrimidine analogue (R,R)-4e displayed an excellent 5-HT2C binding affinity with good selectivity
values against a broad range of other 5-HT receptor subtypes.

Keywords: pyrimidine; optically active; enzymatic kinetic resolution; 5-HT2C receptor; binding
affinity; selectivity

1. Introduction

Serotonin receptors, also known as 5-hydroxytryptamine (5-HT) receptors, are mainly located in
the central nervous system (CNS) and play an important role in mediating both excitatory and
inhibitory neurotransmission. There are 14 different 5-HT receptors classified into seven major
subfamilies (5-HT1–7). They have been known to regulate various physiological functions such
as mood, depressive behavior, appetite, biorhythm, and feeding [1,2]. According to recent studies,
the 5-HT2C receptor (5-HT2CR) is expected to be a potential drug target for the diagnosis and treatment
of a number of CNS disorders including schizophrenia, depression, substance abuse, and Parkinson
diseases, as well as obesity and urinary incontinence [3–8]. In particular, 5-HT2C-specific modulators
may have few undesired side effects on peripheral tissues because this receptor is exclusively expressed
in the CNS [9,10]. However, the 5-HT2C receptor belongs to the 5-HT2 receptor family, together with
5-HT2A and 5-HT2B, which have a high similarity in terms of their amino acid sequences [11]. It has
been reported that the activation of 5-HT2A and 5-HT2B is strongly implicated in hallucinations and
valvular heart disease [12,13]. Thus, the discovery of 5-HT2C agonists with a high specificity and
subtype selectivity for 5-HT2A and 5-HT2B receptors is important for avoiding side effects.
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To date, several compounds, including lorcaserin 1 and vabicaserin 2, have been identified as
5-HT2C agonists with significant selectivity against 5-HT2A and 5-HT2B (Figure 1) [14–18]. Lorcaserin
(ADP-356) was developed for the treatment of obesity and was approved for clinical use by FDA
in 2012 [19]. Vabicaserin is a drug developed for the treatment of acute schizophrenia or appetite
suppressants, but has not been shown to be effective in clinical trial studies [20,21]. In addition,
other small molecule 5-HT2C agonists have been reported to be in preclinical or early clinical
development [15–18].
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a series of pyrimidine derivatives 4a–i were synthesized starting from either primary or secondary 
alcohols 5a–i. The alcohols 5a–e were obtained from commercial sources, whereas the others 5f–i 
were easily prepared via the reduction/oxidation of phenyl propanoic acids 8 and 9. Thus, alcohols 
5a–i were first reacted with 2,4-dichloro-5-fluoropyrimidine in the presence of NaOtBu to afford  
4-alkoxypyrmidines 6a–i. A nucleophilic aromatic substitution reaction (SNAr) of 6a–i with (R)-(+)-1-
Boc-3-methylpiperazine gave 2-amino-4-alkoxypiperazine 7a–i. Finally, the BOC group in 7a–i was 

Figure 1. The chemical structures of representative 5-HT2C receptor ligands and their binding affinities
for 5-HT2 receptor subtypes [19,21].

During our efforts toward the development of 5-HT receptor modulators, we have initiated a
program to discover 5-HT2C agonists as potential therapeutic and diagnostic agents for CNS diseases.
Recently, pyrimidine analogue 3 with good pharmacological and pharmacokinetic properties has been
reported as a potential 5-HT2C agonist [22]. Our in vitro study of this molecule proved that it has a
high potency against the 5-HT2C receptor and relative good selectivity against the 5-HT2A receptor [23].
However, the binding affinity of 3 to the 5-HT2B receptor is still too high, which prompted us to
investigate this compound for the development of 5-HT2C selective agonists. Based on the report of the
activation selectivity of 5-HT2C over 5-HT2B [11], we postulated that altering the chain length between
the phenyl group and pyrimidine may induce a subtle structural change in the molecule, which can
make a large difference in its interaction with 5-HT2C and 5-HT2B because the binding site of 5-HT2C

is slightly deeper than that of 5-HT2B [11]. Thus, pyrimidine derivatives 4 with hydrocarbon chains
shorter or longer than that of the parent molecule 3 were designed to examine the effect of the structural
modification of compound 3 on the target selectivity toward 5-HT2C over 5-HT2B (Figure 2). In this
paper, we report our progress in the synthesis and biological evaluation of pyrimidine derivatives 4 as
selective 5-HT2C agonists.
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2. Results and Discussion

2.1. Synthesis of Pyrimidine Derivatives

The synthesis of compounds 4a–i is described in Scheme 1. Following the literature procedure [22,24],
a series of pyrimidine derivatives 4a–i were synthesized starting from either primary or secondary
alcohols 5a–i. The alcohols 5a–e were obtained from commercial sources, whereas the others
5f–i were easily prepared via the reduction/oxidation of phenyl propanoic acids 8 and 9. Thus,
alcohols 5a–i were first reacted with 2,4-dichloro-5-fluoropyrimidine in the presence of NaOtBu to
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afford 4-alkoxypyrmidines 6a–i. A nucleophilic aromatic substitution reaction (SNAr) of 6a–i with
(R)-(+)-1-Boc-3-methylpiperazine gave 2-amino-4-alkoxypiperazine 7a–i. Finally, the BOC group in
7a–i was removed in the presence of trifluoroacetic acid or 4 M hydrochloric acid to furnish the
corresponding pyrimidine derivatives 4a–i.
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fluoropyrimidine, NaOtBu, toluene, 0 ◦C, 70–91%; (b) (R)-(+)-1-Boc-3-methylpiperazine, DIPEA,
CH3CN, 110 ◦C, 14–53%; (c) TFA, CH2Cl2, r.t., 52–72%; (d) 4 M HCl, dioxane, 0 ◦C, 53%; (e) BH3-Me2S,
THF, r.t., 84–94%; (f) PCC, CH2Cl2, r.t., 73–77%; (g) MeMgBr, THF, 0 ◦C, 72–85%.

2.2. Biological Evaluation

The serotonin receptor binding affinity of our synthesized compounds 4a–i was examined by a
radioligand binding assay in transfected CHO-K1 cell lines using [3H]mesulergine as a radioligand.
Practically, a displacement of radioligand with compounds 4a–i was first evaluated at a concentration
of 10 µM, and then their Ki values were determined on the basis of the dose-response curves.
As summarized in Table 1, compounds 4d and 4e showed the highest binding affinities to 5-HT2C

and good selectivity values for 5-HT2A. However, the binding affinities of 4d and 4e to 5-HT2B were
comparable to the value of 3. At this moment, we assumed that both diastereomeric mixtures 4d and
4e might have a negative influence on the selectivity for 5-HT2B. Thus, we planned to synthesize
each diastereomer derived from 4d and 4e as an optically pure form to test its in vitro activity against
5-HT2 receptors.

Table 1. Binding affinities of pyrimidine analogues 4a–i against 5-HT2 receptor subtypes.

Entry Comp. n F R
5-HT2A 5-HT2B 5-HT2C

%Binding Ki (nM) %Binding Ki (nM) %Binding Ki (nM)

1 4a 0 2–F H 93.1 80.0 96.9 56.0 97.8 31.0
2 4b 0 3–F H 97.4 43.0 98.5 14.0 99.0 5.1
3 4c 0 4–F H 94.6 51.0 97.6 14.0 98.8 22.0
4 4d 0 3–F Me 91.9 213.0 98.9 4.8 99.3 2.7
5 4e 0 4–F Me 87.6 426.0 98.4 10.0 99.1 4.5
6 4f 2 3–F H 96.3 138.0 95.6 24.0 97.8 20.0
7 4g 2 4–F H 96.5 90.0 97.7 22.0 97.9 22.0
8 4h 2 3–F Me 94.3 170.0 98.7 16.0 98.6 14.0
9 4i 2 4–F Me 96.9 173.0 97.6 22.0 95.0 12.0
10 3 1 3–F Me 95.6 128.0 97.4 7.9 98.2 0.7
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2.3. Synthesis and In Vitro Evaluation of Optically Active Pyrimidines

In order to synthesize 4d and 4e as optically active diastereomers, optically active secondary
alcohols 5d and 5e should be prepared. For this purpose, we initially attempted the separation
of diastereomers 10 and 11, which were synthesized by the reaction of 5d and 5e with (R)-(−)-O-
acetylmadelic acid using EDCI as a coupling reagent. However, diastereomeric mixtures 10 and 11
were not completely separated by column chromatography on silica gel. Alternatively, the enzymatic
kinetic resolution was applied to separate racemic 5d and 5e, as shown in Scheme 2. It has been
reported that CAL-B lipase can selectively acetylate the (R)-form of secondary benzyl alcohols using
vinyl acetate as an acyl transfer reagent (Scheme 2) [25,26]. According to the literature procedure,
the selective acetylation reactions of racemic secondary alcohols 5d and 5e were performed using
0.5 equivalent of vinyl acetate, pyridine, and the CAL-B enzyme in hexane. Enantiomeric pure acetate
12 and 13 were separated and then hydrolyzed to afford the desired (R)-forms of 5d and 5e. It should
be noted that we obtained each diasteromeric 5d and 5e with a high optical purity when hexane was
used as a solvent, although an ionic liquid such as [bmim][PF6] and [bmim][BF4] was used to enhance
the enantiomeric selectivity of lipases in the literature. Additionally, (S)-5d and (S)-5e were successfully
obtained by further acetylation of the remaining alcohols 5d and 5e with an excess of vinyl acetate and
CAL-B enzyme followed by chromatographic separation.
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Scheme 2. The synthesis of (R)/(S)-5d and 5e using enzymatic kinetic resolution. Reagents and
conditions: (a) vinyl acetate (0.5 eq), CAL-B, pyridine, hexane, r.t.; (b) 1 M NaOH, MeOH, r.t.,
17–32% (two steps); (c) vinyl acetate (1 eq), CAL-B, pyridine, hexane, r.t., then separation, 44–46%;
(d) (R)-(−)-O-acetylmadelic acid, DCC, DMAP, CH2Cl2, r.t., 68–86%.

