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Abstract: Polyesters, especially poly(lactide) (PLA), are used widely as biodegradable and
biocompatible materials, yet their controllable synthesis, especially the stereoselective synthesis
of polyesters, is still a challenge. Recently some excellent Lewis pair catalysts for ring-opening
polymerization (ROP) of lactide and related cyclic esters have emerged. This review article will
highlight the key advances in the ROP catalyzed by Lewis pair compounds with the aim of
encouraging the wider application of Lewis pair catalysts in the polymerization of lactide and
related cyclic esters.
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1. Introduction

Over the past three decades, biodegradable and biocompatible polyesters and their copolymers
have attracted considerable attention due to their wide applications in packaging, agricultural, and new
biomedical and pharmaceutical fields. The starting materials for these polyesters, for example
poly(lactide) (PLA), are derived from annually renewable resources such as corn, beet, and others.
Due to the concerns about our environment, global pollution, and the depletion of petrochemical
feedstocks, renewable and environmentally friendly polyesters are becoming increasingly important
for a sustainable future. A particularly convenient method for the synthesis of polyesters is the
ring-opening polymerization (ROP) of cyclic esters due to its advantages of producing polymers
with well controlled molecular weight and narrow molecular weight distribution (Đ). Various
types of catalysts have been developed for the synthesis of polyesters, especially for polylactide.
Metal complexes usually exhibit high activities and outstanding (stereo)selectivities [1–3], but the
applicability of these complexes is frequently not broad, and tailor-made solutions have to be designed
for different monomers; in addition, most of these metal complexes are sensitive to air/water which
limits their industrial applications. Organocatalysts can display higher tolerances under different
catalytic conditions [4]. However, there is still no single organocatalyst able to polymerize the full
range of lactides and lactones, and the activity of organocatalysts is generally much lower than that of
the different metal complexes. Many chemists have focused on the development of new catalysts for
exquisitely controlling chain growth, stereochemistry, and even the topological structure of polyesters.
As a new strategy of combining the respective advantages of both metal complex catalysts and
organocatalysts, Lewis pair complexes have emerged recently as new kind of catalyst, and we focus on
this topic in this review. Bifunctional organocatalysts including Brønsted acids and bases, which has
been reviewed recently [5,6] were not included here. In these bifunctional organocatalyst systems of
Brønsted acid and base, the carbonyl of a lactide monomer can be activated via hydrogen bonding
with a Brønsted acid and the initiating/propagating alcohol can be activated via the Brønsted base.
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Usually, active Lewis pair catalysts need a separated Lewis base (LB) and Lewis acid (LA) in a
frustrated Lewis pair due to a steric hindrance or via a dissociative equilibrium between Lewis acid
and base in a classic Lewis pair (Scheme 1). Due to the combination of unquenched acid and base
activities, the Lewis pair can activate cyclic esters using the Lewis acid and the Lewis base can activate
initiating/propagating alcohol via the hydrogen bonding to make it nucleophilic enough to attack
the monomer or directly play as an initiator to attack the monomer; then the polymerization of cyclic
esters mediated by these Lewis pair complexes can proceed smoothly.
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result, it was proposed that the electrophilic zinc cation activates the monomer by coordination to 
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of δ-valerolactone (δ-VL) affording zwitterionic species as reported by Stephan and co-workers 
(Scheme 3a) [8]. Because the treatment of B(C6F5)3 and δ-VL can form an adduct of δ-VL-B(C6F5)3, the 
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2. Zinc Complex/Base Lewis Pairs Catalysts

In 2011, Guillaume, Bourissou, and co-workers reported that Lewis pairs of a discrete cationic
complex [{NNO}Zn]+[B(C6F5)4)]− (Lewis acid) and pentamethylpiperidine (PMP, as Lewis base) can
efficiently promote the ROP of lactide under mild conditions (Scheme 2) [7]. Using neo-PentOH
(neo-pentanol) as an initiator, complete conversion of the monomer in up to 98% yield can be
achieved within 3 h at room temperature in CH2Cl2 with desirable polylactide Mn values of up
to 14,500 g/mol and molecular weight distributions of Đ values ranging between 1.2 and 1.4. Whereas,
the polymerization cannot happen in the presence of neo-PentOH with only [{NNO}Zn]+[B(C6F5)4)]−

