Supplementary Information

Identification of optically active pyrimidine derivatives as selective 5-HT_{2C} modulators

Juhyeon Kim^{1,2}, Hanbyeol Jo³, Hyunseung Lee³, Hyunah Choo^{1,4}, Hak Joong Kim², Ae Nim Pae^{4,5}, Yong Seo Cho^{1,4,*} and Sun-Joon Min^{3,*}

¹ Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), 5 Hwarangno 14gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
² Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
³ Department of Chemical & Molecular Engineering/Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
⁴ Department of Biological Chemistry, Korea University of Science and Technology (UST), 217
Gajungro, Yuseong-gu, Daejeon, 34113, Republic of Korea
⁵ Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul
02792, Republic of Korea
Email: sjmin@hanyang.ac.kr;ys4049@kist.re.kr

Table of Contents

1. Determination of optical purities of compounds $(R)/(S)$ -5d and 5e	S2
2. Radioligands and reference compounds for binding assay	S 4
3. Binding affinity of $(R,R)/(S,R)$ -4d and 4e against 5-HT receptor subtypes	S5
4. NMR spectral data of pyrimidine derivatives 4a-4i	S 6

1. Determination of optical purities of compounds (R)/(S)-5d and 5e

¹H NMR Spectrum of Compound (*S*)-10 (from (*S*)-5d) (400 MHz)

2. Radioligands and reference compounds for binding assay

Receptor subtype	Radioligand	Reference compound			
1A	[³ H]8-OH-DPAT	Methysergide			
1B	[³ H]GR125743	Ergotamine			
1D	[³ H]GR125743	Ergotamine			
1E	[³ H]5-HT	5-HT			
2A	[³ H]Ketanserin	Chlorpromazine			
2B	[³ H]LSD	5-HT			
2C	[³ H]Mesulergine	Chlorpromazine			
3	[³ H]LY278584	LY278584			
5A	[³ H]LSD	Ergotamine			
6	[³ H]LSD	Chlorpromazine			
7	[³ H]LSD	Chlorpromazine			

Table S1. A list of 5-HT receptor radioligands and reference compounds for binding assay.

3. Binding affinity of (R,R)/(S,R)-4d and 4e against 5-HT receptor subtypes

compd.	5-HT subtypes	1A	1B	1D	1E	2A	2B	2C	3	5A	6	7
(<i>R</i> , <i>R</i>)-4d	% binding at 10 μM	78.0	27.7	-6.8	67.5	93.3	100.2	98.5	89.4	28.1	95.7	84.4
	Ki (nM)	98.0	_b	_b	1161.0	222.0	2.6	1.2	242.0	_b	57.0	444.0
(<i>S</i> , <i>R</i>)- 4d	% binding at 10 μM	67.7	3.0	10.3	29.5	82.4	95.2	97.7	78.6	22.8	91.6	56.9
	Ki (nM)	806.0	_b	_b	_b	475.0	67.0	14.0	501.0	_b	70.0	766.0
(<i>R</i> , <i>R</i>)- 4e	% binding at 10 μM	10.0	6.4	-7.7	42.7	0.9	99.6	94.2	87.8	26.7	97.4	87.6
	Ki (nM)	_b	_b	_b	_b	_b	19.0	4.0	242.0	_b	17.0	236.0
(<i>S</i> , <i>R</i>)- 4 e	% binding at 10 μM	67.3	17.9	40.4	_c	64.8	95.3	97.8	70.1	5.2	86.1	64.8
	Ki (nM)	1117.0	_b	_b	_b	1024.0	128.0	23.0	1000.0	_b	116.0	946.0
3 (ref)	% binding at 10 μM	89.0	55.1	78.3	65.6	95.6	97.4	98.2	75.0	37.4	93.8	94.7
	<i>K</i> i (nM)	353.0	1780.0	542.0	1160.0	128.0	7.9	0.7	241.0	_b	43.0	84.0

Table S2. Binding affinity evaluation of compounds (R,R)/(S,R)-4d and 4e against 5-HT receptor subtypes^a

^{*a*} 5-HT receptor binding was determined by competitive binding assay using radioligands and reference compounds in Table S1. ^{*b*} Not determined due to low % binding. ^{*c*} Not determined

4. NMR spectral data of pyrimidine derivatives 4a-4i and (R,R)/(S,R)-4d and 4e

¹³C NMR Spectrum of Compound **4a** (100 MHz)

¹³C NMR Spectrum of Compound **4b** (100 MHz)

S8

S9

¹³C NMR Spectrum of Compound **4e** (100 MHz)

¹³C NMR Spectrum of Compound **4g** (100 MHz)

¹³C NMR Spectrum of Compound **4i** (100 MHz)

¹³C NMR Spectrum of Compound (*S*,*R*)-**4d** (100 MHz)

 ^{13}C NMR Spectrum of Compound (*S*,*R*)-4e (100 MHz)