For determining the optical purity of (R)/(S)-5d and 5e, they were converted to the corresponding
mandelic ester (R)/(S)-10 and 11, respectively. A 1H-NMR analysis of diastereomeric protons in
(R)/(S)-10 and 11 indicated that the ee’s of (R/(S)-5d and 5e were greater than 93%. We also confirmed
that the optical rotation values of our compounds (R/(S)-5d and 5e are almost identical to those of the
compounds reported in the literature.
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With each enantiomer (R)- or (S)-5d and 5e in hand, the optically active pyrimidine derivatives
4d–4e were synthesized following the same reaction sequences (Scheme 3). Finally, compounds 4d
and 4e were assessed for their binding affinity to 5-HT2 receptor subtypes by radioligand binding
assays. The in vitro assay results are demonstrated in Table 2. In general, (R,R)-4d and 4e prepared
from secondary alcohols (R)-5d and (R)-5e showed excellent binding affinities to 5-HT2C, whereas
(S,R)-forms of 4d and 4e exhibited low potencies for 5-HT2A and 5-HT2B. A further evaluation of these
compounds for other 5-HT receptor subtypes was also performed and is provided in the supplementary
data (Table S2). These results combined with the in vitro data in Table 1 suggested that pyrimidine
derivatives 4 with a short alkyl chain could maintain their binding affinity to 5-HT2C comparable
to that of 3 and the binding affinity for other 5-HT subtypes could be significantly influenced by an
absolute configuration of the stereogenic methyl group in 4. Considering the potencies and selectivities
of 4, we can conclude that (R,R)-4e would be a viable candidate for a selective 5-HT2C modulator.
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Entry Comp. n F R
5-HT2A 5-HT2B 5-HT2C

%Binding Ki (nM) %Binding Ki (nM) %Binding Ki (nM)

1 (R,R)-4d 0 3–F Me (R) 93.3 222.0 100.2 2.6 98.5 1.2
2 (S,R)-4d 0 3–F Me (S) 82.4 475.0 95.2 67.0 97.7 14.0
3 (R,R)-4e 0 4–F Me (R) 0.9 - 99.6 19.0 94.2 4.0
4 (S,R)-4e 0 4–F Me (S) 64.8 1024.0 95.3 128.0 97.8 23.0

3. Materials and Methods

3.1. General Methods

All reactions were conducted under oven-dried glassware under an atmosphere of nitrogen.
All commercially available reagents were purchased and used without further purification. Solvents
and gases were dried according to standard procedures. Organic solvents were evaporated with
reduced pressure using a rotary evaporator. Reactions were followed by analytical thin layer
chromatography (TLC) analysis using glass plates precoated with silica gel (0.25 mm). TLC plates were
visualized by exposure to UV light (UV), and were then visualized with a KMnO4 or p-anisaldehyde
stain followed by brief heating on a hot plate. Flash column chromatography was performed using
silica gel 60 (230–400 mesh, Merck, Darmstadt, Germany) with the indicated solvents. 1H-NMR
spectra were measured with 400MHz and 13C-NMR spectra were measured with 100MHz using
CDCl3 and MeOD. 1H-NMR spectra are represented as follows: chemical shift, multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet), integration, and coupling constant (J) in Hertz (Hz).
1H-NMR chemical shifts are reported relative to CDCl3 (7.26 ppm). 13C NMR was recorded relative
to the central line of CDCl3 (77.0 ppm). High resolution mass spectra (HR-MS) were obtained using
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positive electrospray ionization and mass/charge (m/z) ratios that are reported as values in atomic
mass units.

3.2. Synthesis of Pyrimidines 4a–i

3.2.1. General Procedure for Preparing Compounds 5f and 5g

To a solution of 3-(3 or 4-fluorophenyl)propanoic acid 8 or 9 (1.78 mmol) in THF (8.90 mL),
borane-dimethyl sulfide (3.57 mmol) was added dropwise. The reaction mixture was allowed to stir
at room temperature for 1 h. After completion of the reaction (monitored by TLC), the mixture was
slowly quenched with MeOH until bubbling ceased, extracted with EtOAc. The organic layers were
dried over anhydrous MgSO4 and concentrated in vacuo. The resulting residue was purified by flash
column chromatography on silica gel (EtOAc:n-hexane = 1:4) to afford propanol 5f or 5g.

3-(3-Fluorophenyl)propan-1-ol (5f): Yield: 84%; 1H-NMR (400 MHz, CDCl3) δ 7.26–7.21 (m, 1H), 6.97 (d,
J = 7.6 Hz, 1H), 6.92–6.86 (m, 2H), 3.68 (q, J = 5.8 Hz, 2H), 2.72 (t, J = 7.7 Hz, 2H), 1.92–1.85 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ 162.9 (d, 1J = 243 Hz), 144.4 (d, 3J = 7 Hz), 129.8 (d, 3J = 8 Hz), 124.1 (d,
4J = 3 Hz), 115.2 (d, 2J = 21 Hz), 112.7 (d, 2J = 21 Hz), 62.0, 33.9, 31.7 (d, 4J = 2 Hz).

3-(4-Fluorophenyl)propan-1-ol (5g): Yield: 94%; 1H-NMR (400 MHz, CDCl3) δ 7.17–7.14 (m, 2H), 7.00–6.95
(m, 2H), 3.67 (t, J = 6.4 Hz, 2H), 2.69 (t, J = 7.8 Hz, 2H), 3.67 (t, J = 6.4 Hz, 2H), 1.91–1.84 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ 161.6 (d, 1J = 241.6 Hz), 137.7 (d, 4J = 3.1 Hz), 130.0 (d, 3J = 7.6 Hz), 115.4
(d, 2J = 21 Hz), 62.3, 34.6, 31.5.

3.2.2. General Procedure for Preparing Compounds 5f’ and 5g’

To a solution of propanol 5f or 5g (0.482 mmol) in CH2Cl2 (4.80 mL), PCC (0.964 mmol) was added
at 0 ◦C. The reaction mixture was allowed to stir at room temperature for 1 h. After completion of the
reaction (monitored by TLC), the mixture was filtered with silica gel and a celite pad, and extracted with
ether. The organic layers were dried over anhydrous MgSO4 and concentrated in vacuo. The resulting
residue was purified by flash column chromatography on silica gel (EtOAc:n-hexane = 1:4) to afford
propanal 5f’ or 5g’.

3-(3-Fluorophenyl)propanal (5f’): Yield: 77%; 1H-NMR (400 MHz, CDCl3) δ 9.82 (t, J = 1.2 Hz, 1H),
7.27–7.22 (m, 1H), 6.97 (d, J = 7.8 Hz, 1H), 6.91–6.88 (m, 2H), 2.95 (t, J = 7.5 Hz, 2H), 2.80–2.77 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ 201.0, 162.9 (d, 1J = 242 Hz), 142.9 (d, 3J = 8 Hz), 130.4 (d, 3J = 8 Hz),
124.0 (d, 4J = 2 Hz), 115.2 (d, 2J = 21 Hz), 113.2 (d, 2J = 21 Hz), 44.9, 27.8 (d, 4J = 2 Hz).

3-(4-Fluorophenyl)propanal (5g’): Yield: 73%; 1H-NMR (400 MHz, CDCl3) δ 9.77 (t, J = 1.2 Hz, 1H),
7.13–7.09 (m, 2H), 6.96–6.91 (m, 2H), 2.91–2.87 (m, 2H), 2.72 (t, J = 7.5 Hz, 2H). 13C-NMR (100 MHz,
CDCl3) δ 201.2, 161.5 (d, 1J = 243 Hz), 136.0 (d, 4J = 3 Hz), 129.7 (d, 3J = 8 Hz), 115.3 (d, 2J = 21 Hz),
45.4, 27.3.

3.2.3. General Procedure for Preparing Compounds 5h and 5i

To a solution of propanal 5f’ or 5g’ (0.204 mmol) in THF (2.00 mL), MeMgBr (3.0 M in ether:
0.245 mmol) was added dropwise at 0 ◦C. The reaction mixture was allowed to stir at room temperature
for 1 h. After completion of the reaction (monitored by TLC), it was quenched with saturated aqueous
NH4Cl, extracted with EtOAc and washed with brine. The organic layers were dried over anhydrous
MgSO4 and concentrated in vacuo. The resulting residue was purified by flash column chromatography
on silica gel (EtOAc:n-hexane = 1:2) to afford butan-2-ol 5h or 5i.

4-(3-Fluorophenyl)butan-2-ol (5h): Yield: 85%; 1H-NMR (400 MHz, CDCl3) δ 7.26–7.20 (m, 1H), 6.97 (d,
J = 7.7 Hz, 1H), 6.92–6.85 (m, 2H), 3.82 (d, J = 2.3 Hz, 1H), 2.80–2.63 (m, 2H), 1.79–1.73 (m, 2H), 1.24 (d,
J = 6.2 Hz, 3H).
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4-(4-Fluorophenyl)butan-2-ol (5i): Yield: 72%; 1H-NMR (400 MHz, CDCl3) δ 7.12 (dd, J = 5.6, 8.2 Hz, 2H),
6.93 (t, J = 8.7 Hz, 2H), 3.82–3.75 (m, 1H), 2.74–2.58 (m, 2H), 1.75–1.68 (m, 2H), 1.20 (d, J = 6.2 Hz, 3H).
13C-NMR (100 MHz, CDCl3) δ 161.3 (d, 1J = 241 Hz), 137.7 (d, 4J = 3 Hz), 129.7 (d, 3J = 8 Hz), 115.1 (d,
2J = 21 Hz), 67.4, 40.9, 31.3, 23.7.

3.2.4. General Procedure for Preparing Compounds 6a–i

A solution of sodium tert-butoxide (2.72 mmol) in toluene (18.2 mL) was treated with primary
or secondary alcohol (1.82 mmol) dropwise at 0 ◦C. After 5 min, 2,4-dichloro-5-fluoropyrimidine
(2.18 mmol) was added to the mixture. The reaction mixture was allowed to stir at room temperature
for 1 h. After completion of the reaction (monitored by TLC), it was quenched with saturated aqueous
NH4Cl, extracted with EtOAc, and washed with brine. The organic layers were dried over anhydrous
MgSO4 and concentrated in vacuo. The resulting residue was purified by flash column chromatography
on silica gel (EtOAc:n-hexane = 1:8) to afford pyrimidine 6.

2-Chloro-5-fluoro-4-((2-fluorobenzyl)oxy)pyrimidine (6a): Yield: 91%; 1H-NMR (400 MHz, CDCl3) δ 8.21 (d,
J = 2.2 Hz, 1H), 7.53–7.49 (m, 1H), 7.49–7.34 (m, 1H), 7.20–7.09 (m, 2H), 5.57 (s, 2H). 13C-NMR (100 MHz,
CDCl3) δ 161.2 (d, 1J = 247 Hz), 159.0 (d, 2J = 12 Hz), 153.2 (d, 4J = 5 Hz), 145.9 (d, 1J = 263 Hz), 144.3
(d, 2J = 20 Hz), 131.1 (d, 3J = 4 Hz), 131.0 (d, 3J = 8 Hz), 124.3 (d, 4J = 4 Hz), 121.8 (d, 2J = 14 Hz), 115.7
(d, 2J = 20 Hz), 63.9 (d, 3J = 4 Hz).

2-Chloro-5-fluoro-4-((3-fluorobenzyl)oxy)pyrimidine (6b): Yield: 90%; 1H-NMR (400 MHz, CDCl3) δ 8.23
(d, J = 2.2 Hz, 1H), 7.40–7.34 (m, 1H), 7.25 (d, J = 7.26 Hz, 1H), 7.19 (d, J = 9.4 Hz, 1H), 7.09–7.04 (m,
1H), 5.50 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 162.9 (d, 1J = 245 Hz), 158.9 (d, 2J = 11 Hz), 153.2 (d,
4J = 5 Hz), 145.8 (d, 1J = 245 Hz), 144.4 (d, 2J = 20 Hz), 136.9 (d, 3J = 8 Hz), 130.3 (d, 3J = 8 Hz), 123.9 (d,
4J = 3 Hz), 115.7 (d, 2J = 21 Hz), 115.3 (d, 2J = 22 Hz), 68.9 (d, 4J = 2 Hz).