or only PMP, revealing the cooperativity of Lewis acid and Lewis base. In addition, a broad range of
reactivities was observed depending on the basicity of the amines: a rapid polymerization is observed
with PMP (pKa = 11.2), but hardly any polymerization can occur with PhNMe2 (pKa = 5.1) as Lewis
base, which suggests the initiating/propagating alcohol is activated by the amine Lewis base. As a
result, it was proposed that the electrophilic zinc cation activates the monomer by coordination to
the carbonyl moiety while the amine activates the initiating/propagating alcohol through hydrogen
bonding (Scheme 2). No epimerization of the monomer and polymer chain occur, however the
PLA samples derived from rac-lactide were found to be essentially atactic, indicating the absence of
significant stereo chain-end control.

Molecules 2018, 23, 189 2 of 13 

 

via hydrogen bonding with a Brønsted acid and the initiating/propagating alcohol can be activated 
via the Brønsted base. 

Usually, active Lewis pair catalysts need a separated Lewis base (LB) and Lewis acid (LA) in a 
frustrated Lewis pair due to a steric hindrance or via a dissociative equilibrium between Lewis acid 
and base in a classic Lewis pair (Scheme 1). Due to the combination of unquenched acid and base 
activities, the Lewis pair can activate cyclic esters using the Lewis acid and the Lewis base can 
activate initiating/propagating alcohol via the hydrogen bonding to make it nucleophilic enough to 
attack the monomer or directly play as an initiator to attack the monomer; then the polymerization 
of cyclic esters mediated by these Lewis pair complexes can proceed smoothly. 

 
Scheme 1. Active classic Lewis pair and frustrated Lewis pair catalysts. 

2. Zinc Complex/Base Lewis Pairs Catalysts 

In 2011, Guillaume, Bourissou, and co-workers reported that Lewis pairs of a discrete cationic 
complex [{NNO}Zn]+[B(C6F5)4)]− (Lewis acid) and pentamethylpiperidine (PMP, as Lewis base) can 
efficiently promote the ROP of lactide under mild conditions (Scheme 2) [7]. Using neo-PentOH 
(neo-pentanol) as an initiator, complete conversion of the monomer in up to 98% yield can be achieved 
within 3 h at room temperature in CH2Cl2 with desirable polylactide Mn values of up to 14,500 g/mol 
and molecular weight distributions of Đ values ranging between 1.2 and 1.4. Whereas, the 
polymerization cannot happen in the presence of neo-PentOH with only [{NNO}Zn]+[B(C6F5)4)]− or only 
PMP, revealing the cooperativity of Lewis acid and Lewis base. In addition, a broad range of 
reactivities was observed depending on the basicity of the amines: a rapid polymerization is observed 
with PMP (pKa = 11.2), but hardly any polymerization can occur with PhNMe2 (pKa = 5.1) as Lewis 
base, which suggests the initiating/propagating alcohol is activated by the amine Lewis base. As a 
result, it was proposed that the electrophilic zinc cation activates the monomer by coordination to 
the carbonyl moiety while the amine activates the initiating/propagating alcohol through hydrogen 
bonding (Scheme 2). No epimerization of the monomer and polymer chain occur, however the PLA 
samples derived from rac-lactide were found to be essentially atactic, indicating the absence of 
significant stereo chain-end control. 

 
(a) (b)

Scheme 2. (a) Cationic zinc complex [{NNO}Zn]+[B(C6F5)4)]−; (b) Bifunctional activation of the monomer 
(by the Lewis acidic zinc complex (1)) and initiating/propagating alcohol (by the amine) proposed to 
account for the dual ROP of lactide. 

Lewis pairs of the combination of B(C6F5)3 and phosphine or N-bases can mediate the ring-opening 
of δ-valerolactone (δ-VL) affording zwitterionic species as reported by Stephan and co-workers 
(Scheme 3a) [8]. Because the treatment of B(C6F5)3 and δ-VL can form an adduct of δ-VL-B(C6F5)3, the 

Scheme 2. (a) Cationic zinc complex [{NNO}Zn]+[B(C6F5)4)]−; (b) Bifunctional activation of the
monomer (by the Lewis acidic zinc complex (1)) and initiating/propagating alcohol (by the amine)
proposed to account for the dual ROP of lactide.

