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Abstract: An oxidative ring opening reaction of the central ring C in the alkaloid Luotonin A
and two of its derivatives was found to occur upon heating with an excess amine and potassium
carbonate in dimethylsulfoxide (DMSO) solution in the presence of air oxygen. The structure of
the novel amide-type products was elucidated and a possible mechanism for this reaction is proposed.
Four of the new compounds show moderate in vitro anticancer activity towards human colon
adenocarcinoma cells.
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1. Introduction

In search of new anticancer agents, structural modifications of the alkaloid Luotonin A
(first isolated in 1997 [1]) have found considerable interest during the past two decades [2–12].
Like its more prominent (and more potent) naturally occurring relative, Camptothecin (CPT) [13–15],
Luotonin A can act as a topoisomerase 1 poison by stabilizing the DNA/Topo1 complex [2,16]. Due to
its aromatic E-ring (see Figure 1), Luotonin A is principally not associated with bladder toxicity which
is a specific adverse effect of CPT-derived drugs like Topotecan or Irinotecan with their labile lactone
structure as ring E [14]. On the other hand, the antineoplastic activity of the Luotonin A core structure
is markedly lower than that of CPT [16] and thus has stimulated efforts to improve topoisomerase 1
toxicity by various modifications of the lead structure.
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Figure 1. Structures of Luotonin A and Camptothecin (CPT). 

Several different strategies have been described for the total synthesis of Luotonin A and 
related compounds, as summarized in a review article [17]. Among the approaches aiming at 
variation of the substitution pattern of ring A, there have been some recent investigations of our 
group in which we made use of two orthogonal cycloaddition routes [18–20]: the first route is based 
on a pathway that was previously explored by Zhou et al. [21] for the synthesis of the parent 
compound and we found it to be well suited for the introduction of substituents into positions 2 or 4, 
whereas the second route offers a convenient access to 1- or 3-substituted congeners. Although a 

Figure 1. Structures of Luotonin A and Camptothecin (CPT).

Several different strategies have been described for the total synthesis of Luotonin A and related
compounds, as summarized in a review article [17]. Among the approaches aiming at variation of
the substitution pattern of ring A, there have been some recent investigations of our group in which
we made use of two orthogonal cycloaddition routes [18–20]: the first route is based on a pathway that
was previously explored by Zhou et al. [21] for the synthesis of the parent compound and we found
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it to be well suited for the introduction of substituents into positions 2 or 4, whereas the second
route offers a convenient access to 1- or 3-substituted congeners. Although a number of new
Luotonin A derivatives could be made available via these two routes directly, additional modifications
by replacement of existing substituents were envisaged in order to further extend our compound
library. In particular, nucleophilic substitution of a fluoro functionality with amines appeared quite
promising in view of the reported facile transformation of 8-fluoroquinolines into the corresponding
8-(di)alkylaminoquinolines via nucleophilic substitution [22,23]. Herein, we report on the synthesis
of a hitherto unknown 4-fluoro derivative of Luotonin A (containing the 8-fluoroquinoline motif)
and the observation of an unprecedented oxidative opening of ring C on attempted nucleophilic
substitution reactions with primary or secondary amines.

2. Results and Discussion

Among the four possible sites at ring A, position 4 (corresponding to position 8 of the quinoline
core) appeared most interesting for the envisaged nucleophilic replacement of a fluorine atom
with an amino substituent, as there have been several reports describing the preferential attack
of nitrogen nucleophiles at this position in various di- and trifluoroquinolines [24–27]. We therefore
commenced our investigations by preparing the hitherto unknown 4-fluoro derivative of Luotonin A
via the pathway depicted in Scheme 1, starting from the quinazolinonecarboxylic acid ester 1 [21,28].
Weinreb amidation [29] with 2-fluoroaniline/trimethylaluminium gave the N-arylamide 2 in good
yield, selective propargylation at the quinazoline N-3 afforded the key intermediate 3. On treatment
of the latter with bis(triphenyl)oxodiphosphonium triflate (Hendrickson’s reagent [30]) in dry
dichloromethane at room temperature, an intramolecular [4+2] cycloaddition smoothly afforded
the pentacyclic compound 4 in excellent overall yield.
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Scheme 1. Synthesis of the 4-fluoro derivative (4) of Luotonin A.

In order to achieve the desired nucleophilic fluorine substitution, we chose the conditions
that had been described in the patent literature [22,23] for the reaction of 8-fluoroquinoline
derivatives with various amines. Thus, the fluoro compound 4 was heated to 100 ◦C with an excess
of pyrrolidine in dimethylsulfoxide (DMSO) solution in the presence of potassium carbonate.
As indicated by TLC, the starting material was completely consumed after 24 h and a single new
spot was observed. After evaporation of volatiles and extractive work-up, the crude product was
purified by medium-pressure liquid chromatography to afford the new compound in 49% yield as
red-coloured crystals. 1H-NMR-Spectroscopic characterisation surprisingly revealed the presence
of two pyrrolidinyl residues in the molecule and the absence of the methylene unit that is part
of ring C in the Luotonin A skeleton. On the other hand, the 13C-NMR spectrum showed
an additional carbonyl resonance (besides the quinazolinone C=O group at 161.4 ppm) at lower
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field (168.6 ppm). Mass spectrometry (EI-MS (electron-impact ionization) and ESI-TOF (electrospray
ionization, time-of-flight) high-resolution MS) indicated a molecular formula of C26H25N5O2. Based on
the combined spectroscopic evidence, it can be concluded that (a) the expected nucleophilic substitution
of the fluorine atom with pyrrolidine has indeed taken place and (b) the C-ring of the pentacyclic
scaffold has undergone an oxidative ring opening, involving another pyrrolidine unit that is now
attached to the quinoline core via an amide function (structure 5, Scheme 2).

Scheme 2. Reaction of the fluoro compound 4 with pyrrolidine: substitution and ring C opening.