2-Chloro-5-fluoro-4-((4-fluorobenzyl)oxy)pyrimidine (6c): Yield: 75%; 1H-NMR (400 MHz, CDCl3) δ 8.20
(d, J = 2.2 Hz, 1H), 7.47 (dd, J = 5.4 Hz, 8.7Hz, 2H), 7.08 (t, J = 8.7 Hz, 2H), 5.47 (s, 2H). 13C-NMR
(100 MHz, CDCl3) δ 163 (d, 1J = 246 Hz), 159.03 (d, 2J = 12 Hz), 153.2 (d, 4J = 5 Hz), 145 (d, 1J = 263 Hz),
144.3 (d, 2J = 20 Hz), 130.8 (d, 3J = 9 Hz), 130.3 (d, 3J = 4 Hz), 115.2 (d, 2J = 21 Hz), 69.2.

2-Chloro-5-fluoro-4-(1-(3-fluorophenyl)ethoxy)pyrimidine (6d): Yield: 79%; 1H-NMR (400 MHz, CDCl3) δ

8.17 (d, J = 2.2 Hz, 1H), 7.35–7.30 (m, 1H), 7.22 (d, J = 7.7 Hz, 1H), 7.17–7.14 (m, 1H), 7.02–6.97 (m, 1H),
6.31–6.27 (m, 1H), 1.70 (d, J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.9 (d, 1J = 245 Hz), 158.6
(d, 2J = 11 Hz), 153.2 (d, 4J = 5 Hz), 146.0 (d, 1J = 263 Hz), 144.4 (d, 2J = 20 Hz), 142.9 (d, 3J = 7 Hz), 130.2
(d, 3J = 8 Hz), 122.0 (d, 4J = 2 Hz), 115.3 (d, 2J = 21 Hz), 113.3 (d, 2J = 22 Hz), 75.7 (d, 4J = 2 Hz), 22.2.

2-Chloro-5-fluoro-4-(1-(4-fluorophenyl)ethoxy)pyrimidine (6e): Yield: 89%; 1H-NMR (400 MHz, CDCl3)
δ 8.35 (d, J = 2.2 Hz, 1H), 7.66 (dd, J = 5.3, 8.7 Hz, 2H), 7.29–7.25 (m, 2H), 6.54–6.49 (m, 1H), 1.92 (d,
J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.6 (d, 1J = 245 Hz), 158.6 (d, 2J = 11 Hz), 153.1 (d,
4J = 5 Hz), 146.0 (d, 1J = 262 Hz), 144.3 (d, 2J = 20 Hz), 136.1 (d, 4J = 3 Hz), 128.4 (d, 3J = 8 Hz), 115.6 (d,
2J = 22 Hz), 75.9, 22.1.

2-Chloro-5-fluoro-4-(3-(3-fluorophenyl)propoxy)pyrimidine (6f): Yield: 86%; 1H-NMR (400 MHz, CDCl3) δ

8.19 (d, J = 2.2 Hz, 1H), 7.28–7.22 (m, 1H), 6.98 (d, J = 7.7 Hz, 1H), 6.92–6.87 (m, 2H), 4.48 (t, J = 6.4 Hz,
2H), 2.80 (t, J = 7.6 Hz, 2H), 2.19–2.12 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ 163.0 (d, 1J = 244 Hz),
159.4 (d, 2J = 11 Hz), 153.3 (d, 4J = 5 Hz), 145.9 (d, 1J = 263 Hz), 144.0 (d, 2J = 20 Hz), 143.3 (d, 3J = 7 Hz),
123.0 (d, 3J = 8 Hz), 124.1 (d, 4J = 3 Hz), 115.3 (d, 2J = 21 Hz), 113.1 (d, 2J = 21 Hz), 67.6, 31.6 (d,
4J = 1 Hz), 29.6.

2-Chloro-5-fluoro-4-(3-(4-fluorophenyl)propoxy)pyrimidine (6g): Yield: 93%; 1H-NMR (400 MHz, CDCl3) δ

8.17 (d, J = 4.2 Hz, 1H), 7.16–7.12 (m, 2H), 6.99–6.93 (m, 2H), 4.45 (t, J = 6.4 Hz, 2H), 2.75 (t, J = 7.6 Hz,
2H), 2.14–2.10 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ 161.4 (d, 1J = 246 Hz), 159.4 (d, 2J = 11 Hz), 153.3
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(d, 4J = 5 Hz), 145.9 (d, 1J = 262 Hz), 144.0 (d, 2J = 20 Hz), 136.3 (d, 4J = 3 Hz), 129.8 (d, 3J = 8 Hz), 115.3
(d, 2J = 21 Hz), 67.6, 31.1, 30.0.

2-Chloro-5-fluoro-4-((4-(3-fluorophenyl)butan-2-yl)oxy)pyrimidine (6h): Yield: 70%; 1H-NMR (400 MHz,
CDCl3) δ 8.17 (d, J = 2.3 Hz, 1H), 7.26–7.20 (m, 1H), 6.95–6.87 (m, 3H), 5.40–5.35 (m, 1H), 2.79–2.69 (m,
2H), 2.18–2.11 (m, 1H), 2.02–1.96 (m, 1H), 1.43 (d, J = 6.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 163.0
(d, 1J = 244 Hz), 159.2 (d, 2J = 11 Hz), 153.3 (d, 4J = 5 Hz), 146.0 (d, 1J = 262 Hz), 144.1 (d, 2J = 20 Hz),
143.6 (d, 3J = 7 Hz), 129.9 (d, 3J = 8 Hz), 124.0 (d, 4J = 3 Hz), 115.2 (d, 2J = 21 Hz), 113.0 (d, 2J = 21 Hz),
75.1, 37.0, 31.4 (d, 4J = 1 Hz), 19.6.

2-Chloro-5-fluoro-4-((4-(4-fluorophenyl)butan-2-yl)oxy)pyrimidine (6i): Yield: 79%; 1H-NMR (400 MHz,
CDCl3) δ 8.17 (d, J = 2.3 Hz, 1H), 7.14–7.11 (m, 2H), 6.99–6.94 (m, 2H), 5.40–5.35 (m, 1H), 2.78–2.65 (m,
2H), 2.17–2.09 (m, 1H), 2.00–1.92 (m, 1H), 1.42 (d, J = 6.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 161.4
(d, 1J = 242 Hz), 159.2 (d, 2J = 11 Hz), 153.3 (d, 4J = 5 Hz), 146.0 (d, 1J = 262 Hz), 144.0 (d, 2J = 21 Hz),
136.6 (d, 4J = 3 Hz), 129.7 (d, 3J = 8 Hz), 115.2 (d, 2J = 21 Hz), 75.2, 37.4, 30.8, 19.6.

3.2.5. General Procedure for Preparing Compounds 7a–i

To a solution of pyrimidine 6 (0.569 mmol) in CH3CN (2.90 mL), (R)-(+)-1-Boc-3-methylpiperazine
(1.14 mmol) and N,N-diisopropylethylamine (1.14 mmol) were added. The reaction mixture was
allowed to stir at 110 ◦C for 14 h. After completion of the reaction (monitored by TLC), it was quenched
with saturated aqueous NH4Cl, extracted with EtOAc, and washed with brine. The organic layers were
dried over anhydrous MgSO4 and concentrated in vacuo. The resulting residue was purified by flash
column chromatography on silica gel (EtOAc/CHCl3/n-hexane = 1:4:8) to afford methyl piperazine
carboxylate 7.

(R)-tert-Butyl-4-(5-fluoro-4-((2-fluorobenzyl)oxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate (7a): Yield:
14%; 1H-NMR (400 MHz, CDCl3) δ 7.98 (d, J = 2.8 Hz, 1H), 7.49–7.45 (m, 1H), 7.35–7.29 (m, 1H),
7.17–7.13 (m, 1H), 7.11–7.06 (m, 1H), 5.53–5.44 (m, 2H), 4.73 (bs, 1H), 4.32 (d, J =13.3, 1H), 4.14–3.90 (m,
2H), 3.17–2.89 (m, 3H), 1.49 (s, 9H), 1.12 (d, J = 6.7 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 160.7 (d,
1J = 246 Hz), 157.6 (d, 2J = 11 Hz), 156.8 (d, 4J = 2 Hz), 155.2, 143.5 (d, 2J = 19 Hz), 139.9 (d, 1J = 247 Hz),
130.08 (d, 3J = 4 Hz), 130.05 (d, 3J = 9 Hz), 124.2 (d, 3J = 3 Hz), 123.4 (d, 2J = 14 Hz), 115.4 (d, 2J = 21 Hz),
79.8, 67.6 (d, 3J = 5 Hz), 48.5, 47.2, 44.0, 42.9, 38.7, 28.4, 14.1.

(R)-tert-Butyl-4-(5-fluoro-4-((3-fluorobenzyl)oxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate (7b): Yield:
27%; 1H-NMR (400 MHz, CDCl3) δ 7.99 (d, J = 2.8 Hz, 1H), 7.36–7.30 (m, 1H), 7.19 (d, J = 7.7 Hz, 1H),
7.15–7.09 (m, 1H), 7.03–6.98 (m, 1H), 5.43–5.36 (m, 2H), 4.69 (bs, 1H), 4.29 (d, J = 13.0 Hz, 1H), 4.14–3.84
(m, 2H), 3.16–2.87 (m, 3H), 1.48 (s, 9H), 1.11 (d, J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.9 (d,
1J = 245 Hz), 157.5 (d, 2J = 10 Hz), 156.8 (d, 4J = 2 Hz), 155.2, 143.6 (d, 2J = 19 Hz), 139.9 (d, 1J = 240 Hz),
138.7 (d, 3J = 7 Hz), 130.1 (d, 3J = 8 Hz), 123.2 (d, 4J = 3 Hz), 115.1 (d, 2J = 21 Hz), 114.6 (d, 2J = 22 Hz),
79.9, 67.1 (d, 4J = 1 Hz), 48.5, 47.2, 44.0, 42.9, 38.8, 28.4, 14.1.