Lewis pairs of the combination of B(C6F5)3 and phosphine or N-bases can mediate the
ring-opening of δ-valerolactone (δ-VL) affording zwitterionic species as reported by Stephan and
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co-workers (Scheme 3a) [8]. Because the treatment of B(C6F5)3 and δ-VL can form an adduct of
δ-VL-B(C6F5)3, the ring-opening reaction is thought to result from the Lewis acid activation of carbonyl
bond of δ-VL, which prompts the attack by the Lewis base. However, only stoichiometric ring-opening
reactions were reported. The reaction of lactide only gives the ring contraction product (Scheme 3b).
It is interesting that when B(C6F5)3 is replaced with Zn(C6F5)2, the combination of Zn(C6F5)2 and
organic bases (amines or phosphines) can promote the controlled ring-opening polymerization of
lactide (Scheme 4a) and ε-caprolactone (ε-CL), affording polymers of cyclic architecture, as reported
by Amgoune, Bourissou, and co-workers [9]. Efficient chain-extension can give access to cyclic block
copolymers of PLA−PCL (Scheme 4b). Such systems offer a new route to cyclic polyesters. The cyclic
topology of the polymer was assigned by a combination of Mark-Houwink plots and MALDI-TOF,
the latter of which showed no trace of linear products. 1H-NMR analysis also revealed perfectly
isotactic PLA with no end group signals, indicating that this Lewis pair does not induce epimerization
of L-lactide.
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The mechanism of the above system was further explored in details by Li and co-workers in
2016 [10]. Combination of Zn(C6F5)2 with DMAP (4-dimethylaminopyridine), NHC (1,3-bis(2,4,6-
trimethylphenyl) imidazole-2-yli-dene-(MesNHC)), DBU (1,8-diazabicyclo[5,4,0]undec-7-ene) or
MTBD (7-methyl-1,5,7-triazabi-cyclo[4,4,0]decane-5-ene) can afford Lewis pairs with different
interaction modes. The reactivity of the Lewis adduct Zn(C6F5)2/DMAP was quenched significantly
because the combination of DMAP with Zn(C6F5)2 exclusively formed a classical Lewis adduct
(CLA); but the Lewis acidity of Zn(C6F5)2 was not quenched completely, and the polymerization
can be initiated at a high temperature. When bulky MTBD and DBU were used, the Lewis pairs
Zn(C6F5)2/DBU and Zn(C6F5)2/MTBD exhibited relatively high activity at room temperature because
of the weaker interaction between Zn(C6F5)2 and MTBD or DBU for the larger steric hindrance.
The investigation into the polymerization behavior of lactide showed that the weak interacting Lewis
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pair of Zn(C6F5)2/MTBD exhibited much higher activity in the polymerization of lactide and much
lower temperature dependence compared with the Lewis adduct Zn(C6F5)2/DMAP. And a possible
bifunctional activation mechanism was proposed as shown in Scheme 5. The Lewis acidity of Zn(C6F5)2

was neutralized completely in CLA, whereas it was quenched partly in weak interacting Lewis pairs
of Zn(C6F5)2/DBU and Zn(C6F5)2/MTBD. With increasing temperature, the interaction between the
Lewis acid and the Lewis base in CLA become seriously impaired, thus the Lewis acidity of Zn(C6F5)2