To explore the scope of this unexpected reaction, the fluoro compound 4 was reacted with
other amines under the same conditions (100 ◦C, DMSO as solvent, and K2CO3 as a base).
Interestingly, it turned out that only pyrrolidine is reactive enough to effect the fluorine substitution
under these conditions, whereas piperidine, morpholine, and n-butylamine left the fluoro function
untouched, but all led to the formation of ring-opened products with a (tertiary or secondary)
carboxamide group (compounds 6–8, Scheme 3). An identical reaction behavior was found
with the alkaloid Luotonin A itself (compound 9), affording the amides 10–12 on treatment with
morpholine, n-butylamine, or N,N-dimethylethylenediamine, respectively. Also with the electron-rich
1,3-dimethoxy derivative [18] of Luotonin A (compound 13), an analogous oxidative ring C opening
was observed, furnishing the morpholide 14, albeit in moderate yield. All of the isolated carboxamides
share some characteristic NMR properties such as the carbonyl resonance in the 13C-NMR spectra at
168–169 ppm (see supplementary material). The position of the secondary or tertiary amide function
at C-3 of the quinoline nucleus is evidenced by HMBC (Heteronuclear Multiple Bond Correlation)
crosspeaks between this carbonyl signal and the H-4 resonance as well as the NCH2 protons in
the amide part. The spatial proximity between the latter two kinds of protons is further proven
by a corresponding crosspeak in the NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum.
Additionally based on HSQC (Heteronuclear Single-Quantum Correlation) and COSY (Correlation
Spectroscopy) experiments, all signals in the 1H- and 13C-NMR spectra could be assigned and are
in full agreement with the proposed structures. As with compound 5, the molecular formulae of all
new compounds were confirmed by [M + H]+ or [M + Na]+ peaks in the high-resolution ESI-TOF
mass spectra.

To gain more insight into this remarkable transformation, we varied the solvent and observed
essentially the same results when N,N-dimethylformamide (DMF) was used instead of DMSO.
However, with 1-propanol as a protic solvent, a complex reaction mixture was obtained from which no
defined product could be isolated. Thus, an aprotic dipolar solvent seems to be favorable in this context.
As neither the amine component, nor the inorganic base, nor the solvent have oxidative properties
to perform the observed oxidation of the benzylic CH2 group of ring C into an amide function,
we suspected atmospheric oxygen to play a crucial role in this process. Indeed, when Luotonin A
was heated to 100 ◦C with morpholine/K2CO3 in DMSO or DMF solution under argon atmosphere,
the starting material remained essentially unchanged after several hours [31], whereas a control
experiment in the presence of air oxygen showed an almost complete transformation into compound 10
after the same time span. A possible mechanism for this oxidative/nucleophilic ring opening is
formulated in Scheme 4: Presumably, the benzylic carbon undergoes a two-step oxidation sequence,
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involving attack of the amine after the first step and hydrolytic ring cleavage after the second step
(promoted by moisture in the solvent or during work-up). To the best of our knowledge, a comparable
reaction has not yet been reported for Luotonin A nor for the structurally related CPT.

Scheme 3. Ring opening reactions of compounds 4, 9 and 13 with various amines.
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(NuH = primary or secondary amine).

Although our initial aim, i.e., the synthesis of new A-ring-modified Luotonin A derivatives,
was not met, the obtained quinazolinyl-substituted quinoline-3-carboxamides represent interesting
and hitherto unknown molecular entities. Therefore, we briefly examined the new compounds for their
in vitro growth inhibitory activity towards SW480 human colon adenocarcinoma cells. Indeed, three
of the tested compounds (5, 6 and 7) showed moderate activity, slightly exceeding that of the natural
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lead compound, Luotonin A. Compounds 8, 11, 12 and 14 are clearly inferior and compound 10 is
approximately equipotent as compared to the reference (Table 1). At present, no valid conclusions can
be drawn with respect to structure-activity relationships and the mode of action.

Table 1. In vitro cell growth inhibition (%) of compounds 5–8, 10–12 and 14 towards SW480 cancer cells
at a fixed concentration of 40 µM (MTT viability assay [32]).

Compound Luotonin A 5 6 7 8 10 11 12 14

% Inhibition 19 ± 3 47 ± 3 54 ± 10 52 ± 7 no inhib. 22 ± 1 5 ± 4 3 ± 0 7 ± 9

3. Experimental

3.1. General

Melting points (uncorrected) were determined on a Kofler hot-stage microscope (Leica GmbH,
Wetzlar, Germany). 1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance III
400 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) at 400 MHz and 100 MHz,
respectively; chemical shifts (ppm) were referenced to residual amounts of undeuterated solvents.
Mass spectra (EI) were obtained on a Shimadzu QP5050A DI 50 instrument (Shimadzu Corp.,
Kyoto, Japan); high-resolution mass spectra (ESI-TOF) were recorded on a Bruker maXis HD
spectrometer (Bruker Daltonics GmbH, Bremen, Germany). Column chromatography was carried
out on Merck Kieselgel 60 (Merck, Darmstadt, Germany), 0.063–0.200 mm. Medium-pressure
liquid chromatography (MPLC) was performed on a Biotage Isolera One system (Biotage AB,
Uppsala, Sweden), using Biotage SNAP cartridges (KP-Sil 10 g). Thin layer chromatography was
done on Merck aluminium sheets pre-coated with Kieselgel 60 F254 (Merck, Darmstadt, Germany).
Microanalyses were performed at the Microanalytical Laboratory, Faculty of Chemistry, University of
Vienna. Ethyl 4-oxo-3,4-dihydroquinazoline-2-carboxylate [28] (1), Luotonin A (9) and its dimethoxy
derivative (13) were prepared according to literature procedures [18,21]. Amines were purified by
distillation prior to use, solvents (analytical grade) were used without further purification.