(R)-tert-Butyl-4-(5-fluoro-4-((4-fluorobenzyl)oxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate (7c): Yield:
21%; 1H-NMR (400 MHz, CDCl3) δ 7.98 (d, J = 2.8 Hz, 1H), 7.43–7.39 (m, 2H), 7.07–7.03 (m, 2H),
5.40–5.34 (m, 2H), 4.72 (bs, 1H), 4.30 (d, J = 12.8 Hz, 1H), 4.15–3.78 (m, 2H), 3.17–2.87 (m, 3H), 1.48 (s,
9H), 1.13 (d, J = 6.7 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.7 (d, 1J = 245 Hz), 157.7 (d, 2J = 11 Hz),
156.8 (d, 4J = 2 Hz), 155.2, 143.5 (d, 2J = 20 Hz), 139.9 (d, 1J = 247 Hz), 131.9 (d, 4J = 3 Hz), 129.9 (d,
3J = 8 Hz), 115.5 (d, 2J = 21 Hz), 79.9, 67.2, 48.5, 47.2, 44.0, 42.9, 38.8, 28.4, 14.1.

(R)-tert-Butyl-4-(5-fluoro-4-(1-(3-fluorophenyl)ethoxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate (7d):
Yield: 44%; 1H-NMR (400 MHz, CDCl3, Diastereomeric mixture) δ 7.94–7.93 (m, 1H, 1H′), 7.32–7.25
(m, 1H, 1H′), 7.16–7.06 (m, 2H, 2H′), 6.97–6.90 (m, 1H, 1H′), 6.09–6.00 (m, 1H, 1H′), 4.57 (bs, 1H, 1H′),
4.22–3.85 (m, 3H, 3H′), 3.08–2.74 (m, 3H, 3H′), 1.65 (d, J = 6.6 Hz, 3H, 3H′), 1.46 (d, J = 2.4 Hz, 9H, 9H′),
1.13–0.90 (m, 3H, 3H′). 13C-NMR (100 MHz, CDCl3, Diastereomeric mixture) δ 162.9 (d, 1J = 244 Hz),
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157.14 (d, 3J = 11 Hz), 157.11 (d, 3J = 11 Hz), 156.7 (d, 4J = 3 Hz), 155.20, 155.18, 145.0 (d, 2J = 23 Hz),
144.91 (d, 2J = 23 Hz), 143.47 (d, 2J = 20 Hz), 143.44 (d, 2J = 20 Hz), 140.0 (d, 1J = 245 Hz), 130.11 (d,
3J = 8 Hz), 130.07 (d, 3J = 9 Hz), 121.42 (d, 4J = 3 Hz), 121.17 (d, 4J = 3 Hz), 114.6 (d, 2J = 21 Hz), 114.5
(d, 2J = 21 Hz), 112.8 (d, 2J = 22 Hz), 112.6 (d, 2J = 22 Hz), 79.8, 79.8, 73.92, 73.90, 73.80, 73.79, 48.4, 47.1,
44.0, 42.8, 38.7, 28.4, 23.0, 22.8, 13.9.

(R)-tert-Butyl-4-(5-fluoro-4-(1-(4-fluorophenyl)ethoxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate (7e):
Yield: 40%; 1H-NMR (400 MHz, CDCl3, Diastereomeric mixture) δ 7.95–7.94 (m, 1H, 1H′), 7.94–7.33
(m, 2H, 2H′), 7.06–6.98 (m, 2H, 2H′), 6.12–6.05 (m, 1H, 1H′), 4.60 (bs, 1H, 1H′), 4.25–3.88 (m, 3H, 3H′),
3.10–2.87 (m, 3H, 3H′), 1.66 (d, J = 6.6 Hz, 3H, 3H′), 1.48 (d, J = 2.0 Hz, 9H, 9H′), 1.15–0.96 (m, 3H, 3H′).
13C-NMR (100 MHz, CDCl3, Diastereomeric mixture) δ 162.3 (d, 1J = 245 Hz), 162.2 (d, 1J = 245 Hz),
157.3 (d, 2J = 11 Hz), 157.2 (d, 2J = 11 Hz), 156.7, 155.2, 143.4 (d, 2J = 20 Hz), 143.3 (d, 2J = 19 Hz), 140.0
(d, 1J = 247 Hz), 138.1 (d, 4J = 3 Hz), 137.9 (d, 4J = 3 Hz), 127.7 (d, 3J = 8 Hz), 127.4 (d, 3J = 8 Hz), 115.5 (d,
2J = 22 Hz), 115.4 (d, 2J = 21 Hz), 79.9, 73.9, 73.8, 48.5, 47.2, 43.8, 42.9, 38.71, 38.68, 28.4, 23.0, 22.8, 14.0.

(R)-tert-Butyl-4-(5-fluoro-4-(3-(3-fluorophenyl)propoxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate (7f):
Yield: 53%; 1H-NMR (400 MHz, CDCl3) δ 7.94 (d, J = 3.0 Hz, 1H), 7.26–7.20 (m, 1H), 6.96 (d, J = 7.7 Hz,
1H), 6.90–6.85 (m, 2H), 4.65 (bs, 1H), 4.35 (t, J = 6.5 Hz, 2H), 4.25–4.21 (m, 1H), 4.18–3.88 (m, 2H),
3.13–2.87 (m, 3H), 2.77 (t, J = 7.6 Hz, 2H), 2.13–2.06 (m, 2H), 1.47 (s, 9H), 1.12 (d, J = 6.7 Hz, 3H).
13C-NMR (100 MHz, CDCl3) δ 163.6 (d, 1J = 244 Hz), 158.7 (d, 2J = 11 Hz), 157.5 (d, 4J = 2 Hz), 155.9,
144.4 (d, 3J = 7 Hz), 143.8 (d, 2J = 20 Hz), 140.6 (d, 1J = 247 Hz), 130.5 (d, 3J = 9 Hz), 124.8 (d, 4J = 3 Hz),
115.9 (d, 2J = 21 Hz), 113.6 (d, 2J = 21 Hz), 80.4, 66.0, 49.1, 47.8, 44.6, 43.5, 39.4, 32.5, 30.6, 29.1, 14.6.

(R)-tert-Butyl-4-(5-fluoro-4-(3-(4-fluorophenyl)propoxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate (7g):
Yield: 45%; 1H-NMR (400 MHz, CDCl3) δ 7.96 (d, J = 2.9 Hz, 1H), 7.16–7.13 (m, 2H), 6.99–6.94 (m, 2H),
4.66 (bs, 1H), 4.39–4.33 (m, 2H), 4.25–3.89 (m, 3H) 3.20–3.06 (m, 2H), 3.02–2.98 (m, 1H), 2.88–2.73 (m,
2H), 2.12–2.05 (m, 2H), 1.48 (s, 9H), 1.12 (d, J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 161.4 (d,
1J = 242 Hz), 158.1 (d, 2J = 11 Hz), 156.9 (d, 4J = 3 Hz), 155.2, 143.1 (d, 2J = 20 Hz), 140.0 (d, 1J = 247 Hz),
136.8 (d, 4J = 3 Hz), 129.8 (d, 3J = 8 Hz), 115.2 (d, 2J = 21 Hz), 79.8, 65.4, 48.5, 47.1, 44.0, 42.9, 38.7, 31.3,
30.4, 28.4, 14.0.

(R)-tert-Butyl-4-(5-fluoro-4-((4-(3-fluorophenyl)butan-2-yl)oxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate
(7h): Yield: 45%; 1H-NMR (400 MHz, CDCl3, Diastereomeric mixture) δ 7.96 (d, J = 2.9 Hz, 1H, 1H′),
7.24–7.18 (m, 1H, 1H′), 6.94–6.84 (m, 3H, 3H′), 5.27–5.19 (m, 1H, 1H′), 4.64–4.61 (m, 1H, 1H′), 4.22–3.88
(m, 3H, 3H′), 3.13–3.05 (m, 2H, 2H′), 2.88–2.67 (m, 3H, 3H′), 2.17–2.08 (m, 1H, 1H′), 1.96–1.87 (m, 1H,
1H′), 1.48 (d, J = 0.7 Hz, 9H, 9H′), 1.38 (d, J = 6.2 Hz, 3H, 3H′), 1.13–1.10 (m, 3H, 3H′). 13C-NMR
(100 MHz, CDCl3, Diastereomeric mixture) δ 162.9 (d, 1J = 244 Hz), 157.8 (d, 2J = 11 Hz), 156.9 (d,
4J = 3 Hz), 155.2, 144.06 (d, 3J = 7 Hz), 144.04 (d, 3J = 3 Hz), 143.2 (d, 2J = 19 Hz), 140.1 (d, 1J = 246 Hz),
129.8 (d, 3J = 7 Hz), 124.1 (d, 4J = 3 Hz), 124.1 (d, 4J = 4 Hz), 115.3 (d, 2J = 20 Hz), 115.2 (d, 2J = 21 Hz),
113.8 (d, 2J = 22 Hz), 79.8, 72.1, 72.2, 48.4, 47.2, 44.0, 42.9, 38.7, 37.3, 31.5, 28.4, 19.8, 19.8, 14.0.

(R)-tert-Butyl-4-(5-fluoro-4-((4-(4-fluorophenyl)butan-2-yl)oxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate
(7i): Yield: 40%; 1H-NMR (400 MHz, CDCl3, Diastereomeric mixture) δ 7.96–7.95 (m, 1H, 1H′),
7.12–7.07 (m, 2H, 2H′), 6.96–6.91 (m, 2H, 2H′), 5.26–5.18 (m, 1H, 1H′), 4.64 (bs, 1H, 1H′), 4.22–3.89 (m,
3H, 3H′), 3.14–3.05 (m, 2H, 2H′), 2.89–2.62 (m, 3H, 3H′), 2.13–2.05 (m, 1H, 1H′) 1.94–1.85 (m, 1H, 1H′),
1.48 (d, J = 0.6 Hz, 9H, 9H′), 1.38 (d, J = 6.2 Hz, 3H, 3H′), 1.13–1.11 (m, 3H, 3H′). 13C-NMR (100 MHz,
CDCl3, Diastereomeric mixture) δ 161.3 (d, 1J = 242 Hz), 157.9 (d, 2J = 10 Hz), 156.9, 155.2, 143.1 (d,
2J = 20 Hz), 140.2 (d, 1J = 246 Hz), 137.07 (d, 4J = 3 Hz), 137.06 (d, 4J = 2 Hz), 129.76 (d, 3J = 7 Hz),
129.72 (d, 3J = 7 Hz), 115.14 (d, 2J = 21 Hz), 115.12 (d, 2J = 21 Hz), 79.8, 72.20, 72.17, 48.5, 47.2, 44.0, 42.9,
38.7, 37.7, 30.99, 30.96, 28.4, 19.9, 19.8, 13.9.
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3.2.6. General Procedure for Preparing Compounds 4a–i

Methods A: To a solution of methyl piperazine carboxylate 7 (0.161 mmol) in CH2Cl2 (1.60 mL),
trifluoro acetic acid (4.01 mmol) was added at 0 ◦C. The reaction mixture was allowed to stir at the
same temperature for 1 h. After completion of the reaction (monitored by TLC), the mixture was
diluted with saturated aqueous NaHCO3, and extracted with EtOAc. The organic layers were dried
over anhydrous MgSO4 and concentrated in vacuo. The resulting residue was purified by flash column
chromatography on silica gel (DCM/MeOH = 10:1) to afford methyl piperazine 4.

