Supplementary Materials:

Identification of cyclic dipeptides from *Escherichia coli* as new antimicrobial agents against *Ralstonia solanacearum*

Shihao Song^{1,2#}, Shuna Fu^{1,2,3#}, Xiuyun Sun^{1,2,3#}, Peng Li⁴, Ji'en Wu⁵, Tingyan Dong^{1,2}, Fei He³, and Yinyue Deng^{1,2,3}*

¹State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China

²Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China

³Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China

⁴School of Biological and Science Technology, University of Jinan, Jinan 250022, China;

⁵Department of Chemistry, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore

[#]These authors have contributed equally to this work.

*Corresponding author:

Yinyue Deng:

College of Agriculture, South China Agricultural University

Tel: 86-20-85286471;

Email address: ydeng@scau.edu.cn

1. Experimental methods:

1.1 Quantitative Real-Time PCR Assays.

R. solanacearum cells were cultured and harvested till $OD_{600}=1.0$. RNA was isolated using the RNeasy Protect Bacteria Mini Kit (Qiagen, Copenhagen, Denmark), and was treated using the Turbo DNA-free kit (Ambion, Life Technologies, Denmark) according to manufacturers' instructions. cDNA synthesis and quantitative RT-PCR analysis were carried out using the Qscript 1-Step Sybr green qRT-PCR kit (Quanta Biosciences, Gaithersburg, MD) according to manufacturer's instructions. Using 7300Plus Real-Time PCR System. As a control, quantitative RT-PCR was similarly applied to analyze the expression of the 16S rRNA gene. The relative expression levels of the target genes were calculated using the Quantitation-Comparative CT ($\Delta\Delta$ CT) method [1].

1.2 Effect of ethyl acetate extract of E. coli GZ-34 on Sporisorium scitamineum.

S. scitamineum MAT-1 and MAT-2 were cultured in YePSA medium and harvested till $OD_{600}=1.5$. MAT-1 and MAT-2 were mixed with equal volumes and 1 µl mixtures were pointed on the YePSA solid medium plates supplementing with the ethyl acetate extract of *E*. *coli* GZ-34 as indicated. After being cultured at 28 °C for 3 days, the colonies were observed using a stereomicroscope (M165 FC, Leika, Germany) at low magnification (10x) [2].

References

- Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* **1995**, 166:175-176, DOI:10.1016/0378-1119(95)00584-1.
- Yan M, Zhu G, Lin S, Xian X, Chang C, Xi P, Shen W, Huang W, Cai E, Jiang Z, Deng YZ, Zhang LH. The mating-type locus b of the sugarcane smut *Sporisorium scitamineum* is essential for mating, filamentous growth and pathogenicity. *Fungal Genet Biol* 2016, 86:1-8, DOI:10.1016/j.fgb.2015.11.005.

Strain or plasmid	Phenotype and/or characteristic(s)	Source or reference
Strain		
GMI1000	Wild-type strain of R. solanacearum	ATCCBAA-1114
GMI1000-eGFP	GMI1000 containing the egfp gene	This study
GZ-33	An antagonistic bacterium against GMI1000	CCTCC NO: M 2016352
GZ-34	An antagonistic bacterium against GMI1000	CCTCC NO: M 2016353

Table S1. Bacterial strains and plasmids used in this study

GZ-39	An antagonistic bacterium against	CCTCC NO: M 2016354
	GMI1000	
Guy11	M. grisea	ATCC201236
Ss17 (MAT-1)	Pair of mating strains of S. scitamineum	Yan et al., 2016
Ss18(MAT-2)	Pair of mating strains of S. scitamineum	Yan et al., 2016
Plasmid		
pBBR1MCS-2	Broad-host-range cloning vector, Km ^r	Kovach et al. (1995)
pBBR1-eGFP	pBBR1MCS-2 containing the egfp gene	This study
pBBR1-eGFP	pBBR1MCS-2 containing the egfp gene	This study

Table S2.	1 H (500	MHz) and ¹	³ C (125 N	MHz) NMR	data of fraction	1 and fractio	n 2 (δ in j	ppm)
-----------	---------------	-----------------------	-----------------------	----------	------------------	---------------	---------------------	------

Position	Fraction 1 (in	CD ₃ OD)	Fraction 2 (in CD ₃ OD)	
_	δ (H)	δ (C)	δ (H)	δ (C)
1		172.6		166.9
2				

3	3.60-3.53(1H,m),	46.3	3.56-3.48(1H,m),	46.1
	3.52-3.49(1H,m)		3.39-3.33(1H,m)	
4	2.06-2.02(1H,m),	23.4	1.84-1.75 (2H, m)	22.8
	1.98-1.91(1H,m)			
5	2.35-2.32(1H,m),	29.7	1.24-1.15(1H,m),	29.4
	2.00-1.92(1H,m)		2.12-2.04(1H,m)	
6	4.10(1H,br,s)	61.4	4.06(1H, ddd, <i>J</i> =	60.2
			1.7,6.3,10.8 HZ)	
7		167.7		171.1
8			4.56(1H,br,s)	
9	4.22(1H,t, <i>J</i> = 7.1 HZ)	60.1	4.44(1H, ddd, <i>J</i> = 1.0,4.8,5.0 HZ)	57.8
10	2.20-2.16(1H,m)	25.6	3.18(1H, dd, <i>J</i> = 4.8,14.4 HZ),	38.2
			3.14(1H, dd, <i>J</i> = 5.0,14.4 HZ)	
11	1.49-1.43(1H,m),	37.2		137.5
	1.37-1.31(1H,m)			
12	1.07(3H,t, <i>J</i> = 7.1 HZ)	15.7	7.29-7.20(1H,m)	131.2
13	0.95 (3H,d, <i>J</i> = 6.9 HZ)	12.7	7.29-7.20(1H,m)	129.6
14			7.29-7.20(1H,m)	128.2