was recovered. Lactide would be activated electronically by coordination to the Lewis acid Zn(C6F5)2.
Simultaneously, an amine attacked nucleophilically the carbonyl of lactide, forming a zwitterionic
active species with Zn(C6F5)2 in one end and an amine in the other end. The Zn(C6F5)2 moiety
associated with the amine moiety in the active species, and they work cooperatively to activate the
lactide monomer in the propagation process. The polymerization was terminated by the nucleophilic
attack of the terminal alkyloxide on the carbonyl, yielding a cyclic polymer and releasing separated
Lewis pairs.
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Adducts of N-heterocyclic carbenes (NHCs) and Zn(C6F5)2, reported by Dagorne and
co-workers [11], can mediate the ring-opening polymerization of β-BL (β-Butyrolactone) at 90 ◦C
in toluene to afford polybutyrolactone (PBL) with narrow molecular distributions (1.17–1.22) and
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slightly lower molecular weights. MALDI-TOF mass spectrometric and 1H-NMR spectroscopic data
proved the polymer chain ends are crotonates, indicating that NHC acts as a base to deprotonate
β-BL to form crotonate zinc intermediate by alkyl cleavage and then initiate the ROP of β-BL via an
anionic mechanism (Scheme 6). In this system, the role of Zn(C6F5)2 cannot be neglected, because
PBLs obtained with the related free NHCs as catalysts exhibit broader Đ values (1.33–1.56) than those
produced with adducts of NHC/Zn(C6F5)2 under identical conditions. The same NHC–Zn(C6F5)2

adducts were also found to ring-open polymerize rac-LA at room temperature; however, they afforded
broadly dispersed and poor chain length-controlled PLA, indicative of ill-defined ROP processes.
Very interestingly, the simple binary system BnOH and Zn(C6F5)2 generated in situ upon mixing
BnOH with Zn(C6F5)2 was observed to polymerize rac-LA in a controlled and immortal manner to
produce chain-length-controlled PLA. In this system Zn(C6F5)2 acts as Lewis acid and BnOH acts as a
nucleophilic chain-transfer agent, and the ROP is proposed to via a monomer activated mechanism
in which the activation of monomer is very important. Thus, it seems that the lewis acid Zn(C6F5)2

is more important for both systems. However, the BnOH/Zn(C6F5)2 initiating system displayed no
activity in the ROP of β-BL (90 ◦C, toluene, 20 h).
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3. Aluminum Complexes/Base Lewis Pairs Catalysts

Chen et al. reported that several Al(C6F5)3-based Lewis pairs show high activity and effectiveness
for the polymerization of conjugated polar alkenes such as methyl methacrylate (MMA), acrylamides,
α-methylene-γ-butyrolactones (MBL) and γ-methyl-α-methylene-γ-butyrolactone (γ-MMBL), but only
PtBu3/Al(C6F5)3 Lewis pairs can polymerize ε-CL to PCL at room temperature but with a broad
molecular weight distribution of Đ = 2.76 and a low monomer conversion of only 58% even after
20 h [12]. N-Heterocyclic olefins (NHOs) are readily accessible and their structure is easily tuned
(Scheme 7) [13–16]. Despite their success in many applications [17–23], these organocatalysts have
been shown to be problematic for lactone polymerization, displaying either uncontrolled behavior
or no reactivity toward simple lactones such as δ-VL and ε-CL. Interestingly, the same group of
Chen reported the first successful Lewis pair polymerization (LPP) system for the living ROP of
δ-VL and ε-CL using the combination of N-heterocyclic olefin (NHO-1) and Al(C6F5)3 [24]. In this
system, high molecular weight linear (co)polyesters (Mw up to 855 kg/mol) are achieved, and most
of them display narrow molecular weight distributions (Đ as low as 1.02). Based on several key
crystal structures of intermediates, the polymerization is proposed to proceed with initiation involving
nucleophilic attack of the Al(C6F5)3-activated monomer by NHO to form the zwitterionic tetrahedral
intermediates, followed by its ring-opening to generate zwitterionic enolaluminate active species
(Scheme 8). In the propagation cycle, this ring-opened zwitterionic species and its homologues attack
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the incoming monomer activated by Al(C6F5)3 to generate the tetrahedral intermediate, followed by
the rate-determining ring-opening step to regenerate the zwitterionic species, thus re-entering into
the next chain propagation cycle. Using this Lewis pair, random copolymer of ε-CL and δ-VL can
be obtained in the polymerization of a mixture of two monomers; the block copolymer also can be
achieved via sequential addition of two monomers respectively.Molecules 2018, 23, 189 6 of 13 
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Al(C6F5)3·THF in combination with trimesitylphosphine (Mes3P) or triphenylphosphine (Ph3P)
also was utilized as catalysts to achieve a controlled polymerization of L-lactide at 100 ◦C by
using BnOH as an initiator to produce poly(L-lactide) with narrow molecular weight distribution
(Đ = 1.1), reported by Nakayama et al. (Scheme 9) [25]. Both the Lewis acid and the Lewis base
(LB) were indispensable to promote the polymerization. The molecular weights of the resulting
poly(L-lactide)s were controlled by the monomer to initiator feed ratio. In the Al(C6F5)3·THF-Mes3P
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system, the concerted operation of Lewis acid and Lewis base in the formation of active species and/or
in chain propagation also can be confirmed by the fact that no MeOH-insoluble polymer was obtained
when Al(C6F5)3·THF or Mes3P was used alone. The activities of these Al(C6F5)3·THF-LB Base systems
also seem to be dependent on the basicity of the phosphines. When Al(C6F5)3·THF-LB was replaced
with B(C6F5)3-LB, the corresponding systems were inactive.Molecules 2018, 23, 189 7 of 13 
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Dagorne and co-workers reported that several N-heterocyclic carbene (NHC) group 13 metal
Lewis pair adducts of NHC-MR3 (M = Al, Ga, In) can play as efficient initiators for the ring-opening
polymerization (ROP) of rac-lactide (Scheme 10) [26], allowing one to obtain either linear poly(lactic
acid) (PLA) or cyclic PLA. It was conjectured that the quite polar M-C carbene bond may readily
dissociate in the presence of oxygen-containing polar substrates (such as cyclic esters), which are
expected to be active for the ROP of lactide. The MR3 fragment acts as Lewis acid and the NHC
moiety acts as a nucleophile to ring-open the lactide monomer. Subsequently, propagation may allow
PLA chain growth from the metal center. Experimental results also showed that more sterically
bulky adducts disfavor monomer access to the metal center, thus exhibit low activities. The lactide
ROP behavior of the Ga(III) or In(III) adducts exhibits a moderate activity in lactide ROP but along
with a poor control of the ROP process (multimodel) because of the probable involvement of several
catalytically active species. The addition of an alcohol source (such as BnOH) that may act both as
a nucleophile and a chain transfer agent was found to improve the control and activity of the ROP
catalysis mediated by these group 13 metal adducts.
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4. Magnesium Complex/Base Lewis Pairs Catalysts