Methods B: To a solution of methyl piperazine carboxylate 7 (0.144 mmol) in dioxane (1.45 mL),
1 M HCl in ether (1.44 mmol) was added at 0 ◦C. The reaction mixture was allowed to stir at the same
temperature for 2.5 h. After completion of the reaction (monitored by TLC), the mixture was diluted
with saturated aqueous NaHCO3, and extracted with EtOAc. The organic layers were dried over
anhydrous MgSO4 and concentrated in vacuo. The resulting residue was purified by flash column
chromatography on silica gel (DCM/MeOH = 10:1) to afford methyl piperazine 4.

(R)-5-Fluoro-4-((2-fluorobenzyl)oxy)-2-(2-methylpiperazin-1-yl)pyrimidine (4a): Methods A: Yield: 52%;
1H-NMR (400 MHz, MeOD) δ 8.16 (d, J = 3.1 Hz, 1H), 7.67–7.63 (m, 1H), 7.56–7.50 (m, 1H), 7.37–7.27
(m, 2H), 5.71–5.61 (m, 2H), 4.86–4.83 (m, 1H), 4.49–4.45 (m, 1H), 3.24–3.17 (m, 2H), 3.09–3.01 (m, 2H),
2.87–2.80 (m, 1H), 1.35 (d, J = 6.8 Hz, 3H). 13C-NMR (100 MHz, MeOD) δ 160.9 (d, 1J = 245 Hz), 157.6
(d, 2J = 11 Hz), 156.9 (d, 4J = 2 Hz), 143.0 (d, 2J = 20 Hz), 139.6 (d, 1J = 246 Hz), 130.1 (d, 4J = 3 Hz), 130.0
(d, 3J = 8 Hz), 124.1 (d, 4J = 3 Hz), 123.4 (d, 2J = 14 Hz), 115.0 (d, 2J = 21 Hz), 61.5 (d, 3J = 5 Hz), 49.1,
46.3, 44.9, 38.8, 12.4; HRMS-ESI (m/z): [M + H]+ calcd. for C16H19F2N4O: 321.1521 ; found: 321.1525;
HPLC purity, 6.7 min, 98.8%.

(R)-5-Fluoro-4-((3-fluorobenzyl)oxy)-2-(2-methylpiperazin-1-yl)pyrimidine (4b): Methods A: Yield: 72%;
1H-NMR (400 MHz, MeOD) δ 8.18 (d, J = 2.9 Hz, 1H), 7.67–7.54 (m, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.36 (d,
J = 9.6 Hz, 1H), 7.31–7.21 (m, 1H), 5.66–5.58 (m, 2H), 4.83 (bs, 1H), 4.47 (d, J =12.6 Hz, 1H), 3.25–3.18 (m,
2H), 3.10–3.02 (m, 2H), 2.88–2.81 (m, 1H), 1.35 (d, J = 6.8 Hz, 3H). 13C-NMR (100 MHz, MeOD) δ 162.9
(d, 1J = 243 Hz), 157.6 (d, 2J = 11 Hz), 156.9 (d, 4J = 2 Hz), 143.1 (d, 2J = 20 Hz), 139.6 (d, 1J = 245 Hz),
139.3 (d, 3J = 8 Hz), 130.0 (d, 3J = 8 Hz), 123.0 (d, 4J = 3 Hz), 114.4 (d, 2J = 21 Hz), 114.0 (d, 2J = 22 Hz),
66.9 (d, 4J = 1 Hz), 49.2, 46.4, 44.8, 38.8, 12.4; HRMS-ESI (m/z): [M + H]+ calcd. for C16H19F2N4O:
321.1521; found: 321.1523; HPLC purity, 6.9 min, 97.1%.

(R)-5-Fluoro-4-((4-fluorobenzyl)oxy)-2-(2-methylpiperazin-1-yl)pyrimidine (4c): Methods A: Yield: 57%;
1H-NMR (400 MHz, MeOD) δ 8.19 (d, J = 3.1 Hz, 1H), 7.68–7.65 (m, 2H), 7.30 (t, J = 8.8 Hz, 2H), 5.65–5.57
(m, 2H), 4.89–4.86 (m, 1H), 4.53–4.48 (m, 1H), 3.28–3.21 (m, 2H), 3.14–3.06 (m, 2H), 2.92–2.84 (m, 1H),
1.38 (d, J = 6.9 Hz, 3H). 13C-NMR (100 MHz, MeOD) δ 162.6 (d, 1J = 243 Hz), 157.7 (d, 2J = 11 Hz), 156.9
(d, 4J = 2 Hz), 143.0 (d, 2J = 20 Hz), 139.7 (d, 1J = 246 Hz), 132.5 (d, 4J = 4 Hz), 129.8 (d, 3J = 9 Hz), 114.9
(d, 2J = 22 Hz), 67.0, 49.1, 46.3, 44.8, 38.7, 12.4; HRMS-ESI (m/z): [M + H]+ calcd. for C16H19F2N4O:
321.1521; found: 321.1524; HPLC purity, 7.4 min, 97.4%.

5-Fluoro-4-(1-(3-fluorophenyl)ethoxy)-2-((R)-2-methylpiperazin-1-yl)pyrimidine (4d): Methods A: Yield:
71%; 1H-NMR (400 MHz, MeOD, Diastereomeric mixture) δ 8.13 (s, 1H, 1H′), 7.52–7.49 (m, 1H, 1H′),
7.39–7.36 (m, 1H, 1H′), 7.32–7.29 (m, 1H, 1H′), 7.16–7.14 (m, 2H), 6.31–6.22 (m, 1H, 1H′), 4.71 (bs, 1H,
1H′), 4.43–4.33 (m, 1H, 1H′), 3.18–2.99 (m, 4H, 4H′), 2.86–2.72 (m, 1H, 1H′), 1.83–1.81 (m, 3H, 3H′),
1.39–1.12 (m, 3H, 3H′). 13C-NMR (100 MHz, MeOD, Diastereomeric mixture) δ 162.93 (d, 1J = 245 Hz),
162.91 (d, 1J = 245 Hz), 157.13 (d, 2J = 11 Hz), 157.10 (d, 2J = 11 Hz), 156.8, 145.6 (d, 3J = 7 Hz), 145.3 (d,
3J = 7 Hz), 143.1 (d, 2J = 20 Hz), 143.0 (d, 2J = 19 Hz), 139.7 (d, 1J = 246 Hz), 130.1 (d, 3J = 8 Hz), 130.0 (d,
3J = 8 Hz), 121.14 (d, 2J = 27 Hz), 121.11 (d, 2J = 27 Hz), 114.0 (d, 2J = 22 Hz), 113.9 (d, 2J = 21 Hz), 74.05
(d, 4J = 2 Hz), 73.97 (d, 4J = 1 Hz), 49.1, 49.0, 46.3, 44.8, 44.7, 38.72, 38.68, 22.0, 21.8, 12.5, 12.4; HRMS-ESI
(m/z): [M + H]+ calcd. for C17H21F2N4O: 335.1678 ; found: 335.1680; HPLC purity, 7.5 min, 98.1%.

5-Fluoro-4-(1-(4-fluorophenyl)ethoxy)-2-((R)-2-methylpiperazin-1-yl)pyrimidine (4e): Methods B: Yield: 53%;
1H-NMR (400 MHz, MeOD, Diastereomeric mixture) δ 8.16–8.14 (m, 1H, 1H′), 7.64–7.59 (m, 2H, 2H′),
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7.28–7.23 (m, 2H, 2H′), 6.33–6.28 (m, 1H, 1H′), 4.78–4.76 (m, 1H, 1H′), 4.45–4.36 (m, 1H, 1H′), 3.21–3.10
(m, 2H, 2H′), 3.08–2.99 (m, 2H, 2H′), 2.89–2.75 (m, 1H, 1H′), 1.84–1.82 (m, 3H, 3H′), 1.41–1.17 (m,
3H, 3H′). 13C-NMR (100 MHz, MeOD, Diastereomeric mixture) δ 162.3 (d, 1J = 243 Hz), 162.2 (d,
1J = 243 Hz), 157.27 (d, 2J = 11 Hz), 157.25 (d, 2J = 11 Hz), 156.8, 142.93 (d, 2J = 20 Hz), 142.87 (d,
2J = 20 Hz), 139.81 (d, 1J = 243 Hz), 139.78 (d, 1J = 244 Hz), 138.4 (d, 4J = 3 Hz), 127.5 (d, 3J = 8 Hz), 127.3
(d, 3J = 8 Hz), 114.9 (d, 2J = 22 Hz), 114.8 (d, 2J = 22 Hz), 74.1, 74.0, 48.98, 48.94, 46.2, 44.71, 44.68, 38.6,
38.5, 22.0, 21.8, 12.4; HRMS-ESI (m/z): [M + H]+ calcd. for C17H21F2N4O: 335.1678 ; found: 335.1680;
HPLC purity, 7.4 min, 98.3%.

(R)-5-Fluoro-4-(3-(3-fluorophenyl)propoxy)-2-(2-methylpiperazin-1-yl)pyrimidine (4f): Methods A: Yield:
62%; 1H-NMR (400 MHz, CDCl3) δ 7.99 (d, J = 3.0 Hz, 1H), 7.30–7.24 (m, 1H), 7.00 (d, J = 7.6 Hz, 1H),
6.95–6.89 (m, 2H), 4.67–4.61 (m, 1H), 4.42–4.36 (m, 2H), 4.29–4.25 (m, 1H), 3.09–2.98 (m, 3H), 2.90 (d,
J = 12.2 Hz, 1H), 2.83–2.77 (m, 3H), 2.18–2.11 (m, 2H), 1.24 (d, J = 6.8 Hz, 3H). 13C-NMR (100 MHz,
MeOD) δ 163.0 (d, 1J = 243 Hz), 158.3 (d, 2J = 11 Hz), 156.2, 144.1 (d, 3J = 8 Hz), 142.9 (d, 2J = 21 Hz),
140.3 (d, 1J = 247 Hz), 129.7 (d, 3J = 8 Hz), 124.1 (d, 3J = 4 Hz), 114.8 (d, 2J =21 Hz), 112.3 (d, 2J = 21 Hz),
65.5, 44.6, 43.3, 35.8, 31.3, 29.7, 12.3; HRMS-ESI (m/z): [M + H]+ calcd. for C18H23F2N4O: 349.1834;
found: 347.1837; HPLC purity, 5.1 min, 98.7%.