3.2. Procedures

N-(2-Fluorophenyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide (2). To a solution of 2-fluoroaniline
(0.889 g, 8 mmol) in dry 1,2-dichloroethane (20 mL) under argon was added drop wise a 2 M solution
of AlMe3 (4.0 mL, 8 mmol) in heptane. The mixture was stirred for 30 min at room temperature,
then the ester 1 (1.091 g, 5 mmol) was added in one portion, and the mixture was refluxed for 2 h.
After cooling to 0 ◦C, it was then quenched by slow addition of 2 N HCl (20 mL), followed by water
(80 mL). The mixture was exhaustively extracted with CH2Cl2 and the combined extracts were washed
with water and brine, dried over Na2SO4 and evaporated under reduced pressure. The residue was
recrystallized from EtOH to give 2 (1.202 g, 85%) as colorless needles, m.p. 216–217 ◦C. MS (EI,
70 eV) m/z = 283 (M+, 32%), 236 (18), 146 (91), 119 (100), 118 (18), 91 (15), 90 (31), 83 (12); 1H-NMR
(DMSO-d6) δ: 12.62 (br s, 1H, NH), 10.50 (br s, 1H, NH), 8.21 (dd, J = 8.0 Hz, 1.2 Hz, 1H, 5-H),
7.97–7.89 (m, 2H, 7-H, phenyl 6′-H), 7.87 (dd, J = 8.2 Hz, 0.9 Hz, 1H, 8-H), 7.65 (ddd, J = 8.2 Hz, 7.0 Hz,
1.3 Hz, 1H, 6-H), 7.41–7.23 (m, 3H, phenyl 3′-H, 4′-H, 5′-H); 13C-NMR (DMSO-d6) δ: 161.3, 158.0, 154.5
(d, JC–F = 246.9 Hz), 146.6, 145.6, 134.8, 128.3, 127.7, 126.9 (d, JC–F = 7.7 Hz), 126.2, 124.8, 124.7, 124.6,
122.8, 115.8 (d, JC–F = 19.4 Hz). Anal. calcd. for C15H10FN3O2·0.2 H2O: C, 62.80; H, 3.65; N, 14.65.
Found: C, 62.79; H, 3.46; N, 14.66. HRMS (ESI-TOF) m/z calcd. for C15H11FN3O2 ([M + H]+): 284.0830.
Found: 284.0827.

N-(2-Fluorophenyl)-4-oxo-3-(prop-2-yn-1-yl)-3,4-dihydroquinazoline-2-carboxamide (3). To a solution of
the anilide 2 (0.566 g, 2 mmol) in dry DMF (15 mL) were added K2CO3 (0.304 g, 2.2 mmol) and
propargyl bromide (0.327 g of an 80% solution in toluene, 2.2 mmol). The mixture was stirred at
room temperature for 24 h, then it was poured into water (100 mL) and it was extracted with CH2Cl2
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(3 × 100 mL). The combined extracts were washed with water and brine, dried over Na2SO4 and
evaporated under reduced pressure. The residue was recrystallized from EtOH to give 3 (0.527 g,
89%) as colorless crystals, m.p. 153–154 ◦C. MS (EI, 70 eV) m/z = 321 (M+, 21%), 320 (72), 301 (27),
292 (52), 184 (25), 155 (54), 148 (40), 145 (36), 129 (100), 119 (96), 90 (64), 83 (47), 75 (42), 63 (41); 1H-NMR
(CDCl3) δ: 9.99 (s, 1H, NH), 8.52–8.41 (m, 1H, phenyl 6′-H), 8.37 (ddd, J = 8.0 Hz, 1.3 Hz, 0.6 Hz, 1H,
5-H), 7.89–7.79 (m, 2H, 7-H, 8-H), 7.62 (ddd, J = 8.2 Hz, 6.5 Hz, 1.9 Hz, 1H, 6-H), 7.24–7.14 (m, 3H,
phenyl 3′-H, 4′-H, 5′-H), 5.60 (d, J = 2.5 Hz, 2H, CH2), 2.27 (t, J = 2.5 Hz, 1H, acetylene-H); 13C-NMR
(CDCl3) δ: 161.4, 158.3, 153.1 (d, JC–F = 244.0 Hz), 145.0, 144.9, 135.1, 129.3, 128.2, 127.6, 125.7, 125.6 (d,
JC–F = 7.5 Hz), 124.9 (d, JC–F = 3.8 Hz), 121.9, 121.7, 115.3 (d, JC–F = 19.1 Hz), 78.9, 72.2, 33.8. Anal. calcd.
for C18H12FN3O2·0.2 H2O: C, 66.54; H, 3.85; N, 12.93. Found: C, 66.53; H, 3.64; N, 12.97. HRMS
(ESI-TOF) m/z calcd. for C18H13FN3O2 ([M + H]+): 322.0986. Found: 322.0988.

4-Fluoroquinolino[2′,3′:3,4]pyrrolo[2,1-b]quinazolin-11(13H)-one (4). To a solution of triphenylphosphine
oxide (0.835 g, 3 mmol) in dry CH2Cl2 (22 mL) was drop wise added trifluoromethanesulfonic anhydride
(0.25 mL, 1.5 mmol) at 0 ◦C under argon, and the mixture was stirred at the same temperature for
15 min. Then, compound 3 (0.321 g, 1 mmol) was added in one portion at 0 ◦C, and the mixture was
stirred for 1 h while slowly warming to room temperature. The reaction was quenched by addition of
10% aqueous NaHCO3 (15 mL). The phases were separated and the aqueous layer was exhaustively
extracted with CH2Cl2. The combined organic layers were washed with water and brine, dried over
Na2SO4 and evaporated. To remove excess triphenylphosphine oxide, the residue was subjected to
column chromatography, eluting first with CH2Cl2, then with CH2Cl2/ethyl acetate (19:1). The fraction
showing an intense blue fluorescence under UV366 was evaporated under reduced pressure and
the residue was recrystallized from EtOH to give 4 (0.244 g, 81%) as colorless needles, m.p. > 310 ◦C
(sublimation). MS (EI, 70 eV) m/z = 304 ([M + 1]+, 20%), 303 (M+, 100), 302 (36), 275 (13), 274 (10),
262 (8), 152 (12), 77 (7); 1H-NMR (CDCl3) δ: 8.49 (d, J = 1.0 Hz, 1H, 14-H), 8.42 (dd, J = 8.0 Hz, 1.1 Hz,
1H, 10-H), 8.13–8.08 (m, 1H, 7-H), 7.86 (ddd, J = 8.3 Hz, 7.2 Hz, 1.6 Hz, 1H, 8-H), 7.75 (d, J = 8.3 Hz, 1H,
1-H), 7.68–7.49 (m, 3H, 2-H, 3-H, 9-H), 5.37 (d, J = 0.8 Hz, 2H, CH2); 13C-NMR (CDCl3) δ: 160.7 (11-C),
158.8 (d, JC–F = 261.4 Hz, 4-C), 152.1 (5b-C), 151.7 (5a-C), 149.4 (6a-C), 140.1 (d, JC–F = 12.8 Hz, 4a-C),
134.8 (8-C), 131.6 (d, JC–F = 2.9 Hz, 14-C), 130.7 (13a-C), 130.3 (14a-C), 129.1 (7-C), 128.7 (d, JC–F = 7.8 Hz,
2-C), 127.8 (9-C), 126.6 (10-C), 123.7 (d, JC–F = 5.0 Hz, 1-C), 121.5 (10a-C), 114.9 (d, JC–F = 18.7 Hz, 3-C),
47.4 (13-C). Anal. calcd. for C18H10FN3O·0.15 H2O: C, 70.65; H, 3.39; N, 13.73. Found: C, 70.63; H, 3.30;
N, 13.74. HRMS (ESI-TOF) m/z calcd. for C18H11FN3O ([M + H]+): 304.0881. Found: 304.0882.