Naumann, Dove, and co-workers reported that different Lewis acids can activate different lactones
to a different degree [27]. The combination of N-heterocyclic carbenes, 1,8-diaza-bicycloundec-7-ene
(DBU) and 4-dimethylaminopyridine (DMAP) with simple Lewis acids can mediate the ROP of the
macrolactone pentadecalactone (PDL) in a rapid and efficient manner. The performance of adduct
of MgCl2-NHC-1 (Scheme 11) is comparable to a magnesium-based complex of Mg(BHT)2(THF)2

(magnesium 2,6-di-tert-butyl-4-methylphenoxide) for PDL polymerization [28]. Control experiments
demonstrated that MgCl2 or free NHC-1 alone could not induce any polymerization under the same
conditions (110 ◦C, 6 h). It was suggested that a fast and complete dissociation of NHC-1-MgCl2
adduct to NHC-1 and MgCl2 can be triggered by heating; as a result, separate addition of NHC-1
and MgCl2 can display a same catalytic effect for the polymerization of PDL. Remarkably, regardless
of the nature of the nucleophile, the order of activity was observed to be MgX2 > YCl3 > AlCl3 and
MgI2 > MgBr2 > MgCl2 in every case. The minimal influence of the organobase on polymerization
activity allows for the use of simple and inexpensive precursors, for example DMAP as a Lew base is
enabled to polymerize a range of monomers with a suitable co-catalyst of Lewis acid. Furthermore,
extension of the study to other cyclic (di)ester monomers (of ε-CL, δ-VL, rac-lactide (rac-LA) and
β-butyrolactone (β-BL) reveals the choice of Lewis acid to lead to monomer selective ROP activity
and hence control over copolymer composition by choice of Lewis acid. This approach could
lead to the realization of complex polymer structures with tunable physical properties from simple
catalyst combinations.
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5. NHOs/Metal Complexes Lewis Pairs Catalysts