(R)-5-Fluoro-4-(3-(4-fluorophenyl)propoxy)-2-(2-methylpiperazin-1-yl)pyrimidine (4g): Methods A: Yield:
63%; 1H-NMR (400 MHz, CDCl3) δ 7.93 (d, J = 3.0 Hz, 1H), 7.14–7.11 (m, 2H), 6.96–6.92 (m, 2H), 4.58
(t, J = 5.0 Hz, 1H), 4.35–4.31 (m, 2H), 4.23–4.19 (m, 1H), 3.03–2.92 (m, 3H), 2.84 (d, J = 12.3 Hz, 1H),
2.75–2.71 (m, 3H), 2.10–2.03 (m, 2H), 1.18 (d, J = 6.8 Hz, 3H). 13C-NMR (100 MHz, MeOD) δ 161.4 (d,
1J = 241 Hz), 158.4 (d, 2J = 11 Hz), 156.0, 142.8 (d, 2J = 20 Hz), 140.5 (d, 1J = 247 Hz), 137.1, 129.8 (d,
3J = 8 Hz), 114.6 (d, 2J = 21 Hz), 65.7, 46.9, 44.3, 43.1, 35.3, 30.7, 30.1, 12.4; HRMS-ESI (m/z): [M + H]+

calcd. for C18H23F2N4O: 349.1834; found: 347.1836; HPLC purity, 5.2 min, 95.5%.

5-Fluoro-4-((4-(3-fluorophenyl)butan-2-yl)oxy)-2-((R)-2-methylpiperazin-1-l)pyrimidine (4h): Methods A:
Yield: 68%; 1H-NMR (400 MHz, MeOD, Diastereomeric mixture) δ 8.16–8.15 (m, 1H, 1H′), 7.46–7.40
(m, 1H, 1H′), 7.16–7.15 (m, 1H, 1H′), 7.09–7.05 (m, 2H, 2H′), 5.48–5.38 (m, 1H, 1H′), 4.80–4.72 (m, 1H,
1H′), 4.42–4.37 (m, 1H, 1H′), 3.24–3.15 (m, 2H, 2H′), 3.12–3.03 (m, 1H, 1H′), 2.99–2.83 (m, 3H, 3H′),
2.31–2.24 (m, 1H, 1H′), 2.18–2.09 (m, 1H, 1H′), 1.57–1.56 (m, 3H, 3H′), 1.39–1.35 (m, 3H, 3H′). 13C-NMR
(100 MHz, MeOD, Diastereomeric mixture) δ 162.9 (d, 1J = 242 Hz), 157.86 (d, 2J = 11 Hz), 157.84 (d,
2J = 11 Hz), 156.9, 144.3 (d, 3J = 7 Hz), 142.7 (d, 2J = 20 Hz), 139.8 (d, 1J = 245 Hz), 129.68 (d, 3J = 9 Hz),
129.66 (d, 3J = 9 Hz), 124.02 (d, 4J = 3 Hz), 123.98 (d, 4J = 3 Hz), 114.8 (d, 2J = 21 Hz), 114.7 (d, 2J = 21 Hz),
112.3 (d, 2J = 22 Hz), 112.2 (d, 2J = 22 Hz), 72.01, 71.92, 49.12, 49.10, 46.24, 46.22, 44.82, 44.80, 38.70,
38.68, 36.9, 31.0, 18.66, 18.64, 12.4, 12.3; HRMS-ESI (m/z): [M + H]+ calcd. for C19H25F2N4O: 363.1991;
found: 363.1992; HPLC purity, 8.0 min, 98.4%.

5-Fluoro-4-((4-(4-fluorophenyl)butan-2-yl)oxy)-2-((R)-2-methylpiperazin-1-yl)pyrimidine (4i): Methods A:
Yield: 53%; 1H-NMR (400 MHz, MeOD, Diastereomeric mixture) δ 8.12 (d, J = 2.4 Hz, 1H, 1H′),
7.32–7.29 (m, 2H, 2H′), 7.14–7.08 (m, 2H, 2H′), 5.43–5.34 (m, 1H, 1H′), 4.74–4.67 (m, 1H, 1H′), 4.35–4.31
(m, 1H, 1H′), 3.18–3.11 (m, 2H, 2H′), 3.08–2.99 (m, 2H, 2H′), 2.93–2.79 (m, 1H, H′), 2.28–2.19 (m, 1H,
1H′) 2.13–2.03 (m, 1H, 1H′), 1.54–1.51 (m, 3H, 3H′), 1.35–1.31 (m, 3H, 3H′). 13C-NMR (100 MHz, MeOD,
Diastereomeric mixture) δ 161.3 (d, 1J = 241 Hz), 157.87 (d, 2J = 11 Hz), 157.85 (d, 2J = 11 Hz), 156.9,
142.7 (d, 2J = 20 Hz), 139.9 (d, 1J = 246 Hz), 137.3 (d, 4J = 4 Hz), 129.72 (d, 3J = 7 Hz), 129.67 (d, 3J = 7 Hz),
114.57 (d, 2J = 21 Hz), 114.55 (d, 2J = 21 Hz), 72.00, 71.95, 49.13, 49.09, 46.24, 46.22, 44.83, 44.79, 38.71,
38.68, 37.3, 30.5, 30.4, 18.66, 18.62, 12.4, 12.3; HRMS-ESI (m/z): [M + H]+ calcd. for C19H25F2N4O:
363.1991; found: 363.1993; HPLC purity, 8.2 min, 96.9%.
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3.3. Synthesis of Optically Active Pyrimidines 4d and 4e

3.3.1. General Procedure for Preparing Compound (R)-(+)-5d and (R)-(+)-5e

To a solution of 1-(3 or 4-fluorophenyl)ethanol (6.67 mmol) in n-hexane (22.2 mL), CAL-B (147 mg),
vinyl acetate (3.34 mmol), and triethylamine (0.667 mmol) were added. The reaction mixture was
allowed to stir at room temperature for 1 h. After completion of the reaction (monitored by TLC),
the mixture was filtered and concentrated in vacuo. The resulting residue was purified by flash column
chromatography on silica gel (EtOAc:n-hexane = 1:8) to afford acetate intermediate (315 mg) as a
colorless oil. To a solution of acetate (1.73 mmol) in MeOH (3.45 mL), 1 M NaOH (2.59 mmol) was
added. The reaction mixture was allowed to stir at room temperature for 1 h. After completion of
the reaction (monitored by TLC), it was quenched with ditilled water and extracted with EtOAc.
The organic layers were dried over anhydrous MgSO4 and concentrated in vacuo. The resulting
residue was purified by flash column chromatography on silica gel (EtOAc:n-hexane = 1:8) to afford
alcohol (R)-(+)-5d and (R)-(+)-5e.

(R)-1-(3-Fluorophenyl)ethan-1-ol ((R)-(+)-5d): Yield: 17%; 1H-NMR (400 MHz, CDCl3) δ 7.32–7.26 (m,
1H), 7.12–7.07 (m, 2H), 6.97–6.92 (m, 1H), 4.87 (q, J = 6.4 Hz, 1H), 2.18 (s, 1H), 1.47 (d, J = 6.4 Hz, 3H).
13C-NMR (100 MHz, CDCl3) δ 163.0 (d, 1J = 244 Hz), 148.5 (d, 3J = 6 Hz), 130.0 (d, 3J = 8 Hz), 121.0 (d,
4J = 3 Hz), 114.2 (d, 2J = 21 Hz), 112.3 (d, 2J = 21 Hz), 69.8, 25.2; Optical rotation for (R)-(+)-5d: [α] 26

D
+43.7◦ (c 0.7, CHCl3).

(R)-1-(4-Fluorophenyl)ethan-1-ol ((R)-(+)-5e): Yield: 32%; 1H-NMR (400 MHz, CDCl3) δ 7.32–7.26 (m,
2H), 7.03–6.97 (m, 2H), 4.84 (q, J = 6.1 Hz, 1H), 2.34 (s, 1H), 1.44 (d, J = 6.4 Hz, 3H). 13C-NMR (100 MHz,
CDCl3) δ 162.1 (d, 1J = 244 Hz), 141.6 (d, 4J = 3 Hz), 127.1 (d, 3J = 8 Hz), 115.2 (d, 2J = 21 Hz), 69.7, 25.3;
Optical rotation for (R)-(+)-5e: [α]27

D +51.9◦ (c 0.5, CHCl3).

3.3.2. General Procedure for Preparing Compound (S)-(−)-5d and (S)-(−)-5e

To a solution of 1-(3 or 4-fluorophenyl)ethanol (6.67 mmol) in n-hexane (22.2 mL), CAL-B (147 mg),
vinyl acetate (13.3 mmol), and triethylamine (0.667 mmol) were added. The reaction mixture was
allowed to stir at room temperature for 12 h. After completion of the reaction (monitored by TLC),
the mixture was filtered and concentrated in vacuo. The resulting residue was purified by flash column
chromatography on silica gel (EtOAc:n-hexane = 1:8) to afford alcohol (S)-(−)-5d and (S)-(−)-5e.

(S)-1-(3-Fluorophenyl)ethan-1-ol ((S)-(−)-5d): Yield: 44%; 1H-NMR (400 MHz, CDCl3) δ 7.31–7.26 (m,
1H), 7.11–7.06 (m, 2H), 6.96–6.91 (m, 1H), 4.85 (td, J = 5.5, 7.5 Hz, 1H), 2.31 (s, 1H), 1.46 (d, J = 6.5 Hz,
3H). 13C-NMR (100 MHz, CDCl3) δ 163.0 (d, 1J = 245 Hz), 148.6 (d, 3J = 6 Hz), 130.0 (d, 3J = 8 Hz), 121.0
(d, 4J = 3 Hz), 114.2 (d, 2J = 21 Hz), 112.3 (d, 2J = 22 Hz), 69.8 (d, 4J = 2 Hz), 25.2; Optical rotation for
(S)-(−)-5d: [α] 27

D −46.9◦ (c 0.4, CHCl3).

(S)-1-(4-Fluorophenyl)ethan-1-ol ((S)-(−)-5e): Yield: 46%; 1H-NMR (400 MHz, CDCl3) δ 7.33–7.30 (m,
2H), 7.04–6.98 (m, 2H), 4.85 (q, J = 6.4 Hz, 1H), 2.16 (s, 1H), 1.45 (d, J = 6.4 Hz, 3H). 13C-NMR (100 MHz,
CDCl3) δ 162.1 (d, 1J = 243 Hz), 141.5 (d, 4J = 3 Hz), 127.1 (d, 3J = 8 Hz), 115.2 (d, 2J = 21 Hz), 69.8, 25.3;
Optical rotation for (S)-(−)-5e: [α] 27

D –49.7◦ (c 0.6, CHCl3).