2-[8-(Pyrrolidin-1-yl)-3-(pyrrolidin-1-ylcarbonyl)quinolin-2-yl]quinazolin-4(3H)-one (5). To a solution/
suspension of the fluoro compound 4 (0.152 g, 0.5 mmol) and K2CO3 (0.069 g, 0.5 mmol) in DMSO
(15 mL) was added pyrrolidine (0.356 g, 5 mmol). The mixture was heated to 100 ◦C and the color
of the solution changed into dark red. Stirring was continued for 24 h at 100 ◦C, then the mixture
was cooled to room temperature and the volatile components were removed by Kugelrohr distillation
(10−1 mbar, 100 ◦C). The residue was taken up in CH2Cl2 (50 mL) and the solution was washed with
water and brine, then dried over Na2SO4 and evaporated under reduced pressure. The residue was
subjected to MPLC, eluting with CH2Cl2/MeOH (94:6) to afford compound 5 (108 mg, 49%) as red
crystals, m.p. 210–211 ◦C (CHCl3). MS (EI, 70 eV) m/z = 439 (M+, 9%), 368 (100), 340 (42), 339 (27),
311 (28), 299 (23), 273 (23); 1H-NMR (CDCl3) δ 10.68 (s, 1H, NH), 8.35 (dd, J = 7.9 Hz, 1.1 Hz, 1H,
quinazoline 5-H), 8.10 (s, 1H, quinoline 4-H), 7.80–7.73 (m, 1H, quinazoline 7-H), 7.67–7.60 (m, 1H,
quinazoline 8-H), 7.55–7.45 (m, 2H, quinazoline 6-H, quinoline 6-H), 7.15 (d, J = 7.2 Hz, 1H, quinoline
5-H), 6.84 (d, J = 7.8 Hz, 1H, quinoline 7-H), 4.00–3.80 (m, 6H, N-arylpyrrolidine 2-H, 2′-H, 5-H,
5′-H, N-acylpyrrolidine 2-H, 2′-H), 3.24 (t, J = 6.7 Hz, 2H, N-acylpyrrolidine 5-H, 5′-H), 2.17–2.10
(m, 4H, N-arylpyrrolidine 3-H, 3′-H, 4-H, 4′-H), 2.06 (quint, J = 6.9 Hz, 2H, N-acylpyrrolidine 3-H,
3′-H), 1.88 (quint, J = 6.8 Hz, 2H, N-acylpyrrolidine 4-H, 4′-H); 13C-NMR (CDCl3) δ: 168.6 (amide
C=O), 161.4 (quinazoline 4-C), 149.0 (quinazoline 8a-C), 148.7 (quinazoline 2-C), 146.6 (quinoline
8-C), 139.3 quinoline 2-C), 138.4 (quinoline 8a-C), 136.1 (quinoline 4-C), 134.7 (quinazoline 7-C),
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130.8 (quinoline 4a-C), 130.5 (quinoline 3-C), 130.3 (quinoline 6-C), 128.3 (quinazoline 8-C), 127.6
(quinazoline 6-C), 127.0 (quinazoline 5-C), 122.6 (quinazoline 4a-C), 114.9 (quinoline 5-C), 111.3
(quinoline 7-C), 52.6 (N-arylpyrrolidine 2-C, 5-C), 48.6 (N-acylpyrrolidine 5-C), 46.2 (N-acylpyrrolidine
2-C), 26.2 (N-arylpyrrolidine 3-C, 4-C), 26.1 (N-acylpyrrolidine 4-C), 25.0 (N-acylpyrrolidine 3-C).
HRMS (ESI-TOF) m/z calcd. for C26H26N5O2 ([M + H]+): 440.2081. Found: 440.2080.