Table 55. Primers used in this stud	Fable S3. Primers use	d in	this	study
--	-----------------------	------	------	-------

Primer name	Prime sequence	Note
16s-27f	AGAGTTTGATCCTGGCTCAG	
16s-1492r	GGTTACCTTGTTACGACTT	
egfp-F	CCGCTCGAGATGGTGAGCAAGGGCGAGGAG	XhoI
egfp-R	CCCAAGCTTTCAAAGATCTACCATGTACAGCTCGT	HindIII
epsA-F	GTACCGAAGATCACGCCCAT	qRT-PCR
epsA-R	GATCCCAGACCACGATCGAC	qRT-PCR
epsE-F	GGCAAGTTCTGGCGCAATTT	qRT-PCR
epsE-R	CGTCTGGAACAGGATCAGGC	qRT-PCR
epsF-F	TGCGTTCTACGAGTTCCAGC	qRT-PCR
epsF-R	TTGGCCACGGAATACGAGAG	qRT-PCR
motA-F	GCTAGTCGCCATCGGTTACA	qRT-PCR
motA-R	GATCGCCTTCTTGTCGTTGC	qRT-PCR
<i>fliT</i> -F	CAACTGGGAAGTCGTCAGCA	qRT-PCR
fliT-R	CGCGCATCGTCTTCGAGAAT	qRT-PCR
hrpB-F	TGCAGACCAAGGTGGAAGTC	qRT-PCR
hrpB-R	GAAGTCGAAATTCCAGCGGC	qRT-PCR
awr-F	GACAAGCGTTACAAGAGCGG	qRT-PCR
awr-R	GACCTTGAACTCCTGCTCGG	qRT-PCR
pilQ-F	GCCTGAGCGTCATCTTCGAT	qRT-PCR
pilQ-R	ATGTCGACCGTGTCTTCGAG	qRT-PCR
chew-F	CGAGGAATACGGCATCGACA	qRT-PCR
chew-R	GACGACGGTGTACTGGTTGT	qRT-PCR
phcA-F	CTTCAACATCAGCTTCGCCG	qRT-PCR
phcA-R	TCCAGCTCATTGGAACGCAT	qRT-PCR

G16S-F	CGATGTCTGCCTGTTCGACG	qRT-PCR
G16S-R	AGCCAGTCCATCTTGTCGC	qRT-PCR
<i>cel</i> -F	CTGCTCGATCCGCACAACTA	qRT-PCR
cel-R	ATTGCCCTTGAACTGGGTGG	qRT-PCR

Table S4. Transcriptional expression levels of virulence-related genes in *R. solanacearum* aftertreatment with antimicrobial compounds from *E. coli* GZ-34.

Gene name or ID	cyclo(L-Pro-D-Ile) cyclo(L-Pro-L-Phe)		Description	
RS22045 epsA	1.087±0.136	0.944 ±0.209	EPS I polysaccharide export outer membrane protein EpsA	
RS22020 epsE	12.113**±4.335	6.598**±2.732	EPS I polysaccharide export inner membrane protein EpsE	
RS22015 epsF	1.637**±0.213	0.274 ***±0.125	EPS I polysaccharide export inner membrane protein EpsF	
motA	1.204±0.198	$0.674^* \pm 0.167$	Flagellar motor stator protein MotA	

RS19010 <i>fliT</i>	0.869 ±0.231	$0.483^* \pm 0.146$	Flagellar protein FliT
RS21310 hrpB	$0.648^{**} \pm 0.108$	$0.641^* \pm 0.139$	Regulatory protein HrpB
RS21180 awr	0.79 ±0.129	$1.528^* \pm 0.302$	AWR family protein
RS11555 pilQ	0.695 ±0.142	0.656 ± 0.204	GSPD
RS23915 cheW	1.066±0.113	$0.59^{**} \pm 0.184$	Chemotaxis protein CheW
RS13750 phcA	1.529**±0.225	$0.533^* \pm 0.173$	Transcriptional regulator
RS17915 cel	$0.755^* \pm 0.126$	$0.716^* \pm 0.133$	Drug: proton antiporter

Data are means ± standard deviations from three independent experiments. *, *P* < 0.05; **, *P* < 0.01; ***,

P < 0.001 (unpaired t test).

Fig. S1. Isolation and characterization of antagonistic bacteria. The inhibition zone of GZ-33 (a), GZ-34 (b) and GZ-39 (c) in *R. solanacearum* bioassay plate. Analysis of phylogenic tree of GZ-33 (d) and GZ-39 (e), which was based on 16S rRNA sequences. Each experiment was performed at least three times in triplicate.

Fig. S3. DEPT135 spectra of cyclo(L-Pro-D-Ile).

Fig. S4. DEPT135 spectra of cyclo(L-Pro-L-Phe)

Fig. S5. Effect of the ethyl acetate extract of GZ-34 on the sexual integration of *S. scitamineum*. (a) Ss17 (MAT-1). (b) Ss18 (MAT-2). Ss17 (MAT-1) and Ss18 (MAT-2) were mixed and treated with 0 μ l (c), 3 μ l (d), 4.5 μ l (e) and 6 μ l (f) of the ethyl acetate extract of *E. coli* GZ-34, respectively. Each experiment was performed at least three times in triplicate.