3.3.3. General Procedure for Preparing Compounds (R)/(S)-10 and 11

To a solution of (R) or (S)-secondary alcohol (0.0749 mmol) in CH2Cl2 (0.400 mL), (R)-2-acetoxy-2-
phenylacetic acid (0.112 mmol), EDCI (0.112 mmol), and DMAP (0.112 mmol) were added. The reaction
mixture was allowed to stir at room temperature for 12 h. After completion of the reaction (monitored
by TLC), the mixture was filtered, extracted with CH2Cl2, and washed with brine. The organic layers
were dried over anhydrous MgSO4 and concentrated in vacuo. The resulting residue was purified
by flash column chromatography on silica gel (EtOAc:n-hexane = 1:8) to afford mandelate (R)/(S)-10
and 11.
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(R)-1-(3-Fluorophenyl)ethyl (R)-2-acetoxy-2-phenylacetate ((R)-10): Yield: 86%; 1H-NMR (400 MHz, CDCl3)
δ 7.41–7.34 (m, 3H), 7.18–7.12 (m, 1H), 6.91–6.86 (m, 1H), 6.79 (d, J = 7.7 Hz, 1H), 6.67 (dd, J = 1.9,
9.8 Hz, 1H), 5.97 (s, 1H), 5.85 (q, J = 6.6 Hz, 1H), 2.19 (s, 3H), 1.52 (d, J = 6.6 Hz, 3H).

(S)-1-(3-Fluorophenyl)ethyl (R)-2-acetoxy-2-phenylacetate ((S)-10): Yield: 84%; 1H-NMR (400 MHz, CDCl3)
δ 7.50–7.47 (m, 2H), 7.44–7.40 (m, 3H), 7.33–7.26 (m, 1H), 7.09 (d, J = 7.7 Hz, 1H ), 7.04–6.96 (m, 2H),
5.96 (s, 1H), 5.88 (q, J = 6.6 Hz, 1H), 2.19 (s, 3H), 1.41 (d, J = 6.6 Hz, 3H).

(R)-1-(4-Fluorophenyl)ethyl (R)-2-acetoxy-2-phenylacetate ((R)-11): Yield: 68%; 1H-NMR (400 MHz, CDCl3)
δ 7.39–7.31 (m, 5H), 6.99–6.95 (m, 2H), 6.89–6.83 (m, 2H), 5.94 (s, 1H), 5.84 (q, J = 6.6 Hz, 1H), 2.17 (s, 3H),
1.52 (d, J = 6.6 Hz, 3H).

(S)-1-(4-Fluorophenyl)ethyl (R)-2-acetoxy-2-phenylacetate ((S)-11): Yield: 84%; 1H-NMR (400 MHz,
CDCl3) δ 7.48–7.45 (m, 2H), 7.41–7.37 (m, 3H), 7.31–7.25 (m, 2H), 7.05–7.00 (m, 2H), 5.93 (s, 1H),
5.87 (q, J = 6.6 Hz, 1H), 2.18 (s, 3H), 1.40 (d, J = 6.6 Hz, 3H).

3.3.4. General Procedure for Preparing Compounds (R,R)- or (S,R)-4d, and 4e

The title compounds (R,R) or (S,R)-4d and 4e were prepared from (R)-(+)-5d/5e and (S)-(+)-5d/5e
following the same procedures described for the synthesis of 4d and 4e.

(R)-2-Chloro-5-fluoro-4-(1-(3-fluorophenyl)ethoxy)pyrimidine ((R)-6d): Yield: 72%; 1H-NMR (400 MHz,
CDCl3) δ 8.19 (d, J = 2.2 Hz, 1H), 7.37–7.31 (m, 1H), 7.23 (d, J = 7.7 Hz, 1H), 7.18–7.15 (m, 1H), 7.03–6.99
(m, 1H), 6.30 (q, J = 6.5 Hz, 1H), 1.71 (d, J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.9 (d,
1J = 245 Hz), 158.6 (d, 2J = 11 Hz), 153.2 (d, 4J = 5 Hz), 146.0 (d, 1J = 263 Hz), 144.4 (d, 2J = 20 Hz), 142.9
(d, 3J = 7 Hz), 130.3 (d, 3J = 8 Hz), 122.0 (d, 4J = 3 Hz), 115.3 (d, 2J = 21 Hz), 113.3 (d, 2J = 22 Hz), 75.6 (d,
4J = 2 Hz), 22.2; Optical rotation for (R)-6d: [α] 27

D +178.3◦ (c 0.7, CHCl3).

(S)-2-Chloro-5-fluoro-4-(1-(3-fluorophenyl)ethoxy)pyrimidine ((S)-6d): Yield: 55%; 1H-NMR (400 MHz,
CDCl3) δ 8.18 (d, J = 2.2 Hz, 1H), 7.36–7.31 (m, 1H), 7.22 (d, J = 7.7 Hz, 1H), 7.18–7.14 (m, 1H), 7.03–6.98
(m, 1H), 6.30 (q, J = 6.5 Hz, 1H), 1.71 (d, J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.9 (d,
1J = 245 Hz), 158.6 (d, 2J = 11 Hz), 153.2 (d, 4J = 4 Hz), 146.0 (d, 1J = 262 Hz), 144.4 (d, 2J = 20 Hz), 142.9
(d, 3J = 7 Hz), 130.3 (d, 3J = 8 Hz), 122.0 (d, 4J = 3 Hz), 115.3 (d, 2J = 21 Hz), 113.3 (d, 2J = 22 Hz), 75.7 (d,
4J = 1 Hz), 22.2; Optical rotation for (S)-6d: [α] 28

D −182.7◦ (c 0.7, CHCl3).

(R)-2-Chloro-5-fluoro-4-(1-(4-fluorophenyl)ethoxy)pyrimidine ((R)-6e): Yield: 68%; 1H-NMR (400 MHz,
CDCl3) δ 8.16 (d, J = 2.2 Hz, 1H), 7.47–7.42 (m, 2H), 7.08–7.02 (m, 2H), 6.30 (q, J = 6.6 Hz, 1H), 1.71 (d,
J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.6 (d, 1J = 245 Hz), 158.7 (d, 2J = 11 Hz), 153.1 (d,
4J = 4 Hz), 146.0 (d, 1J = 263 Hz), 144.3 (d, 2J = 20 Hz), 136.1 (d, 4J = 4 Hz), 128.4 (d, 3J = 9 Hz), 115.6 (d,
2J = 22 Hz), 75.9, 22.2; Optical rotation for (R)-6e: [α] 27

D +197.3◦ (c 0.8, CHCl3).

(S)-2-Chloro-5-fluoro-4-(1-(4-fluorophenyl)ethoxy)pyrimidine ((S)-6e): Yield: 65%; 1H-NMR (400 MHz,
CDCl3) δ 8.16 (d, J = 2.2 Hz, 1H), 7.47–7.42 (m, 2H), 7.08–7.02 (m, 2H), 6.30 (q, J = 6.6 Hz, 1H), 1.71 (d,
J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.6 (d, 1J = 245 Hz), 158.7 (d, 2J = 11 Hz), 153.1 (d,
4J = 4 Hz), 146.0 (d, 1J = 263 Hz), 144.3 (d, 2J = 20 Hz), 136.1 (d, 4J = 3 Hz), 128.4 (d, 3J = 8 Hz), 115.7 (d,
2J = 21 Hz), 75.9, 22.2; Optical rotation for (S)-6e: [α] 27

D −204.7◦ (c 0.8, CHCl3).

tert-Butyl-(R)-4-(5-fluoro-4-((R)-1-(3-fluorophenyl)ethoxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate
((R,R)-7d): Yield: 50%; 1H-NMR (400 MHz, CDCl3) δ 7.94 (d, J = 2.8 Hz, 1H), 7.31–7.26 (m, 1H), 7.14
(d, J = 7.7 Hz, 1H), 7.07 (d, J = 9.6 Hz, 1H) 6.96–6.91 (m, 1H), 6.03 (q, J = 6.6 Hz, 1H), 4.58 (bs, 1H),
4.18–3.86 (m, 3H), 3.08–3.01 (m, 2H), 2.84–2.74 (m, 1H), 1.66 (d, J = 6.6 Hz, 3H), 1.47 (s, 9H), 0.91 (d,
J = 6.5 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.9 (d, 1J = 245 Hz), 157.1 (d, 2J = 11 Hz), 156.7 (d,
4J = 2 Hz), 155.2, 145.1 (d, 3J = 7 Hz), 143.4 (d, 2J = 20 Hz), 140.0 (d, 1J = 246 Hz), 130.1 (d, 3J = 8 Hz),
121.2 (d, 4J = 3 Hz), 114.5 (d, 2J = 21 Hz), 112.7 (d, 2J = 22 Hz), 79.8, 73.9, 48.4, 47.1, 43.9, 42.8, 38.7, 28.4,
23.0, 13.9; Optical rotation for (R,R)-7d: [α] 27

D +105.0◦ (c 0.4, CHCl3).
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tert-Butyl-(R)-4-(5-fluoro-4-((S)-1-(3-fluorophenyl)ethoxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate
((S,R)-7d): Yield: 57%; 1H-NMR (400 MHz, CDCl3) δ 7.95 (d, J = 2.9 Hz, 1H), 7.32–7.26 (m, 1H), 7.16 (d,
J = 7.7 Hz, 1H), 7.11–7.09 (m, 1H) 6.97–6.93 (m, 1H), 6.06 (q, J = 6.6 Hz, 1H), 4.55 (bs, 1H), 4.22–3.84
(m, 3H), 3.07–2.87 (m, 3H), 1.66 (d, J = 6.6 Hz, 3H), 1.47 (s, 9H), 1.13 (d, J = 6.6 Hz, 3H). 13C-NMR
(100 MHz, CDCl3) δ 163.0 (d, 1J = 245 Hz), 157.1 (d, 2J = 11 Hz), 156.7 (d, 4J = 2 Hz), 155.2, 144.9 (d,
3J = 7 Hz), 143.5 (d, 2J = 19 Hz), 140.0 (d, 1J = 247 Hz), 130.0 (d, 3J = 8 Hz), 121.4 (d, 4J = 3 Hz), 114.6 (d,
2J = 21 Hz), 112.8 (d, 2J = 22 Hz), 79.8, 73.8, 48.4, 47.1, 43.9, 42.9, 38.7, 28.4, 22.8, 14.0; Optical rotation
for (S,R)-7d: [α] 27

D –215.3◦ (c 0.7, CHCl3).

tert-Butyl-(R)-4-(5-fluoro-4-((R)-1-(4-fluorophenyl)ethoxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate
((R,R)-7e): Yield: 44%; 1H-NMR (400 MHz, CDCl3) δ 7.93 (d, J = 2.8 Hz, 1H), 7.39–7.33 (m, 2H),
7.04–6.98 (m, 2H), 6.07 (d, J = 6.6 Hz, 1H), 4.60 (bs, 1H), 4.23–3.86 (m, 3H), 3.09–2.77 (m, 3H), 1.65
(d, J = 6.6 Hz, 3H) 1.46 (s, 9H), 0.95 (d, J = 6.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.2 (d,
1J = 245 Hz), 157.2 (d, 2J = 11 Hz), 156.7 (d, 4J = 2 Hz), 155.2, 143.3 (d, 2J = 19 Hz), 140.0 (d, 1J = 247 Hz),
138.1 (d, 4J = 3 Hz), 127.4 (d, 3J = 8 Hz), 115.4 (d, 2J = 21 Hz), 79.8, 73.9, 73.9, 48.4, 47.1, 43.7, 42.8, 38.7,
28.4, 23.0, 14.0; Optical rotation for (R,R)-7e: [α]28

D +77.9◦ (c 0.4, CHCl3).

tert-Butyl-(R)-4-(5-fluoro-4-((S)-1-(4-fluorophenyl)ethoxy)pyrimidin-2-yl)-3-methylpiperazine-1-carboxylate
((S,R)-7e): Yield: 52%; 1H-NMR (400 MHz, CDCl3) δ 7.93 (d, J = 2.8 Hz, 1H), 7.39–7.32 (m, 2H),
7.04–6.95 (m, 2H), 6.09 (d, J = 6.5 Hz, 1H), 4.59 (bs, 1H), 4.24–3.85 (m, 3H), 3.09–2.88 (m, 3H), 1.65
(d, J = 6.6 Hz, 3H) 1.47 (s, 9H), 1.13 (d, J = 6.4 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.3 (d,
1J = 245 Hz), 157.2 (d, 2J = 11 Hz), 156.7 (d, 4J = 3 Hz), 155.2, 143.4 (d, 2J = 19 Hz), 140.0 (d, 1J = 247 Hz),
137.9 (d, 4J = 3 Hz), 127.7 (d, 3J = 8 Hz), 115.4 (d, 2J = 22 Hz), 79.9, 73.8, 48.4, 47.2, 43.7, 42.9, 38.7, 28.4,
22.8, 14.0; Optical rotation for (S,R)-7e: [α] 28

D −212.4◦ (c 0.5, CHCl3).