2-[8-Fluoro-3-(piperidin-1-ylcarbonyl)quinolin-2-yl]quinazolin-4(3H)-one (6). A mixture of the fluoro
compound 4 (0.152 g, 0.5 mmol), K2CO3 (0.069 g, 0.5 mmol) and piperidine (0.426 g, 5 mmol) in
DMSO (15 mL) was stirred at 100 ◦C for 16 h, then it was cooled to room temperature and the volatile
components were removed by Kugelrohr distillation (10−1 mbar, 100 ◦C). The residue was taken up
in CH2Cl2 (50 mL) and the solution was washed with water and brine, then dried over Na2SO4 and
evaporated under reduced pressure. The residue was subjected to MPLC, eluting with CH2Cl2/MeOH
(97:3) to afford 6 (0.134 g, 67%) as dark-red crystals, m.p. 215–216 ◦C (CHCl3). MS (EI, 70 eV) m/z = 402
(M+, 2%), 318 (26), 289 (16), 171 (21), 119 (36), 84 (100), 69 (26), 64 (21), 57 (41), 56 (44), 55 (67); 1H-NMR
(CDCl3) δ 11.11 (s, 1H, NH), 8.38 (ddd, J = 7.9 Hz, 1.5 Hz, 0.5 Hz, 1H, quinazoline 5-H), 8.24 (d,
J = 1.4 Hz, 1H, quinoline 4-H), 7.81 (ddd, J = 8.4 Hz, 6.9 Hz, 1.5 Hz, 1H, quinazoline 7-H), 7.76 (ddd,
J = 8.2 Hz, 1.4 Hz, 0.5 Hz, 1H, quinazoline 8-H), 7.70 (dd, J = 8.2 Hz, 1.2 Hz, 1H, quinoline 5-H), 7.64
(td, J = 7.9 Hz, 4.7 Hz, 1H, quinoline 6-H), 7.59–7.49 (m, 2H, quinazoline 6-H, quinoline 7-H), 4.44–4.27
(m, 1H, piperidine 2-H), 3.50 (ddd, J = 13.3 Hz, 9.8 Hz, 3.6 Hz, 1H, piperidine 2′-H), 3.32–3.22 (m, 1H,
piperidine 6-H), 3.12 (ddd, J = 13.1 Hz, 9.6 Hz, 3.4 Hz, 1H, piperidine 6′-H), 2.01–1.87 (m, 1H, piperidine
3-H), 1.84–1.69 (m, 2H, piperidine 3′-H, 4-H), 1.62–1.50 (m, 2H, piperidine 4′-H, 5-H), 1.48–1.41 (m,
1H, piperidine 5′-H); 13C-NMR (CDCl3) δ: 168.2 (amide C=O), 161.4, (quinazoline 4-C), 158.1 (d,
JC–F = 261.3 Hz, quinoline 8-C), 148.6 (quinazoline 8a-C), 147.9 (quinazoline 2-C), 144.7 (quinoline 2-C),
136.8 (d, JC–F = 12.4 Hz, quinoline 8a-C), 136.0 (d, JC–F = 2.9 Hz, quinoline 4-C), 134.7 (quinazoline 7-C),
131.4 (quinoline 3-C), 130.0 (quinoline 4a-C), 129.3 (d, JC–F = 7.8 Hz, quinoline 6-C), 128.5 (quinazoline
8-C), 128.2 (quinazoline 6-C), 127.1 (quinazoline 5-C), 123.4 (d, JC–F = 5.0 Hz, quinoline 5-C), 123.0
(quinazoline 4a-C), 115.3 (d, JC–F = 18.3 Hz, quinoline 7-C), 48.2 (piperidine 6-C), 43.0 (piperidine 2-C),
25.8 (piperidine 5-C), 25.4 (piperidine 3-C), 24.7 (piperidine 4-C). HRMS (ESI-TOF) m/z calcd. for
C23H20FN4O2 ([M + H]+) 403.1563. Found 403.1563.

2-[8-Fluoro-3-(morpholin-4-ylcarbonyl)quinolin-2-yl]quinazolin-4(3H)-one (7). A mixture of the fluoro
compound 4 (0.152 g, 0.5 mmol), K2CO3 (0.069 g, 0.5 mmol) and morpholine (0.436 g, 5 mmol) in
DMSO (15 mL) was stirred at 100 ◦C for 16 h, then it was cooled to room temperature and the volatile
components were removed by Kugelrohr distillation (10−1 mbar, 100 ◦C). The residue was taken up
in CH2Cl2 (50 mL) and the solution was washed with water and brine, then dried over Na2SO4 and
evaporated under reduced pressure. The residue was subjected to column chromatography, eluting
with CH2Cl2/MeOH (97:3) to afford 7 (0.067 g, 33%) as yellow crystals, m.p. > 265 ◦C (sublimation;
CHCl3). MS (EI, 70 eV) m/z = 405 ([M + 1]+, 2%), 404 (M+, 8), 319 (85), 318 (100), 146 (20), 119 (43),
57 (22), 56 (23); 1H-NMR (CDCl3) δ 11.10 (s, 1H, NH), 8.41–8.36 (m, 1H, quinazoline 5-H), 8.28 (d,
J = 1.4 Hz, 1H, quinoline 4-H), 7.82 (ddd, J = 8.4 Hz, 7.0 Hz, 1.5 Hz, 1H, quinazoline 7-H), 7.77 (ddd,
J = 8.2 Hz, 1.4 Hz, 0.6 Hz, 1H, quinazoline 8-H), 7.72 (dd, J = 8.3 Hz, 1.3 Hz, 1H, quinoline 5-H),
7.66 (td, J = 7.9 Hz, 4.6 Hz, 1H, quinoline 6-H), 7.61–7.56 (m, 1H, quinazoline 6-H), 7.56–7.51 (m,
1H, quinoline 7-H), 4.29 (dt, J = 13.0 Hz, 3.0 Hz, 1H, morpholine 5-H), 4.11 (dt, J = 11.7 Hz, 3.6 Hz,
1H, morpholine 6-H), 3.81 (ddd, J = 11.7 Hz, 9.3 Hz, 2.9 Hz, 1H, morpholine 6′-H), 3.74–3.64 (m, 2H,
morpholine 2-H, 5′-H), 3.55 (ddd, J = 11.6 Hz, 9.0 Hz, 3.1 Hz, 1H, morpholine 2′-H), 3.38–3.27 (m, 1H,
morpholine 3-H), 3.26–3.17 (m, 1H, morpholine 3′-H); 13C-NMR (CDCl3) δ: 168.8 (amide C=O), 161.3
(quinazoline 4-C), 158.0 (JC–F = 260.0 Hz, quinoline 8-C), 148.3 (quinazoline 8a-C), 147.8 (quinazoline
2-C), 144.7 (quinoline 2-C), 136.9 (JC–F = 12.5 Hz, quinoline 8a-C), 136.4 (JC–F = 2.8 Hz, quinoline 4-C),
134.9 (quinazoline 7-C), 130.2 (quinoline 3-C), 129.8 (quinoline 4a-C), 129.6 (JC–F = 7.9 Hz, quinoline
6-C), 128.5 (quinazoline 8-C), 128.4 (quinazoline 6-C), 127.1 (quinazoline 5-C), 123.5 (JC–F = 4.9 Hz,
quinoline 5-C), 122.9 (quinazoline 4a-C), 115.6 (JC–F = 18.4 Hz, quinoline 7-C), 66.6 (morpholine 2-C),
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66.2 (morpholine 6-C), 47.2 (morpholine 3-C), 42.6 (morpholine 5-C). HRMS (ESI-TOF) m/z calcd. for
C22H18FN4O3 ([M + H]+) 405.1357. Found 405.1356.