Naumann and co-workers utilized the cooperative interaction of four structurally different
N-heterocyclic olefins (NHOs) (NHO-2–NHO-5, Scheme 7) with a range of simple metal halides (MgCl2,
MgI2, ZnI2, YCl3, AlCl3, and BiCl3) as Lewis acidic cocatalysts for the homo- and copolymerization of
ε-caprolactone (ε-CL) and δ-valerolactone (δ-VL) [29]. The single components of Lewis acids or NHOs
are inactive on their own. NHO-2 can generate PCL in combination with all Lewis acids except BiCl3.
The controlled preparation of polyesters from these monomers can be achieved, whereby desirable
molecular weights and narrow molecular weight distribution (1.05 < Đ < 1.15) can be observed
in a room temperature-based process using low catalyst loadings (0.25–0.50 mol %) for multiple
combinations of NHOs and Lewis acids. The polymerization rates are strongly influenced by the
nature of the involved Lewis acid. An order of activity of MgI2 > YCl3 > ZnI2 > MgCl2 is found using
four Lewis bases of NHO-2 to NHO-5, which is in coordinate with the assumption that in these dual
pairs the Lewis acid is the dominant part concerning the polymerization rates. In the proposed ROP
mechanism (Scheme 12), the generation of Mg[I]2[NHO] complexes was proposed and can explain the
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successful application of NHO-5 for the ROP of δ-VL or ε-CL, which cannot be controlled at all by only
NHO-5 as organocatalyst. Furthermore, this dual catalytic system was used to the co-polymerization
of ε-CL/δ-VL. Most metal halides (such as MgI2, ZnI2, and AlCl3) entail δ-VL-enriched polyester, YCl3
favors ε-CL incorporation.
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adduct formation.

Walther and Naumann extended the application of Lewis pairs of N-heterocylic olefins
(NHOs)/metal halide to less readily polymerizable latones (Scheme 13) [30]. A 16-mermered
macrolactone, ω-pentadecalactone (PDL), is essentially strain-free. Consequently, PPDL synthesis
commonly suffers from a broad molecular weight distribution and very limited suitable catalysts.
And the copolymers of PDL with other lactones are not easily obtained too. Using some NHO/Lewis
acid combinations, the polymerization of PDL can proceed smoothly. The chemical nature of the
NHO seems less important than a suitable choice of the Lewis acid, which determined the success of
the polymerization to a high degree. Coherently, for all cases the polymerization rates decreased in
the order of MgI2 > MgCl2 > YCl3 > ZnI2. The copolymerization of PDL with ε-CL can reach high
or quantitative conversion (Mn = 10–30 kg/mol) whereby 50% PDL content and perfectly random
polymer structures were accessible. One-pot 1:1 PDL/δ-VL copolymerizations can result in high
or low PDL content according different Lewis acid and reaction conditions. Notorious nonstrained
γ-butyrolactone (GBL) is also less readily polymerizable latones. Although Chen and Hong co-workers
succeeded in the polymerization of GBL, the polymerization conditions of low reaction temperatures
(−40 ◦C) and high monomer concentration (10 M) are somewhat harsh [31]. Using the Lewis paired
catalysts of NHOs/metal halide, the copolymerization of GBL with PDL, ε-CL, and δ-VL can be
observed and the copolymerization behavior is strongly dependent on the applied Lewis pair (with
slightly low GBL content (5–22%)). A simplified initiation mechanism for NHO LPs and lactones
was proposed (Scheme 14): a cooperative deprotonation occurs when BnOH is mixed with NHOs
and metal halides; the proton is transferred to the NHO, forming the positively charged counterion.
The alcoholate will then attack the lactone monomer, which itself is activated by coordination to a
Lewis acid, most probably via the carbonyl oxygen.
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6. Boron Complex/Base Lewis Pairs Catalysts