5-Fluoro-4-((R)-1-(3-fluorophenyl)ethoxy)-2-((R)-2-methylpiperazin-1-yl)pyrimidine ((R,R)-4d): Methods A:
Yield: 67%; 1H-NMR (400 MHz, CDCl3) δ 7.99 (d, J = 2.4 Hz, 1H), 7.32–7.26 (m, 1H), 7.13 (d, J = 7.6 Hz,
1H), 7.06 (d, J = 9.5 Hz, 1H), 6.97–6.93 (m, 1H), 5.99 (q, J = 6.5 Hz, 1H), 4.88 (bs, 1H), 4.47 (d, J = 13.7 Hz,
1H), 3.41–3.14 (m, 4H), 2.84 (bs, 1H), 1.68 (d, J = 6.6 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H). 13C-NMR (100 MHz,
CDCl3) δ 163.0 (d, 1J = 245 Hz), 157.6 (d, 2J = 11 Hz), 145.2 (d, 4J = 2 Hz), 144.8 (d, 3J = 7 Hz), 143.1 (d,
2J = 20 Hz), 140.6 (d, 1J = 246 Hz), 130.3 (d, 3J = 8 Hz), 121.0 (d, 4J = 3 Hz), 114.7 (d, 2J = 21 Hz), 112.5
(d, 2J = 23 Hz), 74.7, 47.2, 44.4, 43.1, 35.5, 23.0, 13.2; HRMS-ESI (m/z): [M + H]+ calcd for C17H21F2N4O:
335.1678; found: 335.1681; HPLC purity, 9.4 min, 98.4%; Optical rotation for (R,R)-4d: [α]26

D +118.2◦

(c 0.3, MeOH).

5-Fluoro-4-((S)-1-(3-fluorophenyl)ethoxy)-2-((R)-2-methylpiperazin-1-yl)pyrimidine ((S,R)-4d): Methods A:
Yield: 71%; 1H-NMR (400 MHz, CDCl3) δ 7.99 (d, J = 2.4 Hz, 1H), 7.34–7.26 (m, 1H), 7.15 (d, J = 7.7 Hz,
1H), 7.09 (d, J = 9.6 Hz, 1H), 7.00–6.95 (m, 1H), 6.03 (q, J = 6.5 Hz, 1H), 4.88–4.85 (m, 1H), 4.53 (d,
J = 13.6 Hz, 1H), 3.43 (d, J = 12.1 Hz, 1H), 3.34–2.97 (m, 4H), 1.68 (d, J = 6.6 Hz, 3H), 1.36 (d, J = 7.1 Hz,
3H). 13C-NMR (100 MHz, CDCl3) δ 163.0 (d, 1J = 245 Hz), 157.7 (d, 2J = 11 Hz), 155.5 (d, 4J = 3 Hz), 144.5
(d, 3J = 7 Hz), 143.1 (d, 2J = 21 Hz), 140.5 (d, 1J = 249 Hz), 130.2 (d, 3J = 8 Hz), 121.2 (d, 4J = 3 Hz), 114.8
(d, 2J = 21 Hz), 112.7 (d, 2J = 22 Hz), 74.6, 47.0, 44.4, 43.2, 35.7, 22.3, 13.5; HRMS-ESI (m/z): [M + H]+

calcd for C17H21F2N4O: 335.1678; found: 335.1682; HPLC purity, 7.3 min, 97.4%; Optical rotation for
(S,R)-4d: [α]27

D −228.6◦ (c 0.4, MeOH).

5-Fluoro-4-((R)-1-(4-fluorophenyl)ethoxy)-2-((R)-2-methylpiperazin-1-yl)pyrimidine ((R,R)-4e): Methods B:
Yield: 82%; 1H-NMR (400 MHz, CDCl3) δ 7.94 (d, J = 2.8 Hz, 1H), 7.40–7.34 (m, 2H), 7.04–6.99 (m, 2H),
6.08 (q, J = 6.6 Hz, 1H), 4.60–4.55 (m, 1H), 4.18 (d, J = 3.5 Hz, 1H), 3.06–2.86 (m, 4H), 2.72–2.65 (m, 1H),
2.54 (bs, 1H), 1.65 (d, J = 6.6 Hz, 1H), 1.04 (d, J = 6.8 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 162.2
(d, 1J = 244 Hz), 157.2 (d, 2J = 11 Hz), 156.9 (d, 4J = 2 Hz), 143.3 (d, 2J = 19 Hz), 139.9 (d, 1J = 246 Hz),
138.2 (d, 4J = 3 Hz), 127.5 (d, 3J = 8 Hz), 115.4 (d, 2J = 21 Hz), 73.8, 50.3, 16.6, 45.8, 39.5, 23.0, 13.6;
HRMS-ESI (m/z): [M + H]+ calcd for C17H21F2N4O: 335.1678; found: 335.1680; HPLC purity, 7.5 min,
95.7%; Optical rotation for (R,R)-4e: [α]28

D +132.0◦ (c 0.3, MeOH).
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5-Fluoro-4-((S)-1-(4-fluorophenyl)ethoxy)-2-((R)-2-methylpiperazin-1-yl)pyrimidine ((S,R)-4e): Methods B:
Yield: 81%; 1H-NMR (400 MHz, CDCl3) δ 7.95 (d, J = 2.9 Hz, 1H), 7.40–7.37 (m, 2H), 7.05–7.00 (m,
2H), 6.11 (q, J = 6.6 Hz, 1H), 4.61–4.57 (m, 1H), 4.27–4.23 (m, 1H), 3.09–2.86 (m, 4H), 2.78–2.71 (m, 1H),
2.59 (bs, 1H), 1.66 (d, J = 6.6 Hz, 1H), 1.23 (d, J = 6.8 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 162.3
(d, 1J = 244 Hz), 157.2 (d, 2J = 11 Hz), 156.9 (d, 4J = 2 Hz), 143.4 (d, 2J = 20 Hz), 140.0 (d, 1J = 246 Hz),
137.9 (d, 4J = 3 Hz), 127.7 (d, 3J = 8 Hz), 115.4 (d, 2J = 21 Hz), 73.7, 50.2, 46.5, 45.8, 39.5, 22.7, 13.6;
HRMS-ESI (m/z): [M + H]+ calcd for C17H21F2N4O: 335.1678; found: 335.1678; HPLC purity, 7.4 min,
97.7%; Optical rotation for (S,R)-4e: [α]28

D –226.5◦ (c 0.5, MeOH).

3.4. Serotonin Receptor Binding Affinity Assays

Eleven dilutions (5 × assay concentration) of the test and reference compounds (Table S1) were
prepared in standard binding buffer (50 mM tris(hydroxymethyl)-aminomethane-HCl (Tris-HCl),
10 mM MgCl2, 1 mM ethylenediaminetetraacetate (EDTA), pH 7.4) by serial dilution: 0.05 nM, 0.5 nM,
1.5 nM, 5 nM, 15 nM, 50 nM, 150 nM, 500 nM, 1.5 µM, 5 µM, and 50 µM. The radioligand (Table S3)
was diluted to five times the assay concentration in standard binding buffer. Aliquots (50 mL) of the
radioligand were dispensed into the wells of a 96-well plate containing 100 mL of standard binding
buffer. Triplicate aliquots (50 mL) of the test and reference compound dilutions were then added.
Finally, crude membrane fractions (50 mL) of cells (HEK293 or CHO) expressing human recombinant
receptors were dispensed into each well. A total of 250 mL of the reaction mixtures was incubated at
room temperature and shielded from light for 1.5 h, and was then harvested by rapid filtration onto
Whatman GF/B glass fiber filters presoaked with 0.3% polyethyleneimine, by using a 96-well Brandel
harvester (Gaithersburg, MD, USA).

Four rapid washes were performed with chilled standard binding buffer (500 mL) to decrease
nonspecific binding. Filters were placed in 6 mL scintillation tubes and allowed to dry overnight.
The next day, 4-mL of EcoScint scintillation cocktail (National Diagnostics) was added to each tube.
The tubes were capped, labeled, and counted by liquid scintillation counting. The filter mats were
dried, and the scintillant was melted onto the filters, then the radioactivity retained on the filters was
counted in a Microbeta scintillation counter. The IC50 values were obtained by using the Prism 4.0
program (GraphPad Software, La Jolla, CA, USA) and were converted into Ki values. Each compound
was tested at least in triplicate.

4. Conclusions

In summary, we have synthesized a series of pyrimidine derivatives 4a–i and evaluated
their binding affinities towards 5-HT2C receptors. Our initial biological study indicated that
2-amino-4-alkoxypyrimidines 4b, 4d, and 4e, possessing a short carbon chain between the phenyl
group and pyrimidine, have excellent 5-HT2C binding affinities, which are comparable to that of
the reported pyrimidine analogue 3. In order to improve the selectivity for other 5-HT2 receptor
subtypes, the most potent compounds 4d and 4e were selected and their diastereomeric isomers were
synthesized as optically pure forms. For this purpose, optically active secondary alcohols 5d and 5e
were also prepared by an enzymatic kinetic resolution. (R,R)-4d and 4e displayed excellent 5-HT2C

binding affinities with less selectivity towards 5-HT2A and 5-HT2B, whereas (S,R)-4d and 4e exhibited
low potencies for 5-HT2A and 5-HT2B with a slight loss of the 5-HT2C binding affinity. These results
suggest that the pyrimidine analogue (R,R)-4e is a potential lead compound for identifying a 5-HT2C

selective modulator.

Supplementary Materials: The supplementary materials are available online.
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