N-Butyl-8-fluoro-2-(4-oxo-3,4-dihydroquinazolin-2-yl)quinoline-3-carboxamide (8). A mixture of the fluoro
compound 4 (0.100 g, 0.33 mmol), K2CO3 (0.046 g, 0.33 mmol) and n-butylamine (0.241 g, 3.3 mmol) in
DMSO (10 mL) was stirred at 100 ◦C for 16 h, then it was cooled to room temperature and the volatile
components were removed by Kugelrohr distillation (10−1 mbar, 100 ◦C). The residue was taken up
in CH2Cl2 (50 mL) and the solution was washed with water and brine, then dried over Na2SO4 and
evaporated under reduced pressure. The residue was subjected to MPLC, eluting with CH2Cl2/MeOH
(96:4) to afford 8 (0.078 g, 53%) as colorless crystals, m.p. 218–220 ◦C (methyl tert-butyl ether). MS
(EI, 70 eV) m/z = 391 ([M + 1]+, 2%), 390 (M+, 6), 319 (63), 318 (100), 291 (28), 171 (20), 146 (21),
119 (49), 92 (22), 90 (35); 1H-NMR (CDCl3) δ 10.94 (s, 1H, quinazolinone NH), 8.39 (d, J = 1.3 Hz, 1H,
quinoline 4-H), 8.22 (d, J = 7.9 Hz, 1H, quinazoline 5-H), 7.76–7.74 (m, 2H, quinazoline 7-H, 8-H),
7.68 (d, J = 7.6 Hz, 1H, quinoline 5-H), 7.62 (td, J = 7.9 Hz, 4.8 Hz, 1H, quinoline 6-H), 7.53–7.46 (m,
1H, quinoline 7-H), 7.46–7.38 (m, 1H, quinazoline 6-H), 6.54 (t, J = 5.6 Hz, 1H, amide NH), 3.71–3.58
(m, 2H, butyl 1-CH2), 1.76 (p, J = 7.5 Hz, 2H, butyl 2-CH2), 1.51 (dq, J = 14.6 Hz, 7.3 Hz, 2H, butyl
3-CH2), 1.01 (t, J = 7.4 Hz, 3H, butyl CH3); 13C-NMR (CDCl3) δ: 168.1 (amide C=O), 161.2 (quianzoline
4-C), 157.7 (d, JC–F = 261.3 Hz, quinoline 8-C), 148.2 (quinazoline 8a-C), 147.6 (quinazoline 2-C), 144.6
(quinoline 2-C), 137.6 (d, JC–F = 2.5 Hz, quinoline 4-C), 136.6 (d, JC–F = 12.4 Hz, quinoline 8a-C), 134.6
(quinazoline 7-C), 131.5 (quinoline 3-C), 129.4 (quinoline 4a-C), 129.2 (d, JC–F = 7.9 Hz, quinoline
6-C), 128.3 (quinazoline 8-C), 127.9 (quinazoline 6-C), 126.6 (quinazoline 5-C), 123.4 (d, JC–F = 4.8 Hz,
quinoline 5-C), 122.4 (quinazoline 4a-C), 115.4 (d, JC–F = 18.3 Hz, quinoline 7-C), 40.5 (butyl 1-C), 31.5
(butyl 2-C), 20.4 (butyl 3-C), 13.9 (butyl 4-C). HRMS (ESI-TOF) m/z calcd. for C22H20FN4O2 ([M + H]+)
391.1565. Found 391.1561.

2-[3-(Morpholin-4-ylcarbonyl)quinolin-2-yl]quinazolin-4(3H)-one (10). A mixture of Luotonin A (9) (0.029 g,
0.1 mmol), K2CO3 (0.014 g, 0.1 mmol) and morpholine (0.087 g, 1 mmol) in DMSO (5 mL) was stirred
at 100 ◦C for 16 h, then it was cooled to room temperature and the volatile components were removed
by Kugelrohr distillation (10−1 mbar, 100 ◦C). The residue was taken up in CH2Cl2 (20 mL) and
the solution was washed with water and brine, then dried over Na2SO4 and evaporated under reduced
pressure to afford 10 (0.020 g, 52%) as almost colorless crystals, m.p. > 272 ◦C (sublimation; CH2Cl2).
MS (EI, 70 eV) m/z = 296 (21%), 211 (27), 111 (32), 109 (24), 97 (47), 95 (39), 85 (38), 83 (46), 81 (51),
71 (56), 69 (81), 67 (28), 57 (100); 1H-NMR (CDCl3) δ 11.15 (s, 1H, NH), 8.38 (dd, J = 7.9 Hz, 1.0 Hz,
1H, quinazoline 5-H), 8.25 (s, 1H, quinoline 4-H), 8.20 (d, J = 7.5 Hz, 1H, quinoline 8-H), 7.92 (d,
J = 8.1 Hz, 1H, quinoline 5-H), 7.88 (ddd, J = 8.4 Hz, 6.9 Hz, 1.4 Hz, 1H, quinoline 7-H), 7.85–7.75
(m, 2H, quinazoline 7-H, 8-H), 7.72 (ddd, J = 8.2 Hz, 7.0 Hz, 1.2 Hz, 1H, quinoline 6-H), 7.57 (ddd,
J = 8.2 Hz, 6.9 Hz, 1.5 Hz, 1H, quinazoline 6-H), 4.29 (dt, J = 13.4 Hz, 3.5 Hz, 1H, morpholine 3-H),
4.10 (dt, J = 11.6 Hz, 3.7 Hz, 1H, morpholine 2-H), 3.86–3.76 (m, 1H, morpholine 2′-H), 3.74–3.63 (m,
2H, morpholine 3′-H, 6-H), 3.55 (ddd, J = 11.7 Hz, 8.8 Hz, 3.2 Hz, 1H, morpholine 6′-H), 3.32–3.24
(m, 2H, morpholine 5-H, 5′-H); 13C-NMR (CDCl3) δ: 169.2 (amide C=O), 161.4 (quinazoline 4-C),
148.6 (quinazoline 8a-C), 148.1 (quinazoline 2-C), 146.5 (quinoline 8a-C), 144.3 (quinoline 2-C), 136.6
(quinoline 4-C), 134.9 (quinazoline 7-C), 131.7 (quinoline 7-C), 129.8 (quinoline 8-C), 129.5 (quinoline
6-C), 129.2 (quinoline 3-C), 128.5 (quinazoline 8-C), 128.4 (quinoline 4a-C), 128.2 (quinazoline 6-C),
127.9 (quinoline 5-C), 127.0 (quinazoline 5-C), 122.8 (quinazoline 4a-C), 66.6 (morpholine 2-C), 66.3
(morpholine 6-C), 47.3 (morpholine 5-C), 42.6 (morpholine 3-C), HRMS (ESI-TOF) m/z calcd. for
C22H19N4O3 ([M + H]+) 387.1452. Found 387.1451.