The optical purity of L-lactide is important for current industrial production of poly(L-lactide)
using the ROP method, because it can significantly affect the materials properties of final poly(L-lactide)
product, such as crystallinity and biodegradation rate. While in the progresses of synthesis of
L-lactide from L-lactic acid with metal complexes as catalysts or from the thermal degradation of
PLLA in the feedstock recycling, some meso-lactide cannot be avoided as a byproduct or waste
that needs to be removed. Interesting, Chen et al discovered that Lewis pairs of DABCO/B(C6F5)3

adduct (1,4-diazabicyclo [2.2.2]octane, DABCO) can catalyze the epimerization of meso-lactide (LA)
quantitatively into rac-LA in 2015 (Scheme 15) [32]. This research seems to be a good way to solve
the above serious problem of impurity of meso-lactide in L-LA. In this progress, it is important to
shift the dynamic meso-LA⇔rac-LA equilibrium toward rac-LA, for example at a low temperature
(room temperature); nonpolar solvent of toluene also is important, which enables the precipitation of
rac-LA from solution of mixture once formed markedly and enhances the meso-to-rac-LA conversion
up to 99%. The mechanism for this transformation of meso-to-rac-LA is presumably attributed to
the cooperativity of the Lewis pairs in that B(C6F5)3 Lewis acid activates the substrate meso-LA
via carbonyl coordination, which accelerates the depronation at the tertiary carbon of the activated
substrate by the base of DABCO, leading the planar enolate intermediate that can be reprotonated
causing epimerization (Scheme 16). Noteworthy, the performance of the preformed classical Lewis
adduct (insoluble) DABCO·B(C6F5)3 for this epimerization reaction is identical to the separated
addition of borane and DABCO, where the borane and meso-LA was premixed and then the addition
of DABCO can start the reaction. This result indicates that this Lewis pairs adduct can reversibly
and rapidly dissociate into the respective base and acid to catalyze the epimerization. The obtained
rac-LA can further be kinetically polymerized into poly(L-lactide) and optically resolved D-LA, with
a high stereoselectivity kL/kD of 53 and an ee values of 91% at 50.6% monomer conversion, by
bifunctional enantiopure chiral catalyst that incorporates three key elements (β-isocupreidine core,
thiourea functionality, and chiral BINAM) into a single organic molecule.
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It is intriguing that the epimerization reaction and enantioselective polymerization can be 
coupled into a one-pot process for transforming meso-LA directly into poly(L-lactide) and D-LA: 
authors first performed the quantitative epimerization of meso-LA by DABCO/B(C6F5)3 (0.01 mol %) 
in toluene, removed the solvent to give rac-LA/meso-LA in a ratio of 99/1, and then added enantiopure 
organic catalyst in o-difluorobenzene (DFB) for subsequent kinetic resolution polymerization. 

6. Outlook 

Over the past few several years, Lewis pair polymerization catalysis has attracted an explosive 
level of interest in the field of polymer chemistry. Lewis pairs have higher thermal stability to enable 
ROP under industrially relevant melt processing conditions. Exciting opportunities still exist for the 
ROP of cyclic ester using Lewis pairs, for example, the degree of polymerization control needs 
significant improvement, the molecular weight of the polyester is still limited, addressing challenges 
of designing Lewis pair catalysts that can mediate stereocontrolled ROP of lactide and related cyclic 
esters at ambient temperature and above, and detailed mechanism need be studied further in detail. 
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It is intriguing that the epimerization reaction and enantioselective polymerization can be coupled
into a one-pot process for transforming meso-LA directly into poly(L-lactide) and D-LA: authors first
performed the quantitative epimerization of meso-LA by DABCO/B(C6F5)3 (0.01 mol %) in toluene,
removed the solvent to give rac-LA/meso-LA in a ratio of 99/1, and then added enantiopure organic
catalyst in o-difluorobenzene (DFB) for subsequent kinetic resolution polymerization.

7. Outlook

Over the past few several years, Lewis pair polymerization catalysis has attracted an explosive
level of interest in the field of polymer chemistry. Lewis pairs have higher thermal stability to enable
ROP under industrially relevant melt processing conditions. Exciting opportunities still exist for
the ROP of cyclic ester using Lewis pairs, for example, the degree of polymerization control needs
significant improvement, the molecular weight of the polyester is still limited, addressing challenges
of designing Lewis pair catalysts that can mediate stereocontrolled ROP of lactide and related cyclic
esters at ambient temperature and above, and detailed mechanism need be studied further in detail.
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