N-Butyl-2-(4-oxo-3,4-dihydroquinazolin-2-yl)quinoline-3-carboxamide (11). A mixture of Luotonin A (9)
(0.057 g, 0.2 mmol), K2CO3 (0.028 g, 0.2 mmol) and n-butylamine (0.146 g, 2 mmol) in DMSO (7 mL)
was stirred at 100 ◦C for 16 h, then it was cooled to room temperature and the volatile components
were removed by Kugelrohr distillation (10−1 mbar, 100 ◦C). The residue was taken up in CH2Cl2
(30 mL) and the solution was washed with water and brine, then dried over Na2SO4 and evaporated
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under reduced pressure to afford 11 (0.052 g, 70%) as orange crystals, m.p. > 227 ◦C (sublimation;
CH2Cl2). MS (EI, 70 eV) m/z = 373 ([M + 1]+, 2%), 372 (M+, 6), 329 (9), 301 (63), 300 (100), 273 (29),
153 (22), 119 (33), 90 (23); 1H-NMR (CDCl3) δ 11.00 (s, 1H, quinazolinone NH), 8.37 (s, 1H, quinoline
4-H), 8.27 (d, J = 8.2 Hz, 1H, quinazoline 5-H), 8.10 (d, J = 8.4 Hz, 1H, quinoline 8-H), 7.88 (d, J = 8.1 Hz,
1H, quinoline 5-H), 7.86–7.80 (m, 1H, quinoline 7-H), 7.79–7.71 (m, 2H, quinazoline 7-H, 8-H), 7.67
(t, J = 7.5 Hz, 1H, quinoline 6-H), 7.48 (ddd, J = 8.1 Hz, 6.2 Hz, 2.1 Hz, 1H, quinazoline 6-H), 6.50 (t,
J = 5.2 Hz, 1H, amide NH), 3.69–3.57 (m, 2H, butyl 1-CH2), 1.80–1.68 (m, 2H, butyl 2-CH2), 1.49 (dq,
J = 14.8 Hz, 7.4 Hz, 2H, butyl 3-CH2), 1.00 (t, J = 7.4 Hz, 3H, CH3); 13C-NMR (CDCl3) δ: 168.6 (amide
C=O), 161.5 (quinazoline 4-C), 148.5 (quinazoline 8a-C), 148.1 (quinazoline 2-C), 146.4 (quinoline
8a-C), 144.5 (quinoline 2-C), 137.9 (quinoline 4-C), 134.7 (quinazoline 7-C), 131.6 (quinoline 7-C), 130.6
(quinoline 3-C), 129.6 (quinoline 8-C), 129.3 (quinoline 6-C), 128.4 (quinazoline 8-C), 128.1 (quinoline
4a-C), 128.0 (quinazoline 6-C), 127.9 (quinoline 5-C), 126.8 (quinazoline 5-C), 122.6 (quinazoline 4a-C),
40.6 (butyl 1-C), 31.6 (butyl 2-C), 20.5 (butyl 3-C), 14.0 (butyl 4-C). HRMS (ESI-TOF) m/z calcd. for
C22H20N4NaO2 ([M + Na]+) 395.1478. Found 395.1476.

N-[2-(Dimethylamino)ethyl]-2-(4-oxo-3,4-dihydroquinazolin-2-yl)quinoline-3-carboxamide (12). A mixture of
Luotonin A (9) (0.100 g, 0.35 mmol), K2CO3 (0.048 g, 0.35 mmol) and N,N-dimethylethylenediamine
(0.309 g, 3.5 mmol) in DMSO (10 mL) was stirred at 100 ◦C for 16 h, then it was cooled to room temperature
and the volatile components were removed by Kugelrohr distillation (10−1 mbar, 100 ◦C). The residue
was taken up in CH2Cl2 (50 mL) and the solution was washed with water and brine, dried over Na2SO4

and evaporated under reduced pressure to afford 12 as crude product (0.070 g, 52%). The residue was
subjected to MPLC, eluting with CH2Cl2/methanol (80 + 20) to afford 12 as colorless crystals, m.p.
185–188 ◦C (CH2Cl2). MS (EI, 70 eV) m/z = 197 (5%), 155 (18), 137 (46), 110 (34), 108 (12), 83 (14), 82
(13), 57 (13), 43 (100); 1H-NMR (CDCl3) δ 11.15 (br s, 1H, quinazolinone NH), 8.37 (s, 1H, quinoline
4-H), 8.35 (ddd, J = 8.0 Hz, 1.2 Hz, 0.6 Hz, 1H, quinazoline 5-H), 8.15 (d, J = 8.4 Hz, 1H, quinoline
8-H), 7.88 (d, J = 8.1 Hz, 1H, quinoline 5-H), 7.84 (ddd, J = 8.4 Hz, 6.9 Hz, 1.4 Hz, 1H, quinoline 7-H),
7.80–7.73 (m, 2H, quinazoline 7-H, 8-H), 7.67 (ddd, J = 8.1 Hz, 7.0 Hz, 1.1 Hz, 1H, quinoline 6-H), 7.52
(ddd, J = 8.2 Hz, 6.3 Hz, 2.0 Hz, 1H, quinazoline 6-H), 6.81 (br s, 1H, amide NH), 3.72 (q, J = 5.7 Hz,
2H, 1-CH2), 2.62 (t, J = 5.7 Hz, 2H, 2-CH2), 2.19 (s, 6H, CH3); 13C-NMR (CDCl3) δ: 168.8 (amide C=O),
161.5 (quinazoline 4-C), 148.6 (quinazoline 8a-C), 148.2 (quinazoline 2-C), 146.5 (quinoline 8a-C), 144.7
(quinoline 2-C), 137.7 (quinoline 4-C), 134.7 (quinazoline 7-C), 131.6 (quinoline 7-C), 130.5 (quinoline
3-C), 129.6 (quinoline 8-C), 129.2 (quinoline 6-C), 128.4 (quinazoline 8-C), 128.1 (quinaoline 4a-C), 128.0
(quinoline 5-C or quinazoline 6-C), 127.9 (quinazoline 6-C or quinoline 5-C), 126.9 (quinazoline 5-C),
122.7 (quinazoline 4a-C), 57.5 (2-CH2), 45.1 (CH3), 37.9 (1-C7H2). HRMS (ESI-TOF) m/z calcd. for
C22H22N5O2 ([M + H]+): 388.1768. Found: 388.1772.

2-[5,7-Dimethoxy-3-(morpholin-4-ylcarbonyl)quinolin-2-yl]quinazolin-4(3H)-one (14). A mixture of 1,3-
dimethoxyquinolino[2′,3′:3,4]pyrrolo[2,1-b]quinazolin-11(13H)-one (13) (0.172 g, 0.5 mmol), K2CO3

(0.069 g, 0.5 mmol) and morpholine (0.436 g, 5 mmol) in DMSO (15 mL) was stirred at 100 ◦C for 16 h,
then it was cooled to room temperature and the volatile components were removed by Kugelrohr
distillation (10−1 mbar, 100 ◦C). The residue was taken up in CH2Cl2 (50 mL) and the solution was
washed with water and brine, then dried over Na2SO4 and evaporated under reduced pressure.
The residue was subjected to MPLC, eluting with CH2Cl2/methanol (95 + 5) to afford 14 (0.060 g,
27%) as yellowish crystals, m.p. > 264 ◦C (sublimation; CH2Cl2). MS (EI, 70 eV) m/z = 447 ([M + 1]+,
2%), 446 (M+, 8) 361 (78), 360 (100), 333 (42), 302 (22), 119 (26), 90 (32), 86 (25), 57 (30), 56 (57),
55 (27); 1H-NMR (CDCl3) δ 11.14 (s, 1H, NH), 8.50 (d, J = 0.5 Hz, 1H, quinoline 4-H), 8.37 (dd,
J = 8.0 Hz, 1.1 Hz, 1H, quinazoline 5-H), 7.80 (ddd, J = 8.3 Hz, 6.8 Hz, 1.5 Hz, 1H, quinazoline
7-H), 7.76 (dd, J = 8.1 Hz, 1.0 Hz, 1H, quinazoline 8-H), 7.55 (ddd, J = 8.2 Hz, 6.9 Hz, 1.5 Hz, 1H,
quinazoline 6-H), 7.06 (d, J = 1.6 Hz, 1H, quinoline 8-H), 6.63 (d, J = 2.1 Hz, 1H, quinoline 6-H),
4.29–4.24 (m, 1H, morpholine 3-H), 4.11–4.06 (m, 1H, morpholine 2-H), 4.02 (s, 3H, 7-OCH3), 4.01 (s,
3H, 5-OCH3), 3.84–3.77 (m, 1H, morpholine 2′-H), 3.73–3.66 (m, 2H, morpholine 3′-H, 6-H), 3.59–3.52
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(m, 1H, morpholine 6′-H), 3.31–3.23 (m, 2H, morpholine 5-H, 5′-H); 13C-NMR (CDCl3) δ: 169.7
(amide C=O), 163.1 (quinoline 7-C), 161.4 (quinazoline 4-C), 156.1 (quinoline 5-C), 148.9 (quinoline
8a-C), 148.7 (quinazoline 8a-C), 148.3 (quinazoline 2-C), 144.6 (quinoline 2-C), 134.8 (quinazoline
7-C), 131.7 (quinoline 4-C), 128.5 (quinazoline 8-C), 128.0 (quinazoline 6-C), 127.0 (quinazoline 5-C),
126.0 (quinoline 3-C), 122.8 (quinazoline 4a-C), 117.4 (quinoline 4a-C), 100.7 (quinoline 6-C), 99.5
(quinoline 8-C), 66.7 (morpholine 2-C), 66.4 (morpholine 6-C), 56.2 (7-OCH3), 56.0 (5-OCH3), 47.3
(morpholine 5-C), 42.6 (morpholine 3-C). HRMS (ESI-TOF) m/z calcd. for C24H23N4O5 ([M + H]+)
447.1663. Found 447.1662.

3.3. Biological Evaluation

Human colon adenocarcinoma cells (SW480) were seeded in a 96-well plate at a density of 5 × 104

cells per mL. Minimum Essential Medium Eagle (MEM) with 10% FCS (Fetal Calf Serum) was used to
conduct the culture in the first 24 h at 37 ◦C in the presence of 5% CO2. Compounds were then added
in defined concentrations to the cultivated cells using DMSO as solvent and diluting this solution with
serum-free MEM-BSA (Minimum Essential Medium Eagle, Bovine Serum Albumin). Treated cells
were incubated for further 72 h at 37 ◦C and an atmosphere containing 5% CO2. After this incubation
period, the MTT viability assay [32] was performed. This test measures cell viability using the redox
potential of living cells. Functional cells reduce a yellow-colored tetrazolium salt to a red formazan
derivative, which can be then determined by optical density. After 3 h of incubation, the absorbance of
formazan was measured at 450 nm with 620 nm as a reference wavelength.

4. Conclusions

In summary, we have discovered an unprecedented oxidative ring opening reaction of the central
ring C in Luotonin A and two of its derivatives simply on heating with an excess amine and potassium
carbonate in DMSO solution in the presence of air oxygen. The amide-type reaction products were fully
characterized and all 1H- and 13C-NMR signals have been assigned by a combination of HSQC, HMBC,
COSY, and NOESY experiments. Four of the new compounds show moderate in vitro anticancer
activity towards human colon adenocarcinoma cells.

Supplementary Materials: Spectra (MS, 1H-NMR, 13C-NMR) of all new compounds are available online.
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